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1 Spaces of O-invariant paths

1.1 The boundary operator on digraph paths

Let V' be a finite set whose elements will be called vertices. For any p > 0, an elementary
p-path is any sequence i, ..., 7, of p + 1 vertices of V' (allowing repetitions). Fix a field
K and denote by A, = A, (V,K) the K-linear space that consists of all formal K-linear
combinations of elementary p-paths in V. Any element of A, is called a p-path.

An elementary p-path i, ..., i, as an element of A, will be denoted by e;, ;. For example,
we have

AO = <€i 11 E V>, A1 = <€ij I’i,j S V), A2 = <eijk . i,j,k’ € V>
Any p-path u can be written in a form © = Zio 1€V woir e g, where uior-ir € K.

Definition. Define for any p > 1 a linear boundary operator 0 : A, — A,_; by

p

Ocin..iy =Y (1) €y 2 iy (1.1)

q=0

where ~ means omission of the index. Set A_; = {0} and define 0 : Ay — A_; by 0 = 0.

For example, Oe; = 0, Oe;; = e; —e; and Oe;jp, = e — e, + €ij.
Lemma 1.1. We have 0> = 0.

Proof. Indeed, for any p > 2 we have

P
2
0 €ig ip — Z (_]‘)qa zo...z/{;‘..zp
q=0
p q—1 p
-1
S G I I e S o S SO o D A N S
q=0 r=0 r=qg+1
= > DTy paa— >, (D) Te e
0<r<qg<p 0<g<r<p

After switching ¢ and r in the last sum we see that the two sums cancel out, whence
d%e;,..;, = 0. This implies 9*u = 0 forallu € A,. m

Hence, we obtain a chain complex A, (V):

0 7] 0 o
0 «— Ay — Ay & ... & Ay & A — ...

Definition. An elementary p-path e;, ;, is called regular if i}, # i}, forallk =0, ...,p — 1,
and irregular otherwise.

Let Z, be the subspace of A, spanned by irregular p-paths e;;. ;,. We claim that 0Z, C Z,,_;.
Indeed, if e;,. ;, is irregular then ¢;, = 754, for some k. We have

0eiy..i, = €iy..iy — Cigin..ip T -



k k+1
+ (1) Cig.if_ 1 1ikpaip T (—1) * €ig..ip—_1inipta.ip (1.2)
+ I (_1)17 eiomip_l.

By i), = 7141 the two terms in the middle line of (1.2) cancel out, whereas all other terms are
non-regular, whence de;, _;, € Z,_;.

Hence, O is well-defined on the quotient spaces R, := A,/Z,, and we obtain the chain
complex R, (V):
0« Ry £ Ry & ... & »y &R, & ...

By setting all irregular p-paths to be equal to 0, we can identify R, with the subspace of A,
spanned by all regular paths. For example, if ¢ # j then e;;; € Ro and
86@'@' = eji — € + eij = eji + eij

because ¢;; = 0 in R.

1.2 Spaces (), of O-invariant paths

Definition. A digraph (directed graph) is a pair G = (V, E) of a set V' of vertices and
E C{V x V \ diag} is a set of arrows (directed edges). If (i, j) € E then we write i — j.

Definition. Let G = (V, ) be adigraph. An elementary p-path i...7, on V' is called allowed
if i, — iy forany £ =0, ..., p — 1, and non-allowed otherwise.
Let A, = A, (G) be K-linear subspace of A, spanned by allowed elementary p-paths:

Ap = (€i...i, © To...1p is allowed).
The elements of 4, are called allowed p-paths. Since any allowed path is regular, we have
A, CR,.
We would like to build a chain complex based on subspaces A, of R,,. However, the spaces
A, are in general not invariant for 0. For example, in the digraph

a b c
e — 0 — 0
we have egp. € As but Oegpe = €pe — €qe + €ap ¢ Aq because e, is non-allowed.

Consider the following subspace of A,
Q=Q0,(G)={uecA,:0uec A,_}.
We claim that 092, C €,_;. Indeed, u € 2, implies Ju € A, 1 and 9 (Ou) = 0 € A, o,
whence Ou € Q,_;.
Definition. The elements of €2, are called 0-invariant p-paths.

Thus, we obtain a path chain complex ), = Q. (G):

0

0 — 0 £ 0 & ... & q 0

Loq, & (1.3)

p—1 D

By construction we have Qy = Ay and €; = A;, while in general €2, C A,.

For a vector space U over K we write
Proposition 1.2. If|Q2,| < 1 for some p then 2, = {0} for all n > p.
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1.3 Examples of O-invariant paths

A triangle is a sequence of three distinct vertices a, b, ¢ S
suchthata — b — ¢, a — c.
It determines a 2-path ey, € 25 because eq. € As

and Oegpe = €pe — Cae + €ap € Aj. a

A square is a sequence of four distinct vertices a, b, V', ¢

suchthata — b — ¢, a — b — c while a 4 c. ' ‘
It determines a 2-path u = e — €4 € (29 because
u € Ay and

Ou = (epc — €ac + €ap) — (eyec — €ac + €apr) ¢ b

= €ab T €he — Capy — €y € Ay

A p-simplex (or p-clique) is a configuration of p + 1 3
distinct vertices, say, 0, 1, ...,p, such that: — j Vi < j. )
It determines a p-path eg;._,, € €2,,.
Here is a 3-simplex: " 1
A p-snake is a configuration of p + 1 i _iv2

distinct vertices, say 0, 1, ..., p, with

the following arrows:

t—1+1foralli =0,...,p—1, -l i1 "3
1 —1+2 foralle=0,...,p— 2.
In particular, any triple i (i + 1) (¢ + 2) forms a triangle fori = 0,...,p — 2.

A p-snake determines a 0-invariant p-path eq;__,. Indeed, this path is obviously allowed, and

its boundary
P

a601...p = Z:O (—1)q €0...(q—1)(g+1)..p
q:

is also allowed because ¢ — 1 — ¢ + 1. Hence, ¢;,..;, € €2,
Clearly, a p-simplex contains a p-snake.

A 3-cube is a sequence of 8 vertices 0, 1,2, 3,4,5,6,7,
connected by arrows as shown here: §

A 3-cube determines a 0-invariant 3-path

U = €237 — €0137 T €0157 — €oa57 + €oa67 — o267 € (13

because u € As and

Ou = (eq13 — €p23) + (€157 — €137) + (€237 — €267)
- (6046 - 6026) - (6457 - e467) - (6015 - 6045) e A,.



1.4 Path homology

Definition. Path homologies of G are defined as the homologies of the chain complex €2, (G):

H, = H,(G) = ker |, /Imd|q

p+1°

The elements of ker J|q, are called closed p-paths, and the elements of Im J|q, ,, are called
boundaries.

Define the Betti numbers of G by

By = B,(G) = |H,].

If the sequence {€,} is finite in the sense that 2, = {0} for large enough p, then define the
Euler characteristic of GG by

Xi= D (=079 =D (1) 8,
p=0 p=0

Proposition 1.3. If X and Y are two disjoint digraphs then

B, (XUY)=0,(X)+08,(Y). (1.4)

Proof. Clearly, any allowed elementary p-path on X LI'Y is contained in X or Y. It follows
that any J-invariant path on X LY is a sum of J-invariant paths on X and Y, that is,

Q,(XUuY)=0Q,(X)eQ,(Y).
Hence, the same identity holds for homology groups, whence (1.4) follows. ®

Proposition 1.4. We have (3, (G) = #of connected components of G.

Proof. Tt suffices to prove that if G is connected then 5, = 1. We have 5, = || — |0Q4] .
Let the set of vertices of G be {0, ...,n — 1} so that |Qy] = n. Since € is spanned by all
arrows e;;, 1 — j, the space 0€); is spanned by all differences e; — e¢; where i — j. Since
there is an edge path between the vertex 0 and any other vertex ¢, it follows that 02, contains
e; — eg for any vertex ¢ > 0. These n — 1 elements of 02, are linearly independent while
€j — € = (ej —60) — (62‘ —60) . Hence, 891| =n-—1 andﬁo =1. =

1.5 Structure of (),

As we know, {2y = (e;) consists of linear combinations of all vertices and 2y = (e;; : i — j)
consists linear combinations of all arrows.

Definition. Let us call a semi-arrow any pairs (x, y) of distinct vertices x, y such that z /4 y
but x — z — y for some vertex z. We write in this case * — y

Theorem 1.5. (a) We have Q| = |As| — s where s is the number of semi-arrows.



(b) The space )y is spanned by all triangles ey, squares €qp. — €qp and double arrows

€aba-

Proof. (a) Recall that
Ay = span {eg. : abe is allowed }

and

Q={ved:veA}={veAdy:0v=0modA;}.

If abe is allowed then a — b and b — ¢, whence
O€abe = €pe — Cac + €ap = —€qc mod A
If a = cor a — cthen e,. = O0mod A;. Otherwise ac is a semi-arrow, and in this case
€ac 70 mod Aj;.

For any v € A,, we have

v = Z v, (1.5)

{a—b—c}

from which it follows that

ov = — Z v™e,. mod Aj;.

{a—b—c,a—c}

The condition dv = 0 mod A; is equivalent to

Z v®e,. = 0mod A;,

{a—b—c, a—c}

which in turn is equivalent to

Z v® = 0 for any semi-arrow ac. (1.6)

b:a—b—c

The number of the equations in (1.6) is exactly s, and they all are linearly independent for
different semi-arrows, because a triple abc determines at most one semi-arrow. Hence, €2, is
obtained from A, by imposing s linearly independent conditions, whence |25| = | As| — s.

(b) Fix v € Qy and prove that v is a linear combination of triangles, double arrows and
squares. As v is allowed, it admits representation (1.5) as a linear combination of allowed
elementary 2-paths ep.. If ¢ = a then ey, is a double arrow. If a # ¢ and a — ¢ then ey, is
a triangle. Subtracting from v all double arrows and triangles, we can assume that v has no
such terms any more. Then, for any term e, in v with a non-zero coefficient v we have
a # cand a /4 c; that is, ac is a semi-arrow.

abc
Vac = § UV Eape-

b:a—b—c

For any semi-arrow ac set

Since v = Zaéc Uqe, it suffices to prove that each v, is a linear combination of squares.



Denote by {bg, b1, ..., by, } the sequence
of all possible vertices bs.t. a — b — c.
This configuration is called m-square: bo b,

(for example, a square is 1-square).

Then we have c

m

m m
ab;c ab;c abpc abjc
Vac = E (2 Cab;c = E (O €ab;c + 0™ €aboc = E (U (eabic - 6aboc)
=0

=1 i=1

because by (1.6)

m

vaboc - E Uabic'

=1

Hence, v, is a linear combination of squares e, — €ap,c, Which completes the proof. m

Example. Let the digraph G be an m-square shown on the above picture. It has one semi-
arrow a — c so that s = 1. Since |A3| = m + 1, we conclude that |2;| = m. Indeed, the
basis in €2 is given by the sequence of m squares {€up,c — €abpe }ry -

1.6 Digraph morphisms

Let X and Y be two digraphs. For simplicity of notations, we denote the sets of vertices of
X and Y by the same letters X resp. Y.

Definition. A mapping f : X — Y between the sets of vertices of X and Y called a digraph
map (or morphism) if

a—bonX = f(a) — f(b)orf(a)=f(b) onY.

In other words, any arrow of X under the mapping f either goes to an arrow of Y or collapses
to a vertex of Y.
Any digraph morphism f : X — Y induces a mapping f, : A, (X) — A, (V) as follows:
first set

Je (eio...in) = €f(ig)...f(in)>
and then extend f, by linearity to all of A,, (X).

Proposition 1.6. Let f : X — Y be a digraph morphism. Then the induced mapping
fe : Ay (X) — A, (Y) extends to a chain mapping f. : Q, (X) — Q, (Y) and, hence, to
homomorphism f. : H, (X) — H, (Y).

Proof. If e;, ; is irregular then f, (e;, ;) is also irregular. Therefore, f, maps the space
7, (X) of irregular paths on X into Z,, (Y"). Itfollows that f. maps R, (X) = A, (X) /Z,, (X)
into R, (Y).

Next, f. maps the space A, (X) of allowed paths into A, (Y): if e;, ; is allowed then
ir, — iryp for all k, which implies that either f (ix) — f (ir41) for all k£ and, hence,



fs (€4,..4,) is also allowed, or f (i) = f (ix41) for some k so that f, (e;,. ;) is irregular, thus
i (€ig..1,) = 0.
Clearly, f. commutes with 0, which implies that f, maps 2,, (X) into 2,, (Y') and f, is a chain

mapping. Consequently, we obtain a homomorphism of homology groups f,. : H,(X) —
H,(Y) m

Example. A triangle e,;. and a double arrow e, are images of a square eg13 — €go3 under
digraph maps as shown on these pictures:

- 3:::\\ 2 3 b
'3 R \\ y
0 !\ aa I b 0 1 a
a digraph map from a square onto a triangle a digraph map from a square onto a double arrow
€013 — €023 7 €abc — €acc = €abe €013 — €023 V= €aba — €aaa = €aba

Hence, we can rephrase Theorem 1.5 as follows: (), is spanned by squares and their morphism
images. Or: squares are basic shapes of {25.

1.7 Polygons

Let P be a polygon of n vertices {0, ...,n — 1} embedded on a unit circle so that the vertex
k has a position e>™x .

On each edge of the polygon we choose a direction
(an arrow) arbitrarily so that P becomes a digraph.

For any arrow ¢ set

ot — 1, if £ goes counterclockwise,
| —1, if & goes clockwise.

Consider the following allowed 1-path

g = 20565

{er

that is called a polygonal path. For example, for the hexagon on the picture we have
0 = —ej0 — €21 1 €23 + €34 + €45 — €05.

Lemma 1.7. We have 0o = 0; in particular, o is O-invariant. Moreover, ker 0|, = (o) .

Proof. Any allowed 1-path v can be written in the form

v = Z véeg,

(el
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where the sum is take over all arrows {. Then dv =}, |, c*ey, so that Ov = 0 if and only if
all the coefficients c* vanish.

Fix a vertex k, let £ be an arrow between k£ — 1 and k, and 7 be an arrow between k and &k + 1.
There are four different possibilities for the directions of these arrows:

k-1 k k+1 k-1 k k+1 k-1 k k+1 k-1 k k+1
®e — e — @ e — 0<— O e — 0<— o o —— 0 — o

3 U] 3 U] 13 Y] 3 U]
In the first case we have
6(UC6< +v'e,) = v (e — ep_1) + v (ers1 — €r),
whence ¢¥ = v¢ — 0. Hence, ¢;, = 0 is equivalent to v¢ = v". The second case is similar. In
the third case we have
I(viec +v"e,) = v (e, — ex_1) + v (ex — ert1),
whence c* = v¢ + v". Hence, c* = 0 is equivalent to v* = —v". The fours case is similar.

Hence, we obtain the following: 0v = 0 if and only if, for any two successive arrows ¢ and
n, we have v¢ = v" if £ and 71 have the same directions and v¢ = —v" if £ and 7 have the
opposite directions. Clearly, o satisfies this property, and any other path v with this property
is proportional to o because starting from one arrow, we successively recover the coefficients
of v at all other arrows. m

Proposition 1.8. If a polygon P is a triangle or a square then
|| =1, Q,={0} forallp >3 and H,= {0} forallp > 1.
Otherwise , if a polygon P is neither a triangle nor a square then

Q, ={0} and H, = {0} forall p > 2, while |H,| = 1.

In short: if P is either triangle or square then a nontrivial space is ()5, while otherwise a
non-trivial space is ;. As it follows from Lemma 1.7, in the latter case the generator of [,
is 0. From homological point of view such polygons represent an 1-dimensional cavity.
Proof. We use Theorem 1.5 in order to compute €25. Let first P be a digraph triangle.
We have Q; = (eq1, €p2, €12), Qo = (€012), 2
while Q, = A, = {0} for p > 3.
Since ker d|q, = (€1 — €2 + €12) and

eo1 — eo2 + €12 = degrz,
it follows that H; = {0}. 0 !
Since ker 0], = 0, it follows that H, = {0}. Clearly, H, = {0} also for all p > 3.

Let P be a digraph square: ) —3
We have ) = (eo1, €2, €13, €23), {d2 = (€013 — €023) ‘ ]
whence 2, = A, = {0} forp > 3.
Since ker d|q, = (eo1 — eo2 + €13 — €23) and

eo1 — €2 + €13 — €a3 = J (€013 — €q23) 0 Sl

it follows that H; = {0}.

10



Since ker 0], = 0, it follows that Hy = {0}. Clearly, H, = {0} for all p > 3.

Let P be neither triangle nor square. Then P contains no triangles or squares, and we
conclude that {2, = {0}. Hence, also 2, = {0} forall p > 3, and |H,| = 0 for all p > 2.

For the Euler characteristic, we have
X = — || =n—n=0.

Since also
X = |Ho| — | Hi]

and |Hy| = 1, we obtain |H,| = 1. m

Example. By Proposition 1.8, for the above hexagon we have |{2s| = 0 and |H,| = 1.

Let us add to the above hexagon a diagonal 3 — 0. 2 1
Then, for the new digraph G, we obtain |Q25] = 2
because it has two linearly independent squares 3 0
u = €345 — €305 and v = €309 — €210
4 5

It is easy to verify that O(u + v) = o so that now ¢ determines a trivial homology class.
Indeed, one can verify that in this case H,, = {0} forall p > 1. One can say that the hexagonal
cavity is now filled by two squares.

1.8 Further examples of spaces (), and 1,

Consider an octahedron based on a diamond: p
Space (), is spanned by 8 triangles:

Qy = <€024, €034, €025, €035, €124, €134, €125, 6135>>

Hy = (eo2a — €034 — €025 + €035 — €124 + €134 + €125 — €135)

Q, ={0} forp >3and H, = {0} forp=1andp > 3.

Hence, the octahedron based on a diamond represents

a 2-dimensional cavity. >

11



Consider an octahedron based on a square:
Ay = (6024, €025, €014, €015, €234, €235, €134, €135, €013 — 6023)
Q3 = (60234 — €0134, €0235 — 60135>7 Qp = {0} Vp >4
We have ker 0|q, = (u,v) where

U = €pgq + €234 — €014 — €134 + (€013 — €023)

U = egs + €235 — €015 — €135 + (€013 — €023)
but Hy = {0} because

u=20 (60234 - 60134) and v =0 (60235 - e0135) . 5

In fact, H, = {0} forallp > 1.

Consider a 3-cube: 6 a7
Space €, is spanned by 6 squares: 1
Qy = <€013 — €023, €015 — €045, €026 — €046, 2‘ ‘3

€137 — €157, €237 — €267, €457 — C467)
Space €23 is spanned by one 3-cube: 4 —s
Q3 = (eo237 — €o137 + €o157 — Coas7 + Coa7 — €0267)
Q, = {0} forall p > 4 and H, = {0} forall p > 1. 0 o
1.9 Example of computation of (2, and 7,
Consider a hexagon with two diagonals: 2
We have ? *
Qo = Ao = (eo, €1, €2, €3, €4, €5)
O = Ai = (eo1, o2, €13, €14, €23, €24, €53, €54)
Ay = (6013,6014,6023, €024) ! g
A, = {0} forp > 3. 5

Hence, 2, = {0} and H, = {0} for p > 3. There are two semi-arrows here: €3 and ep,. By

Theorem 1.5 we obtain

One sees two squares in this digraph: eg;3 — eg23 and eg14 — €p24 and no triangles. Since
these squares are linearly independent, we conclude that

2y = <6013 — €023, €014 — 6024)-

Alternatively, one can determine {2, directly by definition. For that, consider the operator
0 : Ay, — R, and observe that

Q={veAdy:0ve Ai}={ve Ay :0v=0mod A} =ker (0 : Ay — Rimod A4,).
Hence, let us first compute 0 : Ay — Ry mod A;:

Oeg13 = e13 — egz + eo1 = —epz mod A,

12



Oepra = €14 — €ps + €01 = —egy mod A,
Oegas = €23 — €p3 + €02 = —epz mod A,

Oepaa = €94 — €y + €92 = —egy mod A4
It follows that

€013 €014 €023 €024
M := matrix of 0 : Ay — Rimod A; = -1 0 -1 0 ey
0 -1 0 -1 €04

and, hence,
Qy =ker M = <€013 — €023, €014 — 6024>-

Let us compute H;. We have for the basis in {2;:

8601 = —€p + €1, 8602 = —€p + e9

8613 = —€1 + €3, 0614 = —€1 + €4

8623 = —€9 + €3, 8623 = —€9 + €3

8653 = —¢€5 + €3, 8654 — —€5 + ey

Therefore,
€01 €o2 €13 €14 €23 €24 €53 €54

-1 -1 €0
1 ~1 -1 e
M := matrix of J|q, = 1 -1 -1 )
1 1 1 es
1 1 1 ey
-1 -1 €5

Computation shows that rank M = 5 and, hence, dim ker M = 3; moreover,
ker O|q, = ker M = (eg1 — ep2 + €13 — €23, €01 — €02 + €14 — €24, €13 — €14 — €53 + €54).
Since
Im 8|Q2 = <8 (6013 - 6023) ,0 (6014 - 6024)>
= <€13 — €01 — €23 + €02, €14 — €01 — €24 — 602)

it follows that
Hy =kerd|q,/Im0d|g, = (€13 — €14 — €53 + €54) .

Since
X = ’Q()‘ —|Ql|+|92’ :6—8+2:O
and
X = [Ho| — [Hi| + |Ha| =1 =1+ |Ha| = |Hof,

it follows that also |Hs| = 0.

Problem. Devise an efficient algorithm/software for computation of the spaces €2, for arbitrary
digraphs. Is there a way of computing directly dim (2, without computing the bases of (2,7

13



2 Join of digraphs and Kiinneth formula

2.1 Augmented chain complex

In this section we use the augmented chain complex

0— K £ A & .0 & A, &0, £ 2.1)

with A_; = Kand A_, = {0} . The operator 0 : Ay — A_; is now define by
Oe; = e = the unity of K,

which matches the definition

p

Oeiy..q, = Z (=1)* Cig...ig...ip

q=0

also for p = 0. As in the proof of Lemma 1.1, we have 9* = 0 also for (2.1).

Based on (2.1) we obtain also the regularized chain complex

0 0 0

0— K « Ry <« ... «— Rp1 <« Ry, ... (2.2)
and the augmented path chain complex of a digraph G:
0 K < o & ... & o, a & .., (2.3)

where R _; = 21 = K. The homology groups of (2.3) are called the reduced homology
groups of G and are denoted by H,,. Clearly, we have

H_, ={0} and flp = H, forp > 1.

Since
ker 8]90 = <€Z' — €0>i21 = Qo/K,

it follows that _
Hy = Hy/K.

Define the reduced Betti numbers: Bp — |H,|. We have
B,=0, B,=p,forp>1, and =3, — 1.

For a disjoint union X LI'Y of two digraphs we have by (1.4)

B, (XUY)=p5,(X)+ 8, )+ 1o (2.4)
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2.2 Join of paths

Let X and Y be two disjoint finite sets.

Definition. Let p, ¢ > —1. For any paths v € A,(X) and v € A, (Y), define their join u * v
asa (p+ g+ 1)-path on X LY as follows: first define it for elementary paths by

€io...ip ¥ €jo...Jq = Cio...ipjo...Jq?

where 7, ..., 7, € X and jo, ..., j, € Y, and then extend this definition by linearity to all u
and v.

For example, e;, ;, * € = €;,.;,. Clearly, the join of regular paths is regular.

Lemma 2.1. (Product rule for join) Let p,q > —1. For all u € A,(X) and v € A (Y') we
have
A (uxv) = (du) * v+ (=1)" T u* dv. (2.5)

Proof. 1t suffices to prove (2.5) for u = e;,.;, and v = ¢;,_;,. We have

8 (U X U) = 862‘0“.%]’0“4’(]
= €iy .. ipjo..siqg — Cioia.ipjo---jq + ..+ ( 1) €ig..ip—_1J0---Jq
p+1 q
+ (=1 (Cigipgsondy — Civipioania T+ (=1)" €igoipjoniys)

= (0eig..,) * €jojy + (1) €.y * Do iy

which was to be proved. m

Note that (2.5) is not true under the convention A_; = {0}. Indeed, in this case we have
0(ej*xe;) =0e; =€ —e;

while Oe; * e; = 0 and e; * Je; = 0 so that the right hand side of (2.5) vanishes.

Let now X, Y be two digraphs.

Definition. The join X % Y of the digraphs X, Y is a digraph whose set of vertices is a
disjoint union of the sets of vertices of X and Y, and the set of arrows consists of all arrows
of X and Y as well as from all arrows x — y where x € X andy € Y.

Example. For example, if X =Y = {-, -} are digraphs with two vertices and no arrows, then
X %Y is a diamond.:

3p— 1

{0,1} % {2,3} =

0 T2

a diamond

15



If X is the above diamond and Y = {-,-} then X Y is an octahedron:

4

(O8]

5

an octahedron based on diamond

Denote Z = X Y. Itis easy to see that the joint of two allowed elementary paths is allowed.

The join e;,..;, * €5,...j, of allowed paths e;,. ;, and ¢, ;,
Consequently, we have
ue A,(X) and v € A, (Y) = uxv e Ay ga(Z2). (2.6)

Lemma 2.2, Letr =p+ q+ 1, where p,q > —1.

(a) We have
ueQ,(X) and veQ,(Y) = uxveQ, (2).

(b) The join u * v is well defined for the reduced homology classes:
we Hy,(X) and ve H,(Y) = uxve H,(Z).

Proof. (a)Ifu € Q,(X)andv € Q, (Y) then u* v is allowed by (2.6). Since Ju and Jv are
allowed, we obtain by (2.5) that J (u * v) is also allowed, which proves that u x v € Q. (Z).

(b) Recall that a homology class of ﬁn consists of closed n-paths modulo boundaries; that
is, two closed n-paths w; and ws determine the same homology class if w; = wy 4+ Ow for
some w € 2,,.1; in this case we write w; ~ ws.

If u € flp (X)and v € ﬁq (Y') then they have representatives u € €2,(X) and v € Q(Y)
that are closed paths, that is, Ou = 0, Jv = 0. Then by (2.5) we obtain that also O(u * v) = 0
so that u * v determines a homology class in H,. (7).

Let us show that u * v as a homology class does not depend on the choice of representatives.
Let v’ ~ u thatis, v’ = u + Ow for some w € €,,1(X). Then by (2.5)

p+2

Wrxv=uxv+0wxv=uxv+(w*v)— (—1)PPwxJv=ux*xv+ I(w*v)

so that v’ * v ~ u x v. In the same way, the homology class of u * v does not change if we
replace v by v' ~ v. Therefore, the operation x* is well defined in homologies. m

16



2.3 Kiinneth formula for join

Theorem 2.3. (Kiinneth formula for join) Let X,Y be two digraphs and Z = X * Y. Then,
for any r > —1, there is an isomorphism

0, (2) = D 2, (X) @€ (V), 2.7)

{p,q>—1:p+q+1=r}

hat is given by the map u @ v — u x v for u € Q,(X) and v € Q, (Y). Besides, for any
r >0,

H,(Z) = D Hy, (X) @ Hy (Y) (2.8)

{p,q>0:p+q+1=r}

and

B (Z) = > B, (X) 8, (Y). 2.9

{p,q>0:p+q+1=r}

The identity (2.7) essentially means that any path in €2, (Z) can be obtained as linear combi-
nation of joins u * v where u € Q, (X) and v € Q, (Y') with p + ¢+ 1 = r, and (2.8) means
the same for homology classes. The restrictions p,q > 0 in (2.8) and (2.9) as opposed to
p,q > —1in (2.7) come from the fact that H_; = {0} .

Example. Let Y consist of a single vertex. In this case the join X * Y is called a cone
over X. Since all the reduced homology groups H, (Y) are trivial, the cone X Y is also
homologically trivial by (2.8).

For example, the following digraphs are cones and, hence, they are homologically trivial.

7 A 1
3 4 .
2 0
0 0 3 4
6
3 %
0 1 ) 5 g ’

Example. Let Y consist of two disjoint vertices: Y = {-,-}. Then the join X Y is called

a suspension of X and is denoted by sus X. Since §,(Y) = 1 and gq(Y) =0forqg > 1, we
obtain from (2.9) that

B, (sus X) =f,_1(X). (2.10)
Since [Q2_1(Y)| = 1 and |Qy(Y")| = 2, it follows from (2.7) that
€2, (sus X)| = 2 €2, (X)] €24 (Y)]
{p.a>-1:p+q+i=r}
= [Q.(X)[ + 2|21 (X)]. (2.11)
Consider a family {5} - of digraphs that is defined inductively as follows: S° = {-,-} and
Sn+1

= sus S™.

We refer to S™ as a digraph n-sphere. For example, S* is a diamond and S? is an octahedron
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as in the example above:

0 2

a diamond S 4

an octahedron S2

Since by (2.10)

B'r (Sn) = Br—l (an) )

it follows by induction that the only non-trivial Betti number of S™ is

Ba(5") =1
It follows from (2.11) that
19,(S™)| =0 forp >n and |Q,(S™)| = 2"
Using (2.8) we obtain
Hy(S") = Hy ({0, 1}) * Hy ({2,3}) = ((e1 — €9) * (€5 — €2)) = (€02 + €13 — €a3 — €12) ,

that is, H,(S") is generated by the polygonal path of the diamond, which matches Lemma
1.7 and Proposition 1.8.

Similarly we have
Hy(S?) = Hy (SY) * Hy ({4,5})
= <(€02 + e13 — eg3 — 612) * (eq — 65)>
= (€24 + €134 + €035 + €125 — €034 — €124 — €025 — €135) -
Using (2.7) we obtain
Q,(5%) = 2 (S") * Q ({4,5))

= <€02> €03, €12, 613) * {€4> 65} = (60247 €025, €034, €035,€124, €125, €134, €135> .

Example. Let X =Y = {-, -, -}. Consider the digraph G = X * Y that can be regarded as a
directed analogue of the bipartite graph K s:

The only non-trivial Betti number of G is
B1(G) = Bo(X)Bo(Y) = 4.

The generators of H 1(G) are 0 1 2

j_‘v[1<G> - j_‘vlo ({07 17 2}) * ﬁo ({3747 5}) = <62 — €p,€1 — 60) * <64 — €3,65 — €3>
= <€24 + €03 — €23 — €p4, €25 + €93 — €23 — €5,

€14 + €03 — €13 — €4, €15 + €03 — €13 — €05)-
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2.4 Preparation for the proof of the Kiinneth formula

Denote by R.(V') the linear space of all finite linear combinations with coefficients from K
of regular elementary paths on V' of any length p > —1. In particular, R, contains all R,.
Define a K-valued bilinear form (u, v) for all u,v € R. as follows: for elementary regular
paths e;,.;, and e;, ;. set

ioin | g, dgeip = jo...]
<ei0~~~ip’€J'0~-J'q> - 5]'2---1']; . { Ok, Otherpwise. ' (2.12)

In particular, (u,v) = 0if u € R, and v € R, with p # ¢. If K = R then (-, -) is an inner
product on each space R,,.

Let X, Y be two disjoint finite sets.

Lemma 24. Forallu,p € R, (X), v,9 € R, (Y), we have
(ux v, %) = (u, 0)(v, ). (2.13)
Proof. Due to bilinearity it suffices to prove (2.13) if u, v, o, 1) are elementary paths, say

U =€z, P = €y, U:€y,¢:€y/

-/

where x = ig...ip, ¥’ = dg...00, Y = Jo---Jg» Y = Jo---Jiy- Using (2.12) we obtain

(Uuxv,px1)) = (eg*xey, ey *ey) = (ery, Crry)
Opy = 050y = (e, ) (ey, ) = (U, ©) (v, ).

For any digraph GG, we denote by A(G) the set of all allowed elementary paths on G, and by
R(G) — the set of all regular elementary paths on G.

In the rest of this section, X, Y are two digraphs, and Z = X * Y.

Lemma 2.5. Any path w € ), (Z) admits a representation

w= Y  exa"= Y e, (2.14)
)

z€A(X) yeA(Y
where a® € Q, (Y) and bV € Q. (X) are uniquely determined.

Proof. Since any allowed elementary path on Z is a join of elementary paths on X and Y,
we see that any w € A, (Z) admits a representation

w = > e, % ey, (2.15)

TEA(X), yeA(Y)

where the coeflicients ¢*¥ € K are uniquely determined. It follows from (2.15) that

w = Z e, * a°, (2.16)

z€A(X)
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where

a® = Z e, € A (Y).

yeA(Y)
Clearly, a” are uniquely determined.
Assume now that w € 2, (Z) and show that a® € 2, (V). Let us define the coefficients

er, € {0,1,—1} by
- 3 e, 2.17)

z'eR(X)

Also, if z € A, (X) then set o, = (—1)"*" so that by the product rule (2.5)

d(ex * a”) = (Dey) * a® + o6, * (Da®)
= Z e ey % 0% 4 046, * (8a”) .

2/ €R(X)

Substituting into (2.16) we obtain

Z Z o ez/*a + Z Oz, % 0a”.

zeA(X) z’€R(X) r€A(X)

Switching in the double sum the notations = and z’ and interchanging the summation signs,
we obtain

Z Z grey xa” s Z Oz€y ¥ 0a”

z€R(X) '€ A(X) z€A(X)

= Z Z Enly ¥ a” gus Z Z €y ¥ a” gus Z O, * 0a”
z€A(X) 2'€A(X) zeR(X )’ e A(X z€A(X

= Z €y * Z ena” s 0.0 (2.18)
z€A(X) '€ A(X

+ > e Z £, : (2.19)
TzER(X)\A(X) 2/ €A(X

Note that any elementary path of the full expansion of the sum (2.19) has a non-allowed
X -part, while that of (2.18) has the allowed X -part. Therefore, there is no cross cancellation
between the elementary paths of (2.18) and (2.19). Since their sum Jw is allowed, it follows
that the sum (2.19), consisting only of non-allowed paths, must vanish.

On the other hand, since dw € Q. (Z), we have analogously to (2.16) a representation

-~
ow = g ey ¥ a’

z€A(X)

where a” € A, (V). Comparison with (2.18) yields

Z £2,a” + 0,00

'€ A(X)
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Since a® € A, (Y), it follows that da® € A, (Y'), which proves that a® € Q, (V).
The second identity in (2.14) is proved similarly. m
For any digraph G, set

QL (@) ={ue A, (G): (u,v) =0forallv € Q, (G)}. (2.20)

P

Lemma 2.6. Letr =p+ q+ 1. Then
ueQ (X) and ve A (Y) = uxv € Q- (2)

and
ue€ A, (X) and veQ (V) = uxveQ (2).

Proof. Let us prove the first claim that can be restated as follows: if u &€ sz (X) and
ve A, (Y) then

(uxv,w) =0forany w € Q, (7).
By Lemma 2.5, w is a sum of the joins ¢ * ¢ where ¢ € €, (X) and ¢ € A, (V). Hence, it
suffices to prove that

(uxv,px9) =0, (2.21)
assuming that ¢ € Q, (X)and ¢ € A, (Y). By (2.13) we have
(uxv, o) = (u, ¢) (v,9) . (2.22)

If p = p' then (u, ) = 0 by the hypothesis u € Q. (X).If p # p/ then (u, ) = 0 holds
trivially. Hence, in the both cases the right hand side of (2.22) vanishes, which proves (2.21).
|

Now we can state and prove the main technical result of this section.

Theorem 2.7. Let X, Y be two digraphs and Z = X Y. Any pathw € Q, (Z) withr > —1
admits a representation in the form

k
j=1
for some finite k, with some u; € €, (X) and v; € Q, (Y), where pj,q; > —1 and

pj—i-q]'-i-l:?”.

Proof. Given two subspaces U C A, (X) and V C A, (Y), denote by U * V' the subspace
of A, (Z) that is spanned by all joins u x v withu € U and v € V.

In the proof we use the following properties of join.
(i) fue A, (X)andv € A, (Y) thenu v € A, (Z) where r = p+ ¢+ 1 (cf. (2.6)).

(ii) Conversely, any allowed elementary path on Z is a join of allowed elementary paths
on X and Y, which implies that

A (Z) = > A, (X) % A, (Y). (2.24)

{p.q>—1: p+q+1=r}
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(iii) fu e Q,(X)andv € Q, (Y) then ux v € Q, (Z) (Lemma 2.2).
(iv) fu e Q, (X)andv € Ay (V) thenu* v € Q- (Z) (Lemma 2.6).

For any » > —1 set
Q, (Z) = > Q, (X) % Q, (V). (2.25)
{p.g>—1: p+q+1=r}

By Lemma 2.2, we have B
0, (2) C Q. (7).

The existence of the representation (2.23) is equivalent to the opposite inclusion, that is, to
the identity B
0. (2)=Q,(2). (2.26)

Consider first the case when K = R or K = Q. We use the fact that a linear space with
a R- or (Q-scalar product is represented as a direct sum of a subspace with its orthogonal
complement. Fix some p,q > —1 and set 7 = p+ ¢ + 1. For any u € A, (X)) consider a
decomposition

U=uqg+uys

where uqg € , (X) and uy € Q) (X); similarly, for any v € A, (Y') we have a decomposi-
tion
vV =vq+ vy

with vg € Qg (Y) and v, € Q  (Y). It follows that
UkV =UQ *VQ +UQ ¥V +UQ*V| +U| *V].

Here uq * v € O, (Z), while by Lemma 2.6 all other terms in the right hand side belong to
QL (Z), whence it follows that

uxveQ (2)+ Q- (2). (2.27)
It follows from (2.27) and (2.24) that
A (Z) = 0, (2) + O (2).
Comparing with the decomposition
A (Z2) = (Z) 0 9, (2),

we obtain (2.26).
Consider now the general case of an arbitrary field K. It suffices to prove that

2 (2)] < 19 (2) . (2.28)
Let us introduce the following notation:

ap = A, (X)], ag=[A,Y)], a =I[A (2)],
wp = [ (X)|, wy

Il
2
<

}.<
kS
|
2
N



and observe that

10 (X)| =ap —wp, | (V)] =ag—wg, |9 (2)] =ar —w,. (2.29)

p

Since A,(X) * A,(Y) has a basis {e, * e, } where ¢, is any elementary allowed p-path on X
and e, is any elementary allowed g-path on Y, we have

[Ap(X) + Ay (Y)] = apay.

Moreover, A, (Z) has a basis {e, * e,} where e, and e, are as above and p, ¢ > —1 take all
values such that p + ¢ + 1 = r, which yields

ay = > (ptg. (2.30)
{p.q=—1,p+q+1=r}

In particular, the sum of subspaces in (2.24) is direct.

Before we can proceed further, let us prove the following claim.

Claim. For any two subspaces U C A, (X) and V C A, (Y), we have
U V| =|U||V] 2.31)

and
UxAY)N(A,(X)*xV)=UxV. (2.32)

Let uy, us, ..u, be a basis in U and vy, ...v; be a basis in V. Then U % V' is spanned by all
products u; * v;, so that
U« V| < kl.

Let us complement the basis {u;} to a basis in A, (X') by adding additional paths v}, ..., u}.,
and, similarly, complement {v; } to a basis in A, (Y) by adding v}, ..., v},. Set

U'=(uj) and V' = (v}).

()

Then

A, (X)x A, (YV)=U+U)*(V+V)
=UxV+UxV' +U xV+U V', (2.33)

whence

apaq = |Ap (X) x Ay (V)]
UV + U V| + [0 V] 4]0+ V|
<K+ K +KI+K =(k+E)1+1) = apaq. (2.34)
Since the left and right hand sides are equal, we must have the equality case in all inequalities

above, whence
\U x V| = ki,

which proves (2.31).
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It also follows from (2.34) that the sum at the right hand side of (2.33) is a direct sum of
subspaces, that is,
A, (X))« A, YV)=UxV)e UxV)Yae U «V)a (U xV'). (2.35)
Therefore,
UsxAY)=Ux(V+V)=UxV+UxV' =UxV)d (UxV')
and
A (X))« V=U+U)«V=UxV)® (U xV).

Hence, if U*A,(Y) and A, (X)*V have acommon vector then it has a form w; +u = wa+v
where
wi,wo €UV, ueUxV' velU*xV

whence
(wg —wy) +u—v=0,

It follows from (2.35) that w; — wy = u = v = 0 whence (2.32) follows.

By Lemma 2.6, we have
Q- (X))« A (Y) C Q- (2)
and
A(X) x QL (Y) € Q1 (2)
so that
> (2 (X) % Ay(YV)) + (Ap(X) * Q (V)] € Q7 (2) (2.36)

{p,.q>—1,p+q+1=r}

| 200 < AM+ A0 QD) | A2)

Space A, (Z) and its subspaces - (Z), A,(X) x A,(Y) (two instances for different pairs
of p,q), and O (X) x A (Y) + Ay (X) x Q (V).

Note that the space in the square brackets in (2.36) is a subspace of A,(X) * A,(Y). Since
the sum of subspaces in (2.24) is direct, it follows that also the sum of subspaces in (2.36) is
direct, which implies the inequality

S @QEX) AN (A QL) < N2 @3

{p.q>—1,p+q+1=7}
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By (2.32), the subspaces Q. (X) x A, (Y) and A, (X) * Qg (Y) have intersection - (X) x
Q. (Y), whence
(2, (X) % Ag(Y) + (Ap(X) % Q2 (V)]
= [Q (X) # Ay (V)] + | A (X) % Q (V)] — [ (X) % Q (V)] (2.38)
Using (2.29), we obtain that the right hand side of (2.38) is equal to
(ap — wp) ag + ay (ag — wg) — (ap — wp) (ag — wg) = apag — wpwy.
Substituting this into (2.37) yields
Z (apag — wywy) < ar — wy,
p+q+1=r
which together with (2.30) implies that
wy < Z WpWy-
p+q+1=r
Finally, we are left to observe that, by (2.25),
Z wpwg = [(Z)],
p+g+l=r

which proves (2.28). =

2.5 Proof of the Kiinneth formula

Let us first recall some notions from homological algebra. Let A, = {A,} . be a chain
complex that consists of linear spaces A, over K, with the boundary operator d,, and
B, = {Bq}q>o be a similar chain complex with the boundary operator 0.

Consider the tensor product of the chain complexes
C.= 4. ® B, = {Cy},s
that consists of linear spaces

C, = D A, ® B,

{p,a=0:p+q=r}
with the boundary operator J¢ that is defined by
Jo (u®@v) = (Oau) @ v+ (—1)’u® (dpv)

forall w € A, and v € B,. Itis well-known that (9% = 0 so that C', with O is indeed a chain
complex.

Furthermore, by a theorem of Kiinneth, we have the following relation for homologies:
H,(C.) = H,(A,)® H,(B,) (2.39)

that is,
H.(Co)= @  Hy(A)®H(B.).

{p,q>0: p+-q=r}
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Proof of Theorem 2.3. Let us restate (2.7) in equivalent form as follows: for any » > 0,

ha(Z2)=2 D Ba(X)eQa(Y).

{p,q>0:p+q=r}

Using the notation
Q,=9Q

p—1)

we rewrite the above identity in the form

V(2= P AX) (YY), (2.40)

{p,q>0:p+q=r}

On any digraph we consider the chain complex
Q:‘ = {Q;}pzo
as well as R/, = {R;}pzo where R}, = R,,_1. In fact, we will prove that
2(2) = Q(X) ® Q(2), (2.41)

which contains (2.40).
It follows from the product rule (2.5) that, for all u € R},(X) and v € R (Y),

O (uxv)=(0u)*v+ (=1 ux0v. (2.42)
Consider the tensor product
R (X,Y) =R (X) @R, (Y),
that is, for any r > 0,

R(X,Y)= @ R(X)QRL(Y).

{p,q>0: p+q=r}

By the definition of the operator d on R, (X, Y"), we have, forall u € R (X)andv € R (Y),
d(u®v)=(0u)@v+ (1)’ u® (dv). (2.43)
Consider also a linear mapping
O:R,.(X,)Y)—>R.L(Z)
that is defined on the basis elements by
D (e, ®ey) = e, *ey,

for all regular elementary (p — 1)-paths e, on X and (¢ — 1)-paths e, on Y with p 4 ¢ = r.
It follows that, for all v € R},(X) and v € R (Y),

O (u®v) =ux*uv.
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Comparison of (2.42) and (2.43) shows that & commutes with 0, as

PO (u®v)=POuv+(—1)’u®dv)=00uxv+ (—1)’uxdv
=0(uxv) =00 (u®wv).

Hence, ¢ is a homomorphism of the chain complexes R. (X,Y) and R/, (7).

Let us show that ® is in fact a monomorphism. Indeed, the basis in R, (X,Y") consists of
all the elements of the form e, ® e,, for all regular elementary (p — 1)-paths e, on X and
(¢ — 1)-paths e, on Y with p + ¢ = r. Since ® (e, ® e,) = e, * ¢, and all the paths e, * e,
are linearly independent in R/, (Z), we conclude that ¢ is a monomorphism.

Consider now the chain complex
0 (XY) =0 X)oQ(Y),
that is, for any r > 0,

QXY)= @ LX) ().

{p,q>0: p+q=r}

It follows from the definition of ® that

®(Q, (X,Y)) = > QLX)+ Q(Y). (2.44)

{p,q>0: p+q+1=r}

However, by Theorem 2.7 the right hand side of (2.44) coincides with €2/ (Z). Therefore, ®
is an isomorphism of the linear spaces €2, (X,Y") and €. (Z) and, hence, an isomorphism of
the chain complexes Q. (X,Y") and 2, (Z), which proves (2.41).

Finally, (2.8) follows from (2.41) and the Kiinneth theorem (2.39), and (2.9) is an obvious
consequence of (2.8). m
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3 Cartesian product of digraphs

In this section we use the chain complexes
d d d
{0} — RO — Rl — ...

and
0y <&, <L <2 ..

3.1 Cross product of paths

Given two finite sets X, Y, consider their product
Z=XxY={(a,b):aecXandbeY}.

Definition. Let z = zy2;...z, be a regular elementary r-path on Z, where z;, = (ax, by) with

ar € X and b, € Y. We say that z is stair-like if, forany £k =0, ...,r — 1,

either ay, = agyq1 or by = bpiq.
Y Z=XxY

If ay, = a4 then the couple 2251 is called

vertical. This case is shown on this diagram:

Zjii 1
biss

If by = by then 22y, is called horizontal. by &

G=0,,

vy (2g)

Given a stair-like path z = 2j...z, on Z where

2. = (ag, by), define its projection onto X as an

elementary path x = {x;} on X that is obtained ()

from the path ay...a, by collapsing any sequence

of subsequent repeated vertices into one vertex.

In the same way define the projection of 2z onto Y | |
(Xo,yo) X Xp

and denote it by y = {y; }.

The projections z = zy...z, and y = yo...y, are regular elementary paths, and p + ¢ = 7.

(0,9) P.q)

Every vertex (z;,y;) of the path z can be represented ?(Iz)

by a point (i, j) of Z2 so that the path z is represented

by a staircase S (z) in Z2 connecting (0, 0) and (p, q).

Define the elevation L (z) of z as the number of cells

in Z% below the staircase S (z).

(0,0) (p.0)
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Definition. For given regular elementary paths x on X and y on Y, denote by 11, , the set of
all stair-like paths z on Z whose projections on X and Y are equal to = and y, respectively.

Definition. Define the cross product of the paths e, € R(X)ande, € R(Y)asapathe, x e,
on Z as follows:

eaxey= Y (=1)@e, (3.1)

z€Ily y

and extend it by linearity toall w € R, (X)andv € R, (Y) sothatu x v € R4, (Z).

Example. Let us denote the vertices on X by letters a, b, ¢ etc. and the vertices on Y by
integers 1, 2, 3, etc. so that the vertices on Z can be denoted as al, b2 etc. as chessboard
fields. Then we have

€q X €12 = €4142; €ab X €1 = €411

€aqb X €12 = €41b102 — €ala2b2

€ab X €123 = €415152b3 — €ala2b2b3 T €ala2a3b3

€abe X €123 = €qlblele2e3 — Calblb2e2¢3 T €alblb2b3c3

+€a1a262¢2¢3 — €ala2b2b3¢3 T €ala2a3b3c3

Let us state some properties of the cross product.

Lemma 3.1. Ifu e R, (X) andv € R, (Y) where p,q > 0, then

O(uxv)=0uxuv+(=1)"ux dv. (3.2)
Proof. It suffices to prove (3.2) for the case u = e, and v = e, where

T = xp...Tp and Yy = yo...Y,

are regular elementary p-path on X and ¢-path on Y, respectively. Set » = p + ¢ so that
ey X ey € R, (Z).
If p = ¢ = 0 then all the terms in (3.2) vanish. Assume p = 0 and ¢ > 1 (the case p > 1 and
g = 01is similar). Then II, , contains the only element z = z...z, where z; = (x0, ;). Since

L (z) = 0, we obtain by (3.1) that
ey X €y = €.

By (1.1) have

T

k
0(ey X ey) =0ey . = (=1)" ez
k=0
where we use the notation

Z(k) = 20--BherZr = 20 Pl Pt 12
Since €x = €x Xy, and r = g, it follows that
q
0(es X ey) = Z (=¥ e, x Eyy = €z X 0y = u X v,
k=0
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which implies (3.2), because du = 0.
Consider now the main case when p, ¢ > 1. We have by (3.1) and (1.1),

0(es X €y) = Z (1)@ 9e, = Z Z ez(M. (3.3)

Zenz,y ZGHIE Y k 0

Switching the order of the sums, rewrite (3.3) in the form

(ex X €,) Z > (—)fItre, (3.4)

k=0 z€ll; y

Given an index £ = 0, ...,r and a path z € II,,, consider the following four logically
possible cases of horizontal and vertical couples around zy:

Zk+1

(H) : Vy: |

Zk+1 2k Zk4+1
(L)

Here (H) stands for a horizontal position, (V') for vertical, (R) for right and (L) for left.
If £k =0ork = r then z,_; or z;,1 should be ignored, so that one has only two distinct
positions (H) and (V).

If z € II,,, and z; is in position (R) or (L) then consider a path 2’ € II, , such that 2 = z; for
all i # k, whereas z, is in the opposite position (L) or (R), respectively, as on the diagrams:

! z Z,
2l Zk+1 .k o k.+1
(] —_— (]
| | ,
Zk—1 2k k-1 %k
[ — [ ] [ ] — [ ]

Clearly, we have L (2') = L (z) = 1 and e, = €x,,» which implies that the terms e, and
€ in (3.4) cancel out. Hence, in the interior sum in (3.4), all the terms €20 with z; in
positions (R) and (L) cancel out.

Denote by IT% , the set of paths z € I, such that z is in position (V') and by IT,* the set of
paths z € II, , such that z; is in position (H). By the above observation, we can restrict the
summation in (3.4) to those pairs k, z where z;, is in positions (V') or (H), that is,

8 (eq X €,) = Z o (=), (3.5)

k=0 zellk LT, %

30



Let us now compute the first term in the right hand side of (3.2):

p

dey X €, = Z (—1 €xgy X Z Z Lyt (3.6)

1=0 1=0 welly )y

Fix some 0 <[ < pand w € Il Yq

Z(1),Y°
Since the projection of w on X is

2=(Zy, Y,n)
l‘(l) = Z9---L1—-1T(41---Tp, \
y”l

there exists a unique index & such 0 ~(T.,9,)

Euf’z:( Ty 15 Y) _

that wy_; projects onto x;_; and

wy, projects onto x4 1.

Then wy_, and wy, project on the

Yo
same vertex of Y, say ¥,. Ty T T Ty »
Paths w and z.

The shaded area represents L(z)—L(w).
Define a path z € sz by adding to w one vertex (xx, ¥,,) between wy_; and wy, as follows:

w; fort < k—1,
zi =1 (x,ym) fori=k, (3.7
W;—_1 fori >k + 1.

By construction we have z(;) = w. It also follows from the construction that
L(z)=L(w)+m.
Since k£ = [ + m, we obtain that
L(z)+k=L(w)+1+2m.

We see that each pair [,w where [ = 0,...,p and w € ),y gives rise to a pair k, z where
k=0,..r zeHmy, and

(_1)L(z)+k ez(k) _ (_1)L(w)+l Cop-

By reversing this argument, we obtain that each such pair k, z gives back [, w so that this
correspondence between k, z and [, w is bijective. Hence, we conclude that

p
Deg x ey =3 > (=) Z Z 1FE* e, (3.8)

=0 wEHIU) Y k=0 zell, ol

In the same way we will handle the second term in the right hand side of (3.2). First we have

q

(—1)" e, x Oey, = Z (=1)""Pe, x Cyimy Z Z Liwyrmip e

m=0 m=0 well,, Y(m)
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Each pair m, w here gives rise to a pair k&, z, Yq

where k = 0,...,7 and 2 € IT* » as follows:

choose £ such that wy_; projects onto y,,_1

and wy, projects onto Y, 1. Ym+1 . L
Then wy_; and wy have the same projection Y ~
onto X, say ;. Ym-1 3

E'U'A» =Y,

Define the path z € II¥ | as in (3.7), that is, )
by adding to w the vertex (x;, y,,) between T

Paths w and z.
wy—1 and wy. Then we have w = z(;,) and
The shaded area represents L(z)— L(w).

L(z) = L(w) +p — L.

Since k£ = [ + m, we obtain

and
(—1)P e, x De, = Z ST (=), =3 ST (—)fO e,
m=0 well,, Y(m) k=0 zeTlk ,
Combining this with (3.5) and (3.8), we obtain (3.2). =

Lemma3.2. Ifu € R,(X),p € Ry(X)andv € Ry(Y),v» € Ry(Y), wherep,q,p',q' > 0,
then

(u x v, 0 % ) = (79) (u,0) {0, 9) (3.9)
Proof. Tt from (3.1) that

uXv= E E u v (e, X €y)

z€R(X) yeR(Y)

=2 X:uvyij

IEER(X) yGR ZGHI Y
= Z (—1)L( JutvVe,,
z€8(2)

where S(Z) denotes the set of all stair-like paths on Z, and x, y are the projections of z onto
Z and Y, respectively. It follows that, for any z € S(Z2),

(u x v)* = (=1) & g7y, (3.10)

Similarly, we have
(¢ x ¥)* = (=1)" oy,
whence it follows that

(wxvpxd)= 3 (ux o) (pxv)



= Z (—1)2® y2y¥ (—1)5®) =¥ (2, y are projections of z)
z€8(2)

SIS

z€R(X) yeR(Y) z€lly,y

- Y T Y e

TERY(X) yeRG(Y) 2€lzy

Here we have restricted the summation to z € R,(X) and y € R,(Y) because u € R,(X)
and v € R,(Y). Since the summand does not depend on z, we obtain

<u Xv,p X 7/) Z Z |ny| ut v = (p;q> <ua 90> <U7¢>

z€R(X) yeR,(Y)

L] = <p+q)- (3.11)
p

Indeed, every path z = 2...2, € 1l is uniquely determined by the choice of p vertices 2,
out of r vertices z...z,_1 such that the pair 22,1 is horizontal, which implies (3.11). =

where we have used that

3.2 Paths on Cartesian products of digraphs

Denote a digraph and its set of vertices by the same letters to simplify notation. Given two
digraphs X and Y, define their Cartesian product as a digraph Z = XY as follows:

* the set of vertices of Z is X x Y/, that is, the vertices of Z are the couples (a, b) where
ac€ XandbeY;

* the edges in Z are of two types: (a,b) — (a’,b) where a — d’ (a horizontal edge) and
(a,b) — (a,b') where b — U (a vertical edge):

yo ... %)
T T 7
(a,b) (a’,b)

be o — °
Y /' x .. e = o

It follows that any allowed elementary path in Z is stair-like. Moreover, any regular elementary
path on Z is allowed if and only if it is stair-like and its projections onto X and Y are allowed.
Ife, € A)(X)ande, € A, (Y) thene, x e, € A,,,(Z) because by (3.1)

er X €y = Z (—1)L(2) e,

Zenz,y

and any z € II, , belongs to A, ,(Z). Consequently, we have

ueA,(X)andve A4, (Y) = uxve A, (Z). (3.12)
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Lemma 3.3. Let r = p + g where p,q > 0.
(a) We have
ue,(X) and ve Q,(Y)=>uxvel (2).

(b) The cross product is well defined for homology classes:

ve H,(X) and ve H,(Y)=uxve H, (Z2).

The proof is based on the product rule (3.2).

Lemma 3.4. Any path w € ), (Z) admits a representation

w = Z c™ ey X ey) (3.13)

2EA(X), yeA(Y)

with some coefficients ¢ € K (only finitely many coefficients are non-vanishing). Further-
more, the coefficients c¢*¥ are uniquely determined by w.

Remark. Note that the representation (3.13) is fails in general for w € A.(Z) (unlike the case
of join). Indeed, if X = {a — b} and Y = {0 — 1} then there is only one path ¢, € A, (X)
that is e,;, and only one path e, € A; (Y') that is ep;. There cross product is the J0-invariant
path

W = €40b061 — €ana1b1 € a(2).

Clearly, the allowed path e405051 € A2(Z) does not admit representation (3.13).

Proof. Let us first show the uniqueness of ¢*¥, which is equivalent to the linear independence
of the family {e, x e,} across all z € A (X ) andy € A(Y). Indeed, assume that, for some

scalars ¢*¥,
zy _
E cey x e, =0,

TEA(X) yeA(Y)

and prove that ¢*¥ = ( for any couple x, y as in the summation. Indeed, by (3.1) we have

Z e, X e, = Z Z (—l)L(Z) Cay€s

z€A(X),yeA(Y) T€A(X),ye A(Y) z€llz y

= > (1) e,

2€A(Z)

where the summation is taken over all allowed (and, hence, stair-like) paths z on Z, and z, y
are the projections of z onto X and Y, respectively. Since all the paths e, in this sum are
distinct and, hence, linearly independent, we obtain c,, = 0.

For the second part of the proof, recall that, by (1.1), for any p-path ¢;,_;, on any finite set

V', we have
P

0¢€iy...i, = Z (=1)° Cig..geip’

q=0

This formula implies the following: for any p-path

_ i0...1
v = E v peio._ip
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on V and any elementary (p — 1)-path ig...i,, the coefficient (9v)""7~* of Qv is given by

(av)io...ip_l _ Z Zp: (_1)q ,Uio...iqu iq...ip71‘ 3.14)

JjEV q=0

Indeed, the elementary term e;,.;,_, can appear in Jv from any elementary path of v of the
form e;,. i, ,ji,..i,_, Where j is an arbitrary vertex at an arbitrary position g. Summing up in
j and q all the coefficients v%-%a-17%-%-1 of such paths, we obtain (3.14).

Now let us prove the existence of representation (3.13) for any w € Q,. (Z) with any r > 0.
Forany z € A(X) and y € A (Y'), define the coefficient c,, by the formula

¢ = (=1)H 2, (3.15)

where z € 11, , is arbitrary. Let us verify that the value of ¢*¥ in (3.15) is independent of
the choice of z € Il ,. Set z = 4y...i,. Let k be an index such that one of the couples
ik_1ik, ixigs1 is vertical and the other is horizontal. If i1 = (a,b) and iy, 1 = (a’,b") where
a,a’ € X and b, b’ € Y, then iy is either (a', b) or (a,b’).

Denote the other of these two vertices by 7}, Yy

as, for example, on the following diagram: >

Replacing in z = ij...7, the vertex i, by 7, 2 \'

we obtain the path 2" = ig...05_17}0k4+1...%; i \' ;
’ I k+1
that also belongs to II, ,, (and is allowed). b L(z)

Since the (r — 1)-path dg...05_17g11...0, iS Wl [

regular but non-allowed (as ix_1 7 7511),

we have
(aw>i0...ik—1ik+1---ir = 0. (3.16)

On the other hand, we have by (3.14)

k—1
(aw)io---ik—1ik+1---ir — Z (Z (_1)‘1 wio---iqfljiqmw“'i" (3.17)

Jj€Z \q=0
r+1 L . L

+ Z (—1)"‘1w%0---%—1”«+1---www---“-). (3.19)
q=k+2

All the components of w in the sums (3.17) and (3.19) correspond to elementary paths on Z
containing consecutive vertices i;_1 and ;1. Since i;_1 7/ x4 in Z, all these elementary
paths are non-allowed. Since w is allowed, all its components in the sums (3.17) and (3.19)
vanish. The path 2g...05_1j%k1...2, in the term (3.18) is also non-allowed unless j = 7 or
j = 1), (note that 7 and 7, are uniquely determined by i;_; and ix.;). Hence, the only
non-zero terms in (3.18) are

o ) S . ,
202 —12%12 2 4 20.--2f—17,2 2 z
0 =1k 1t — 02 g g0t 1Ttk —
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Combining (3.16) and (3.17)-(3.19), we obtain
0= w* + w”.
Since L (') = L (z) £ 1, it follows that
(=) & " = (=1)FE) 7, (3.20)

The transformation z — 2’ described above, allows us to obtain from a given path z € II,, ,

any other path in II, , in a finite number of steps. Since the quantity (—1)L(z) w? does not
change under this transformation, it follows that it does not depend on a particular choice of
z € 11, ,, which was claimed. Hence, the coefficients c*¥ are well-defined by (3.15).

Finally, let us show that the equality (3.13) holds with the coefficients ¢*¥ from (3.15). By
(3.1) we have
er X €y = Z (—1)L(z) €.

Using (3.15) we obtain

Z (e X €y) = Z o Z (1) e,

TeA(X), yeA(Y) T€A(X), yeA(Y) z€ll,

- Ty

(DGA( yEA(Y) z€lly Y

= E w'e, = w,

z€A(Z)
which finishes the proof. m

Lemma 3.5. Any path w € Q) (Z) admits representations

Z ey X a® Z b x e, (3.21)

z€A(X yeA®Y)
where a® € Q, (Y) and VY € Q) (X) are uniquely determined.

Lemma 3.6. Letr =p+q. If
u€eQ (X) and ve A (Y) = uxveQ (2)

and
u€ A, (X) and veQ (Y)=>uxveQ (2).

Theorem 3.7. Any path w € 2, (Z) with v > 0 admits a representation of the form

k
w = E U; X V;
=1

for some finite k, with some u; € Q,,(X) and v; € Q,,(Y), where p;,q; > 0 and p; + ¢; = .
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3.3 Kiinneth formula for product

Here is the main result of this section. We use here the path chain complexes Q, = {Q,}

and their homologies {H),} .

p=>0

Theorem 3.8. (Kiinneth formula for product) Let X, Y be two finite digraphs and Z = XUY.

Then we have the following isomorphism of chain complexes:

0.(2) = Q(X) @ Q(Y),

that is given by u @ v +— u X v foru € Q, (X) andv € Q, (Y). In particular, for any r > 0,

Q. (2) = ) Q,(X)@0,().

{p,q=0:p+q=r}
Consequently, we have

H.(2)= @& H(X)eH,(Y),

{p,q>0:p+q=r}

4 (2) = > 19,2,
{p,q>0:p+q=r}

and

B(Z)=" D B(X)B, (V).

{p,q>0:p+q=r}

Example. Let X be an interval and Y be a square:

X =% — e and Y =

Then Z = XY is a 3-cube: b=

We have: w0

(3.22)

(3.23)

(3.24)

(3.25)

)H3=7

0 (X) = (ew), 2, (X)=0forp>2,

0 (Y) = <€01, €13, €23, 602>7

b0=4,

b1=5

Q2 (Y) = (eo13 — €o23), 2 (Y) =0forgqg > 3.

By (3.22) we obtain al=

Q3(Z) =20 (X) @ (Y) = (ea X (013 — €023))-

Let us compute the cross-products:

€ab X €013 = €a0b0b153 — €a0alb163 T €adal a3 b3 a b3
= €0457 — €0157 T €0137
and X bl
€ab X €023 = €0467 — €0267 T €0237-
a0 b0
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Hence, we obtain

Q3 (Z) = (eoas7 — €o157 + €o137 — €oa67 + 0267 — €0237)-
That is, (25 is generated by a single O-invariant 3-path that is associated with the 3-cube.

Example. Denote by 1" the following 3-cycle (=1-torus):

Consider the 2-torus 72 = TOT

that is shown here:

Let us compute €2, (7?) and H, (T?).
We have

Qo (T) = (e, €1, €2),

0 (T) = (eor, €12, €20),

Q, (T) = {0} forp > 2.

2=a2

By (3.22) we obtain ,.(T?) = {0} for r > 3 and

2 (T2> =0 (T) @ (T) = (eab, €oe» €ca) X (€01, €12, €20)
= <€ab X €01, €ab X €12, €qp X €20, Cpc X €01, €phe X €12,

Ebe X €20, €cq X €01, €cq X €12, €cq X €20).

Using that / 1 Y
€ab X €ij = €aibibj — Caiajbj
we obtain that i a,-l bi
&

2
Q (T ) = (€a0b0b1 — €a0albl, €alblb2 — Cala2b2; €a2b260 — €a2a0b0,
€b0c0cl — Cb0blcely Cblele2 — €p112¢25 €b2¢2¢0 — €b250 05

€c0a0al — €c0clals €clala2 — €clc2a2y €c2a2a0 — 60200a0>‘

That is, using a simple numbering of the vertices of 72, we have

2
Qy (T ) = <€034 — €014, €145 — €125, €253 — €203,
€367 — €347, €478 — €458, €586 — €536

€601 — €671, €712 — €782, €820 — e860>~ (3.26)
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Hence, €2, (T?) is generated by 9 squares.

This can be visualized using the
following embedding of 7% onto

a topological torus:

Let us compute the homology

groups of 72. We know that

HO (T) = <€0>, H1 (T) == <€01 + €12 + 620>, Hp (T) = {0} forp 2 2.
By (3.23) we obtain

H (T?) = Hy(T) @ Hy (T) + Hy (T) ® Ho (T) = (v1,v2)
where

U1 = €4 X (€01 + €12 + €30) = €a0a1 + €a1a2 + €a2a0 = €01 + €12 + €30

Vg = (€qp + €be + €ca) X €0 = €a0b0 + €b0c0 + Ec0a0 = €03 + €36 + €60-
Again by (3.23) we get
Hy (T%) = Hy(T) ® Hy (T) = (u),

where
U = (€qp + €pc + €ca) X (€01 + €12 + €20)
Hence,
U = €4060b1 — €a0albl T €alb162 — €ala2b2 T €a2b260 — €a2a0b0
+ €p0c0cl — €poblel T Ehlele2 — €p1b2¢2 T €h2c2¢0 — €5250 0
+ €c0a0al — €c0clal + €clala2 — €clc2a2 + €c2a2a0 — €c2c0a0s
that is,

u = (eg3s — €o14) + (€145 — €125) + (€253 — €203) + (€367 — €347) + (€478 — €458)
+ (e586 — €536) + (€601 — €671) + (€712 — €7s82) + (€820 — €s60) - (3.27)

Finally, H, (T?%) = 0 forall r > 3.

3.4 The path chain complex on n-cube

Define the n-cube as follows:

n-cube = I" = JOI0..0O1I, (3.28)
—_——

n

where / = {0 — 1} and n € N.Hence, each vertex a of the n-cube can be identified with a
binary sequence (ay, ..., a,) . For example, 0 = (0,...,0) and 1 = (1, ..., 1) are the corners of
the n-cube.
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Proposition 3.9. We have for any r > 0

Q,(I")] = 27" (:‘) (3.29)
B, (I") = { é ;ig - (3.30)

A more detailed description of the spaces €2,.(I™) will be given below.

Proof. Let us prove (3.29) by induction in n. If n = 1 then
Q0 ()| =2, | (1) =1, |Q-(I)] =0forr > 2,

which matches (3.29).

For induction step from n to n + 1, we use that /"' = ["[J] and obtain by (3.24) and the
induction hypothesis that

o () = S el X e(M)2e()).

p q
{p,q>0, p+q=7} {p,q>0,p+q=r}

Since here ¢ = 0 or ¢ = 1, it follows that

0, (1*1)] = 2 (:) o1 (é) 4 gn(r-) (T " 1) 20 G)
= (()+(7)
_ o (" N 1>,

The identity (3.30) is proved similarly by induction using (3.25). =

which was to be proved.

For two vertices a, b of the n-cube, there is an arrow a — b if by = a; + 1 for exactly one
value of k and b;, = a;, for all other values of k. Denote

la| = a1 + ... + ap.
We write a = b if there is an allowed path from a to b, that is
a=b < a,<bforallk=1,... n.

For any pair a < b consider an induced subgraph D, ; of the n-cube as follows:

the vertices of D, are all vertices ¢
of I™™ such that

a=c=b
and an arrow ¢; — ¢y existsin D,
exactly when this arrow exists in /-7,
Here is a 4-cube and its subgraph D, ;:

(the arrows go from top to bottom).
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The mapping ¢ — ¢ — a provides an isomorphism of D, ; onto a p-cube with
p=1b] —lal.

Assuming that @ < b, denote by F, ;, the set of all elementary allowed paths going from a to
b. All paths of P, lie in D,;, each path in P, has the length p = |b| — |al, and the total
number of the paths in P, is p!.

Lemma 3.10. There is a function o : P,;, — {0, 1} such that the following p-path

wap = 2 (=1)7e, (3.31)
z€P, ;
is O-invariant.
For example, in a 3-cube as shown here, we have § —n7
Wo,1 = €o1, ) ‘ f

Wo,3 = €013 — €023,

and

Wo,7 = €0137 — €0237 — €0157 + €o457 T €0267 — €0467

0 Tl

Proof. Without loss of generality, we can assume that « = 0, b = 1, and prove the claim by
induction in n = p. The induction basis for n = 1 is obvious. For the induction step from n
to n + 1 we use Lemma 3.3 that says that the cross product of 0-invariant paths is 0-invariant.
Denote by 0’ = (0,0) and 1’ = (1, 1) the corners of the (n + 1)-cube.

Taking the cross product of the n-path . —l'

wp1 on 17" and the 1-path y = ey on I, | .

and using (3.1), we obtain the following 4 1

O-invariant (n + 1)-path on 77+

wo1 X €1 = Y, (—l)a(m) er X €y
z€P0,1 o0&l

= Y ¥ ) Ente, v

2€Po1 211y, Apathz€Pp,1 and z€lly 5

L

where z is any stair-like path on (n + 1)-cube that projects onto z and y, respectively.
Clearly, z runs over all paths Py 1/. Setting

o(z) =0 (x)+ L(z)mod2
and
Wo',17 = Wo,1 X €01,

we obtain
W0/71/ = Z (_1)0(2) €,

Z€P0/71/

which concludes the proof. m
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Proposition 3.11. For any p > 0, we have
Q,(I") = (wap :a Xband |b] —|a| =p).
Moreover, {w,} is a basis of 2, (I™) .

Proof. The proof is again by induction in n. The induction basis for n = 1 is obvious. For
the induction step from n to n + 1 we use the Kiinneth formula (3.22). By this formula and
by the induction hypothesis, we obtain that the basis in 2, (I"*!) consists of the following
p-paths:

{wa,b X €g1 t Wap € Qp—l ([n)} U {w&b X € Wap € Qp (In) ;1 =10, 1}
As above, the products w, X eo give us all the p-paths wq o) (5,1), While wqp X €; give us

all the p-paths w(q4,0),4,0) and w(q,1),(s,1)- Clearly, we obtain in this way all p-paths w,;; with
a',b' € I, which concludes the proof. m
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4 Hodge Laplacian on digraphs

In this section we use the path chain complex without augmentation

oy £ 0 £ o & .. &a, Lo &

over the field K = RR. Let us fix an arbitrary inner product (-, -) in each of the spaces R, so
that we have an inner product also in all 2,,. In all examples we use the natural inner product
given by (2.12).

4.1 Definition of the Hodge Laplacian

For the operator 0 : €}, — €,,_;, where p > 0, consider the adjoint operator 0" : §2,,_; — (..
By the definition of an adjoint operator, we have

(Ou,v) = (u,0"v) forallu € 2, andv € Q,_;.

Definition. Define the Hodge-Laplace operator A, : Q,, — €1, by
Ayu = 0"0u+ 00" u. 4.1
The pairs 0%, 0 and 0, 0* appearing in (4.1) are the following operators:
0 0
Qp—l ? Qp and Qp 8—? Qp+1.

Proposition 4.1. The operator A, is self-adjoint and non-negative definite.
Proof. We have for all u,v € (0,
(Apu,v) = (0"0u + 00™u,v) = (Ou, Ov) + (0w, 0" v) = (u, Apv)
so that A, is self-adjoint, and
(Apu,u) = [[0ul]® + |0"u* = 0, 4.2)

sothat A, > 0. m

Hence, the spectrum of A, is real, non-negative and consists of a finite sequence of eigen-
values.

4.2 Matrix of A,

Let {«;} be an orthonormal basis in €2, {3,,,} be an orthonormal basis in §2,_; and {v,,} be
an orthonormal basis in €2, :

* *

O =2 Q= Qg

1} 1} :
{Bm} {ai} {rn}

43



The operator O : €2, — €2, has in the bases {«;} and {/3,,} the matrix representation

B = (0, B0)) s » (4.3)

where m is the row index and 7 is the column index.

Similarly, the operator 0* : {2, — €2, has the matrix representation

where n is the row index and i is the column index. Since A, = 9*9 + (9*)" 9, we obtain
the matrix of A, in the basis {«; }:

A := matrix of A, = BB+ C*C. 4.5)

More explicitly, the (7, j)-entry of the matrix A of A, in the basis {«;} is given by
Aij =D {00 Bn) 0y, B) + D (i, 09,) {05, 0,) (4.6)

where ¢ is the row index and j is the column index.

Example. Recall that 2y = {0}, Qy = {e; : i € V}and @y = (ey; : k — [) . Assuming that
(-, -) is the natural inner product (2.12), we obtain by (4.6) that the matrix of A is

Ajj = Z (€i, Der) (ej, Der)

k—l

= Z <€i, e — €k> <€j, € — €k>

k—l

= Z (511 — 52]{?) (5jl - 6Jk’)

k—l

= Z (Sij + Z 5ij - l{i—>j} - 1{j—>i}

k—1 i—l
= deg(i)dij — L{imgy = Lj—ay-
If G has no double arrow and V' = {1, ...,n} then
A = diag (deg (7)), — Liiug 4.7)

where 1(;.;, is the n x n adjacency matrix of G. Hence, A is the usual unnormalized
Laplacian (=Kirchhoff operator) on functions on V. Consequently, we have

trace Ag = Z deg (i) =2 |E]|. (4.8)

eV

4.3 Examples of computation of the matrix of A,

In this section, we denote by V' and F respectively the numbers of vertices and arrows of the
digraph in question.
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Let us compute A; for the natural inner product. We use the orthonormal bases {e,, } in
and {e;; : i — j} in ;. Let {,,} be an orthonormal basis in (25.

The matrix A of A has dimensions £ X E and, by (4.6), its entries are

Aijiryr = Y (0, em) (Oeij, em) + D (€ij, 07,,) (€irjr, 07,,) (4.9)

m

for all arrows i — j and i’ — 7.

For the first sum in (4.9) we have

Z <ae’ij7 €m> <aei/j/, €m> =

m

> <6J
>~ (0jm — Gim) (8jrm — dirm)

= 5]']'/ - 5ij’ - 5]'2'/ + 5“'/ = [2], i/j/] .

— €iyem) (€51 — €ir, Em)

The values of [ij, ;'] are shown here:

Hence, in the case p = 1, we have
B'B = ([ij,i'j"]). (4.10)
In particular, diagonal entries of B” B are equal to 2.

Example. Consider an 1-torus 77 = {0 — 1 — 2 — 0}. In this case we have Q; =
(€01, €12, €20) and
A= B"B = ([ij,'j])
€o1 €12 €20 1
01,01] [01,12] [01,20] 2 —1 -1

_ | eo =|-1 2 -1
e1p [12,01] [12,12] [12,20] 1 -1 9

es0 [20,01] [20,12] [20,20]
The eigenvalues are
spec Ay (T) = (0, 3,),
where the subscript shows the multiplicity.
For a general digraph G with Q, # {0}, let us compute the entry (e;;, 07,,) of the matrix

C' assuming that ,, = +y is a triangle or square (note that although (2, always has a basis of
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triangles and squares, the squares in this basis do not have to be orthogonal).
If v = eq is a triangle then we have

(€ij, 07) = (€ij, €ab + €be — €ac) = [1J,7], 4.11)

1, ifij € {ab,bc} A
[ij, 7] == ¢ —1 ifij =ac
0, otherwise. . "

If v = % is a (normalized) square then

where

1 1
€ii, 0) = —= (€5, €qp + €pe — €y — €pe) = — [17,7], 4.12
(eij, 0V) ﬁm b+ € ) ﬁ[Jv] (4.12)

where

1, ifij € {ab,bc}
[ij,v] =< —1 ifij e {al,Vc}
0, otherwise.

Example. Let GG be a triangle {0 — 1 — 2,0 — 2} . Then ; = (eg1, €12, €g2) and

€o1 €12 €02 2 _1 1
T g |em [01,01] [01,12] [01,20] | [ °
BB =077 = | ¢, n201 212 (220 ] = 11 ? ;

o2 [02,01] [02,12] [02,02]

The basis {,,} of {2, consists of a single triangle v = €12 so that

O — €01 €12 €02 ): 1 1 -1
(6012 [01,9] [12,7] [02,4] ( )7

1 1 -1

ctfe=(1 1 -1},
-1 -1 1

300

A=B'B+CcTCc =0 3 0

00 3

Example. Let GG be a square {0 — 1 — 3,0 — 2 — 3}. Then Q; = (eq1, €2, €13, €23) and

€01 €02 €13 €23 9 1 -1 0
eor [01,01] [01,02] [01,13] [01,23] L 2 0 1
BB = ([ij,i'j']) = | eo2 [02,01] [02,02] [02,13] [02,23] | = 10 9 1
e13 [12,01] [13,02] [13,13] [13,23] 0 -1 1 2
ea3 [23,01] [23,02] [23,13] [23,23]
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The basis {,,} of {25 consists of a single square v = \%2 (€013 — €o23) so that

1 €01 €02 €13 €23 _L _ _
C:E(w 01,9] [02.9] [13.7] [23w])‘¢§<1 P

1 -1 1 -1

1/1-1 1 -1 1
T — —
¢ho= 2l 1 -1 1 -1
-1 1 -1 1
Hence,
5 1 _1 _1
2 2 2 2
1 o _1 _1
A=B"B+CTC=] 2, 2 ;2 2|,
T2 T2 2 2
1 _1 1 5
2 2 2 2
and spec A (square) = (23, 4) .
Example. Consider the following digraph:
0
Here V =5, E =6, |Q] =2and
Ay = (6014 — €024, €014 — 6034) . 1
However, this basis is not orthogonal.
Orthogonalization gives an orthonormal basis for §25: 4
Y1 = \/Lg (€014 — €024)
Yo = \/Lg (€014 + €024 — 2€034) -
Since
Oy, = \/Li (€01 + €14 — €92 — €24)
vy = \/Lg (€01 + €os + €02 + €24 — 2€03 — 2e34) ,
we obtain
€o1 €14 €02 €24 €03 €34
1 1 1 1
C = ({ei,07,) = [ I vy ooy 00
% X /KK TE
4 1 1 _ 1 0
= |2 2 25
V6 V6 V6 NG V6 NG
and
2 2 _1 _1 _1 _1
3 3 3 3 3 3
2 2 _1 _1 _1 _1
51 51 0% 93 ? 7
cte=| % % 3 3§ 1 3}
[ S G T B AR A
3 3 3 3 3 3
1 1 _1 _1 2 2
3 3 3 3 3 3

N
-



Now we compute BT B:

2 -1 1 0 1 0
-1 2 0 1 0 1
1 0 2 -1 1 0
TR — (le.. e4]) =
B B—([ezpelj]) 0 1 —1 2 0 1 7
1 0 1 0 2 -1
0 1 0 1 -1 2
whence
8 _1 2 _1 2 _1
3 3 3 3 3 3
U RS R G S
3 3 3 3 3 3
27 18" o2 1
A=B"B+CTC=| 3, B3 3 & 3
PR U L U A1
BT A T S R &
3 3 3 3 3 3

Hence, spec A1 (G) = (24,3,5) .
Example. Let G be an (n — 1)-simplex, that is, the vertices are {0, 1,...,n — 1} and
i e i<
Let us show that
A := matrix of A, = diag (n).
Let i and ;' be two arrows. Then the (ij,'j’)-entry of A is

Aijoy = (B"B),.,,+(CTC). ., =[ij, "5+ X [ij, 7] ['5', 70l (4.13)

il ijiilj’

where {,,} is an orthonormal basis of (2, which we may take to consist of all triangles in G.

If ij = ¢'j' then [ij,7'j’] = 2. Since the arrow ij belongs to (n — 2) triangles +,,, we obtain
Aijij=2+(n—-2)=n,
that is, all the diagonal entries of A; are equal to n. It remains to show that if 75 # i’j’ then
Aijijr = 0. (4.14)

If ij and 7’5’ have no common vertex then they cannot belong to the same triangle ,, and,
hence, all the terms in (4.13) vanish.
Suppose i’ =i and j' # j:

/'j

-/
=i ® — 'Y

Then [ij,4'j'] = 1 while [ij,~,] [, ,] is nonzero only when ,, is the triangle formed by
i, 7,7 . Inthis case the arrows ij and 7’ j” have opposite orientations with respect to ,,, whence
[i7, vl 117", 7,] = —1 and (4.14) follows.

Suppose j' = i and i’ # j:
® — Qi/

ji=i
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Then [ij,4j'] = —1 while [ij,~,][i'j’,7,] is nonzero only when +,, is the triangle 'ij.
In this case the arrows ij and i'j’ have the same orientation with respect to -,,, whence
[i7, 7] [{'7",7,] = 1 and again (4.14) follows.

The cases j = i’ and j = j’ are similar.
Problem. Describe all the digraphs for which A; has only one eigenvalue.

Problem. Devise a program for computing the matrix and spectrum of A; for large digraphs.

4.4 Harmonic paths
A path u € €, is called harmonic if A,u = 0.

Lemma 4.2. A path v € ), is harmonic if and only if Ou = 0 and 0*u = 0.

Proof. Indeed, if Ou = 0 and 0*u = 0 then by (4.1) we have A,u = 0. Conversely, if
A,u = 0 then we obtain by (4.2) that

0ull® + (107 ull* = (Apu, u) =0,

whence [|Ou|| = [|0*u| = 0. =

Denote by H, the set of all harmonic paths in €2, so that H,, is a subspace of €2,,.

Theorem 4.3. (Hodge decomposition) The space §2,, is an orthogonal sum:
Q, = 00,11 PO P H,. (4.15)
Proof. If uw € 0.1 and v € 0%, then u = Ju’ and v = 0*v', and we have
(u,v) = (Ou',0"V') = (0%, V') =0,

so that the subspaces 9€2,,4, and 9*(2,_; are orthogonal.

(S))
2

Q

p-1 Qp+l
Next, we have for any w € 2,
we (0 1) e (w,v) =0VvedQ,,

< (Qw,v") =0 V' € Q, 4
& 0w =0

and

w € (0Qp41)" < (w,0u') =0 Yu' € Qpyy
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& (0w, u’) =0

& 'w=0

S weH)y.
Therefore, w € K := (89,11 @ 0*Q,_1)" if and only if dw = 0 and d*w = 0, that is, if
A,w = 0, whence the identity K = H,, follows. m

Corollary 4.4. There is a natural linear isomorphism
H,="H,. (4.16)

In particular, dim 'H,, = (3,; that is, the multiplicity of 0 as an eigenvalue of A, is equal to
the Betti number [3,,.

Proof. By the argument from the previous proof, a path w € €2, belongs to Z, = ker d|q, .,
if and only if w € (9*€,_1)". Since by (4.15)

0, =000 DH, P,

we obtain
Zy= (0" 1) = 001 DH, (4.17)

whence H, = Z,/00,,1 = H,. m

Remark. It follows from this argument that H,, is an orthogonal complement of 5, in Z, and
that any homology class w € H,, has a unique harmonic representative u € H,,. In addition,
u minimizes the norm ||-|| among all representatives of w.

5 Spectrum of the Hodge Laplacian

5.1 Trace of A,

Recall that by (4.8)
trace Ay = Zdeg (1) = 2F,
icV
where F denotes the number of arrows. Here is a similar result for the trace of A;.

Theorem 5.1. Let T’ be the number of triangles in G, S be the number of linearly independent
squares in G, and D be the number of double arrows a = b. Then

trace Ay = 2FE + 3T + 25 +4D. 5.1

Recall that by a triangle we mean an allowed 2-path e,;,. such that a — ¢, and by a square we
mean an allowed 2-path e,;. — €4y such that a # cand a 4 c.

Proof. Let {«;} be the sequence of all arrows e;; in G that forms an orthonormal basis in
Qy, {5,,} be the sequence of all vertices e; that forms an orthonormal basis in €. Let {v,,}
be an orthonormal basis in €),. As above, consider the matrices B and C' with entries

Bmi = <8o¢i, 6m> and Cm = <8’}/n, Oéi> y
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so that the matrix A of A; in the basis {«a;} is
A=B"B+C"C.
Consequently,

trace A, = trace BT B + trace CTC.

As we have seen above (see (4.10)), in the case of Ay, all the diagonal entries of B B are
equal to 2 so that
trace BT B = 2E.

Let us prove that
trace CTC' =" (|0, [I*. (5.2)

We clearly have

CTC Z OTLZOn] = a’ynv ai> <a’7n7 O[j> )

n

whence it follows that

trace CTC' =30 3 (07,, i)* = 323 (07, 00)” = 2 |07l

n K3

whence (5.2) follows.
For what follows, let {~,,} be an orthogonal basis. Then (5.2) transforms to

trace CTC = Z ||||a%”|| (5.3)
Tn

As we know, (2, has a basis {,,} that consists of triangles, squares and double arrows. The
only non-orthogonal pairs in this basis are pairs of squares containing the same elementary
2-path, like €4p — €ape and €gpe — €qpe. Assume first that the entire basis {~,,} is orthogonal
(which is equivalent to absence of multisquares).

A double arrow a = b gives two elements of the basis {7, }: €qpq and epqp. If v,, = eqp, then

”771”2 = ]-’ 8771 = €pq T €ap, ”8’771”2 =2

and
107l _
17 I?
The same is true for y,, = e SO that each double arrow contributes 4 to the sum
2
> |97l 5
Iyl

If ~,, is a triangle e, then

||f)/n||2 = 17 ar)/n = €pec — €qc T Eabs ||67n|’2 =
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whence )
107"

= =
17l
so that each triangle contributes 3 to the sum (5.4).

)

If «y,, is a square eqp. — €qpc then
17l =2, 07, = €a + e — €ary — eve, 1107,]1> =4,

so that
107al* _
171"
so that each square contributes 2 to the sum (5.4). Hence, we obtain that the sum (5.4) is
equal to 37 + 2S5 + 4D, which proves (5.1) in this case.

In the general case G may contain multisquares. Assume that G contains the following
m-square

2,

a, {bk}zn:O’ ¢

which gives rise to m linearly independent squares:

€aboe — Cabicy €abe — Cabyes vy €abe — €abpe - (55)

The sequence (5.5) is not orthogonal, and its orthogonalization gives the following sequence:

W1 = €abge — Cabic
W = €Egbye + €abic — 2eabzc

Wi = €abge + ...+ €ab,_1c — keabkc

Wm = €abge + ...+ €aby,_1c — MEab,,c

We have
Owr, = (eabo + €boe) + - + (€aty_y + €y _1c) — k (€, + €bye)
[0wi||” = 2k + 2K%, |wi|* = k + k2,
whence )
0wl _,
=
[Jwr

Hence, each wy, contributes 2 to the sum (5.4), which completes the proof. m

Since the sum of all eigenvalues is trace A; and the eigenvalue 0 has the multiplicity /3, we
obtain that the average of the positive eigenvalues is

\ _ trace AN
average E _ /61 N
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5.2 Anupper bound on )\, (A)

Denote by Ay (A) the maximal eigenvalue of a symmetric operator A. Let (-,-) is the
natural inner product in all spaces .

Proposition 5.2. We have
)\max(A0> S 2 m&‘m/x deg (Z) :
1€

Proof. Set D = max;cy deg (i) . By the variational principle, it suffices to prove that for all
u € Q()

Since du = 0, we have by (4.2)
(Dou,u) = [[0"ull.

Since for any 1 — j

<8*u, 6ij> = <U, 8eij> = <u, €; — €i> = Uj - Ui,

it follows that
|6 u||* = Z(uj —u')? < QZ(uj)2+2 Z(ul)2 = ZZdeg(i)(ui)2 < 2D |jul)*, (5.6)

whence the claim follows. m

Note that the bottom eigenvalue of A is always 0 because if all u* = 1 then by (5.6) 9*u = 0
and, hence, Agu = 90*u = 0. If G a complete bipartite graph K p , then G is D-regular
and 2D is the top eigenvalue of A.

For any arrow 7 — j in GG denote by deg, (i) the number of triangles containing the arrow
i — j, and by deg; (ij) the number of squares containing i — j.

Theorem 5.3. Assume that G has no 2-squares or double arrows. Then

Amax (A1) < 2maxdeg (i) + 3max deg, (ij) + 2 max degy (27) - (5.7)
i i—] i—J

Proof. The hypothesis means that {25 has a basis that consists of all squares and triangles; in
this case this basis is orthogonal.

Recall that
oul|* *ul?
>\max (Al) == Sup ” H2 + H |2‘ :
we\{0} \ [l [l

Since the operators 0 : €21 — € and 0* : 0y — €2, are dual, they have the same norm. The
norm of the latter was estimated in the proof of Proposition 5.2 (cf. (5.6)), whence we obtain
the same estimate for the norm of the former, that is, for any non-zero u € €2y,

- < 2r111€z%/xdeg (7).
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Let us prove that
16 ul|*

2
[

Letu=3) . u'e;; and, hence,

< 3maxdegy (ij) + 2max degy (ij) - (5.8)
i—) i—]

lul® = (u)?

i—]

Let {,,} be the orthogonal basis in {2, that consists of all squares and triangles. We have

=l =

If v, is a triangle ey, then ||, || = 1,

<u7 87n> = <u7 €bc — €ac + eab> = U/bc —u* —+ U,ab,

<u’ 87n>2 <3 ((ubc)2 + (uac)Q + (uab)2) )

Summing up over all triangles ~,, and using that any arrow i — j occurs in deg, (i7)
triangles, we obtain

u,dv,) i . iy

S SO S degy (i) < 3l maxdega (). 59
n:y, is a triangle ||f7n H 1—j B

Let now ~,, be a square €., — eqy. (such that a 4 ¢). Then ||7n||2 =2,

b b b v
<u7 67n> = <U, €ab T €be — Eapy + eb’c> =u” +u’—u” —u C,

<u7 87n>2 <4 ((uab)2 + (ubc)2 + (uab’)Q + (ub’c)2> )

Summing up over all squares ,, and using that any arrow ¢ — j occurs in deg (i7) squares,
we obtain

O oS ) degs (i)

2
n:y, is a square ||’7nH i—j

< 2| lufl* max deg (ij) - (5.10)
1—]

Adding up (5.9) and (5.10), we obtain (5.8). =

Problem. How sharp is the upper bound on A.x (A1) in (5.7)? Is it attained on some
digraphs? Extend (5.7) to the general case when a basis of triangles and squares requires
orthogonalization.

Problem. Find reasonable upper bounds for Ap..(A,) in terms of geometric and combina-
torial quantities of G. The question amounts to obtaining an upper bound for the Rayleigh

quotient for non-zero u € (2,:
|I8u||2+||;9*7»¢\|2 <9
[l -
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5.3 Examples of computations of spec A,

Example. Consider an octahedron based on a diamond:

For this digraph V =6, E =12, || =8.
The space ()5 is generated by 8 triangles:

Oy = <6024 » €025 5 €034 , €035 , €124 , €125 , €134 , e135)- 1

We have T'= 8, S = 0, which implies

trace A; = 2F + 3T = 48.
Since 3; = 0, it follows that

trace Ay 48

/\aver‘ae:—_—_4~

Using (4.10), we obtain

€02 €03 €12 €13 €o4a €14 €24 €34 €05 €15 €25 €35
€g2 2 1 1 0 1 0O -1 0 1 0 —1 0

eo3 1 2 0 1 1 0 0 -1 1 0 0 -1
el 1 0 2 1 0 1 -1 0 0 1 -1 0

ei3 0 1 1 2 0 1 0O -1 0 1 0 -1
B'B=]ey4 O 0 1 1 1 2 1 1 0 1 0 0
eog —1 0 -1 0 1 1 2 1 0 0 1 0
ess2 0 -1 0 -1 1 1 1 2 0 0 0 1
eos 1 1 0 0 1 0 0 0 2 1 1 1
ei5 O 0 1 1 0 1 0 0 1 2 1 1
eocs —1 0 —1 0 0 0 1 0 1 1 2 1
ess 0 -1 0 -1 0 0 0 1 1 1 1 2

for example,

(B"B),, =102,03] =1 and (B"B) . =[02,24] = —1.
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Using (4.4) and (4.11), we obtain that

CTC =

for example,

and

€02
€03
€12
€13
€04
€14
€24
€34
€05
€15
€25
€35

€02
2
0
0
0

-1
0
1
0

—1

0
1
0

€o.
0
2
0
0

0
0
1

3

1

—1

0
0
1

€12
0
0
2
0
0

-1
1
0
0

-1
1
0

e

—_

3

SN O OO

-1
0
1
0

-1
0
1

(C’TC') 2= Zn: (€02, 07y,) (€03, 07,)

€34 €05 €15
0 -1 0
1 -1 0
0O 0 -1
1 0 -1
-1 0 0
-1 0 0
0 0 0
2 0 0
0 2 0
0 0 2
0o -1 -1
0o -1 -1

(CTC) =D [02,7,][24,7,] = 1.

Since the matrix of A; is A = BT B + CTC, we obtain

The eigenvalues of A; are

€02
€03
€12
€13
€04
€14
€24
€34
€05
€15
€25
€35

OOOOOOOOO)—*H%%D

OOOOOOOOHO»&»—\??

oooooooo»—wpo»ag

spec Al = (23, 46, 63),

OOOOOOOO»&)—‘HOS

D
o
=
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where the subscript denotes the multiplicity.

The eigenvalue 2 has the eigenvectors

€p2 — €p3 — €12 1+ €13
€o4 — €14 — €05 + €15

€24 — €34 — €25 + €35

g
—
=~

OO R O OO HkrHroOoOooOo
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€05 €15
0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0
4 1
1 4
0 O
0 0

€25 €35
1 0
0 1
1 0
0 1
0 0
0 0
0 0
0 0
-1 -1
-1 -1
2 0
0 2

»—gooo»—ooooooé\?

%HOO»—*OOOOOOOQ




the eigenvalue 6 has the eigenvectors

€op2 + €03 + €12 + €13
€ps + €14 + €05 + €15

€24 + €34 + €25 + €35

the eigenvalue 4 has the eigenvectors

€03 — €12, €02 — €13, €14 — €05, €o4 — €15, €34 — €325, €24 — €35

Example. Consider a 3-cube:

6 >—n7
Wehave V =8, E =12, |Q] =6, 2//1 /4
3

H, = {0} forp > 1.

Y

A A

Space (), is generated by 6 squares,
so that

4 >—95
S=6and T =0.
Hence, we obtain by (5.1)

0

trace Ay =2F +25=2-12+2-6 = 36.

Since 3, = 0, we obtain
trace A
)\average = 1 = 3.
E -5

The eigenvalues of A; on a 3-cube are

spec A;(3-cube) = (26, 32, 43, 6).

Example. Consider the n-cube, that is,

" =1010..01
—_—

n times

where I = {0 — 1}. Using the Kiinneth formula for product, it is possible to prove by
induction that, for any p > 0
n n— n
o, =2(").

p

and that €2, (/™) is generated by all sub-cubes of /" of dimension p. Also by induction we

obtain that
m_ )1, p=0
6”“)_{0, p>0 "
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(see Subsection 3.4). Hence, we have
V=2" E=n2"" S=|Q=2""nn-1)
and T'= D = 0. It follows that
trace A (I") = 2E + 25 = 2" 2n (n + 3)

and
trace A;(I") 2" ?n(n+3) n+3

Aavera e —

For example, for the 4-cube we obtain
trace A (1*) =2%-4.7=112.
The eigenvalues of A; on the 4-cube are
spec Ay (I*') = (210, 3s, 49, 64, 8).

For the 5-cube we obtain
trace Ay (I°) = 2% - 5- 8 = 320.

The eigenvalues of A; on the 5-cube are
spec A (I°) = (215, 329, 425, b4, 610, 85, 10).
Note that A;(I°) acts on the space 2, (°) that has dimension = 5 - 257! = 80.
Problem. Determine the full spectrum of A; (/™). In particular, prove that
Amax = 2n and Ay, = QW'

Prove that spec A1 (I™) consists of all even integers from 2 to 2n and of all odd integers from
3 to n. How to compute their multiplicities?

The difficulty here is that the method of separation of variables does not work for Ay on
Cartesian products.

Example. Consider the 2-torus 72 = TOT where T = {0 — 1 — 2 — 0}.
Here V =9, E =18, |Q] =9, |H| = 2.

Space €2, is generated by 9 squares, whence 3
trace A1 (T?) =2-18+2-9 = 54. 6

The eigenvalues of A; on the 2-torus are

spec Al(T2) = (02, (%)4, 387 64)

For the 3-torus 7° = TOTOT we have

E=281, S=|0| =81, |H|=3,
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whence
trace Ay (T?) = 2- 81 +2- 81 = 324.

The eigenvalues of A; on the 3-torus are
spec A1 (T?) = (03, (3)12, 330, (9)16, 612, 9s).

For the n-torus
T =7074.07
—_—

n times
we have
E=n3", =0 = @3& |Hy| = n,
whence
trace A (T") =2E +2S =n(n+1)3"
and . N

Problem. Compute the full spectrum of A; (7). In particular, prove that
Amax = (31)gn -

In fact, Apin = 0,,, which is a consequence of 3,(7™) = n.

5.4 Eigenvalues of A, on trapezohedron

A trapezohedron T), of order m > 2
is a configuration of 2m + 2 distinct
vertices

a, b, ’io, Ce ,im_l, jg, Ce ’jm—l

with 4m arrows:

Ip-1 ik”
a— ik, Jp—b

and jm-l jk+ |
e = Jks e 7 JEk+1,

forall £k =0,...,m — 1, where kis

understood mod m.

The trapezohedron gives rise to the following O-invariant 3-path:

m—1

Tm = Z (eaikﬂ'kb - eaikjk+1b) : (5.11)

k=0
Indeed, 7,, is clearly allowed, and its boundary is also allowed because

m—1

0T = § : 0 (eaikjkb - eaikjkﬂb)

k=0
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m—1 m—1
= (Cigiop = €ingnsnr) = D (Cairie — Caininrr) (5.12)
k=0 k=0
m—1 m—1
- (eajkb - eajk+1b) + (eaikb - eaikb) 3 (5'13)
k=0 k=0

where the both sums in (5.12) are allowed, while the both sums in (5.13) vanish.

a
A trapezohedron 75 is shown here: io i
In this case we have
T2 = €aigjob — Caigjib T €ai1j1b — €airjob-
Jo J 1
b

Any trapezohedron of order m > 3 can be realized as a convex polyhedron in R? with flat
faces.

Here is 75 that clearly coincides with 3-cube:

In this case we have

T3 = Caigjob — Caigjib T €airjib — Caiyjob

F€aigjab — Caigjob-

The path 73 coincides (up to a sign) with the
aforementioned 3-path determined by 3-cube.

A trapezohedron 7 is shown here:
As a polyhedron in R3, it is called

tetragonal trapezohedron.

. lo I
In this case we have
_ J3
T4 = €aigjob — Caigjrb T Cairjrb — Caiyjob J1
+eai2j2b - eai2j3b + eaigjgb - eai;gjob‘
b

The significance of trapezohedra in our theory is determined by the following theorem.

Theorem 5.4. Assume that the digraph G contains neither 2-squares nor double arrows.
Then Q3(G) is generated by trapezohedral paths T,, with m > 2 and their digraph images.

The hypothesis here means, in particular, that G’ does not contain linearly dependent squares.
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Consequently, {25(G) has a basis that consists of all squares and triangles.

Conjecture. The claim of this theorem is true for an arbitrary digraph G.

In the rest of this section we consider 7;,, as a digraph and are concerned with the eigenvalues
of Ay(7},,). By Theorem 1.5, Q5(T,,,) is spanned by all 2m squares

Cair_1jr — Caipj and €irixb — Cipjri1bs k= O, 1, ey M — 1.

One can show that Q3(7,,,) = (7,,,) . Obviously, §2,(7,,,) = {0} for all p > 4. One can also
show that H,(T,,) = {0} forall p > 1.

Since the number of arrows in 7T, is £ = 4m, the number of squares is S = 2m, and there
are no triangles or double arrows, we obtain by Theorem 5.1, that

trace Ay (T},) = 2-4m + 2 - 2m = 12m,

and, hence,

t A 12
)\a'uerage = et m = 3.

E—p, 4m

Example. The following results are based on numerical computation of the matrix of A; (7},,).

Case m = 2:
spec A1 (1) = (2, 35, % + %\/17).
Case m = 3:
spec Al(T:g) = (267 32, 43, 6)
Case m = 4:

spec A1(Th) = {2, 34, 5, 2 £ V17, (2+1v2)s, (3£ V2),},
and the characteristic polynomial of A;(7}) is
(z—=2)(z=3)" (2= 5) (22 — 92 + 16)(2® — 42 + D2(2* =62+ 17)%
Case m = 5:
spec A1(T5) = {2, (3)4, 6, 5 £ V5, (L £ 1V5)y, (2 +1V5),y, (24 1V5),),
and the characteristic polynomial of A;(75) is
(z=2)(z = 2)* (2 = 6) (2 — 10z + 20)(2* — Tz + 11)*(2* — 5z + 5)*(2* — 4z + 11)%.
Case m = 6:
spec A1(Ts) = (25, 37, 42, 7, 8, (2 £ 1v3)s, (3£ V3)),

and the characteristic polynomial of A;(75) is

(2=2°(z=3)"(2—4)* (2= 7) (= 8) (2 — 32 + £)%(2* — 62 + 6)°.
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Case m = 7: the characteristic polynomial of A, (7%) is

(z—2) (2 —8) (2% — 122+ 28)(2° — 62" + Lz — 2)?(2° — 102° + 312 — 29)°

x (28 =722 + 82 — 2)2(2° — 822 + 192 — 13)%.

It has eigenvalues 2 and 8, and all other eigenvalues are irrational.

Problem. Determine the full spectrum of A; on the trapezohedron 7}, for any m. In particular,
what are \;, and A7

Here is a partial answer.

Proposition 5.5. Foranym > 2, the operator A, (T,,,) has eigenvalues A = 2 and A = m+1.

Proof. The vertices of T, will be denoted as here:

Consider the following 1-paths on T},:
v = eiojl —|— eile + + €im_1j0

- (eiojo + €14 + ..t eimfljmfl)
m—1

= Z (eik—ljk - eikjk)>

k=0
where the index k is regarded mod m, and

U = €qiy + €giy + - + €q4ipy

— (ejob + €j1b 4+ ...+ ejm—lb)
m—1

= Z (eaik - ejkb)'

k=0
The 1-paths wand v are obviously allowed and, hence, J-invariant. We will prove that

Ayv=2v and Ayu=(m+1)u,

which will settle the claim. We have clearly

m—1

v = Z(ejk — €, — € T+ eik) =0,

k=0
and, hence, 0*0v = 0.

In order to compute J*v € €, we use the following orthogonal basis in €2 that consists of
all 2m squares in 7,,,:

Pr = Caix_1jr — Cairjr and wk = Cipgird — Ciggrrabs
where £ = 0,...,m — 1. We have for any k
3
<8 v, @k> = <U7690k> = <’U, Ciy_1jx T Caip_1 — Cipjy — eaik> =2,

<a*v> wk> = <U7 8¢k> = <Uv €jpb T Cipjy — Clpr1b — eikjk+1> = -2,
which together with ||, ||* = |1, ]| = 2 implies that

—_

O'v = (1 — Vp) -

0

3

i
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Hence, we obtain

3
L

Ayv = 00" = (Op), — OYy)

il
LL

= (eikfljk + Caify — Cipjy — eaik)

o
[e=]

—

m—

- E :(ejkb T+ Cipgy — Cjrs1d — eikijrl)

e
Il
o

3

=2 (eik—ljk - eikjk) = 2v.

o
=]

Next, let us compute 0*u. We have for any £,
(8*u, ¢k> - <u7 agpk) = <u7 Cir_1jr T Cair_1 — Cirjp — eaik> =0,

<8*u7 ¢k> = <u7 a¢k> - <u7 €jpb T €y — Clpr1b — 6ikjk+1> =0,

whence 0*u = 0 and, hence, 00*u = 0. It remains to compute 9*0u. We have

m—1 m—1
Ou = Z(eik_ea_€b+€jk): (€, +€5,) —m(eq +ep).
k=0 k=0

For any 0-path e; and any 1-path e,3 we have

(0%e;, eap) = (€i,0e0p) = (€i,€5 — €4) = 0ig — Jia

8*61» = Z (515 - 5ia) €apg = Z Cai — Zew.

a—f a—1 i—0

whence

It follows that
a*eik = Cai, — Ciggr, — Ciggrgrs

0 € = Cip_1jk + Cikjk €ibs

m—1 m—1
e, = — Z €ai, Oy = Z €jbs
k=0 k=0
whence
m—1
A =0"0u=> (Cai, = Cijy = Cirjuss + Cir_sju + Cinie — €iub)
k=0

—1
+m (eaik - ejkb)
0

3

=
Il

3
L

= (m + 1) (eaik - ejkb) = (m + 1) U,

£
Il

which finishes the proof. m
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5.5 Spectrum of A, on join

In this section we use again the augmented chain complex (2.3):

0 0 0

K <o £ o & ... 20 9

S o 2 (5.14)

p—1 P

We also use the natural inner product (-, -) of paths that was defined by (2.12).

Denote by ﬁp the Hodge Laplacian associated with this complex. Of course, ﬁp coincides
with A, for p > 1 but is different for p = —1 and p = 0.

For example, we have for the chain complex (5.14)

(0%e,e;) = (e,0e;) = (e,e) =1

so that

J'e = g e; =: 0,

jev
whence B
A_je =00"¢ =00 = |V]e.

In particular, _
spec A_y = {|V]}. (5.15)

In the case p = 0 we have
Age; = 0*0e; + 00%e; = O*e + Noe; = Noe; + 0,

that is, B
<A0€i, €j> = <A06i7 €j> + 1. (516)

Therefore, the matrix of A, is obtained from the matrix of A by adding 1 to each entry. For

any u € )y we have
Eou = Aou + <Z uk> 0.

keV
The advantage of using the chain complex (5.14) lies in the following statements.

Proposition 5.6. Let X, Y be two digraphs. Then, foru € , (X), v € Q, (Y)withp.q > —1
we have

A, (usv) = (Aju) * v+ u* Ao, (5.17)
wherer = p+q+ 1.

For the proof we need the following lemma.

Lemma 5.7. Forallu € Q,(X) andv € Q,(Y) with p,q > —1 we have

" (uxv) = (0u) v+ (=1)" T ux (8*v). (5.18)
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Proof. Set Z = X %Y. By definition of 0%, we have, for any w € Q1,12 (Z),
(0" (u*v),w) = (u*v,0w).

By Theorem 2.7, any w € €2, ,+2 (Z) admits a representation
w=) @,
J
where the sum is finite and

©; €9y, (X) and p; € Q. (Y)
with p; + ¢; +1 = p + ¢ + 2. Using (2.5) and (2.13), we obtain
(O (uxv),w) = (s, 30 (o, % 0,))
= (uxv, Y (D, + (1) o % 00,))
= {uv,0p; %) + (=1 (uxv, ;% 00;)
= {u,00,) (v, ) + (=17 (u,0,) (v, ;)
=D (T (0, ) + ()P (u,0) (070, 0y).
Note that if p; # p then (u, goj) = 0. Hence, we can replace p; everywhere by p and obtain
(0 (wxv),w) = S, ) (0,05) + (=17 (u, 0,000, )
= (O urv,p;x1) + ()P ux 0%, 0 x 1))
= (0 uxv+ (=1 ux0", > g x1b))
= (*uxv+ (=) ux 0", w).

Since this identity is true for any w € €2, ,+2(Z), we obtain (5.18). ®

Proof of Proposition 5.6. By (5.18) we have
00" (uxv) = 0 (Fuxv+ (1P ux %)
= 9(F*uxv)+ (=1)P" 9 (ux* 0v)
= 00 ux v+ (—1)"? 9%u * Ov
+ (=1)P" (Qu* 00 + (= 1) ux 90™v)
= 00*ux v+ (—=1)P 0" u* v + (=) Ou x v 4 u % d0*v
and by (2.5)
00 (u*v) =0 (Qux v+ (—1)" " uxdv)
= 9" (Qu*v) 4+ (—=1)P1 9" (u dv)
= 0" 0u*xv+ (—1)" Qu * 0*v
+ (=P (0% ux 0v + (= 1Pk 9% 0w)
= P Oux v+ (=1) Oux v + (=) 9w x v + u x 9*Ow.

Adding up the two identities, we see that the terms 0*u * v and Ou * *v cancel out, and we
obtain (5.17). m
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Theorem 5.8. Let X, Y be two digraphs. We have for any r > 0

spec A, (X #Y) = L] (Spec ﬁp (X) + spec Zq (Y)> : (5.19)

{p,q>—1:p+q=r—1}

Here we denote by spec A a sequence of all the eigenvalues of the operator A counted with
multiplicities. The sum of two such sequences consists of all pairwise sums of the elements
of the sequences, and the disjoint union of sequences means the union of all sequences,
summing up the multiplicities. In particular, if one of the sequences is empty then its sum
with another sequence is also empty.

Proof of Theorem 5.8. Observe thatif u € €, (X) and v € €, (Y') are eigenvectors such that
ﬁpu = Au and ﬁqv = [,
then we have by (5.17) forr =p+q + 1:

A, (uxv) = (Apu) xv+ux A = (A + ) (uxv),

that is, u * v is an eigenvector of A, on X =Y with the eigenvalue \ + p.

In each 2, (X) there is a basis that consists of eigenvectors of A, ; denote by {u; } the union
of all such bases of 2, (X) across all p > —1, with the corresponding eigenvalues {\; }. Let
{v;} be a similar sequence on Y with the eigenvalues {y,} . By Theorem 2.3, we have, for
any r > —1,

0Xs)E B (2 (X)80,1),

{p,q>—1:p+q=r—1}

that is, €2, (X * Y') has a basis
{ug * vy« Jug| + v | =r —1}.

The elements of this basis are the eigenvectors of A, on X Y with eigenvalues Ay + 1y,
whence (5.19) follows. =

In particular, for » = 0 we have
spec Ao (X *Y) = (specﬁ_1 (X) + spec Aq (Y)) ¥ (spec Ao (X) +spec A, (Y))
= ({\X!} + spec Ag (Y)) U (spec Ao (X) + {]Y]}) (5.20)
and forr =1
spec Ay (X xY) = (spec A_1 (X)) + spec Ay (Y))
L (spec Ay (X) 4 spec A_; (Y))

(
L (spec Ao (X) + spec Ag (Y)) :

Since Al = A1, we conclude that

spec Ay (X *Y) = ({|X|} + spec A (Y))
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L (spec Ay (X) +{|Y|})
¥ (Spec Ao (X) + spec A, (Y)) . (5.21)

Example. Let K, be the complete digraph of n vertices, that is, the directed (n — 1)-simplex.
Let us show that, forany —1 <p <n —1,

spec ﬁp (K,) ={n}, (5.22)

where we neglect the multiplicity that is equal to |€,(K,)| = (,}). If p = —1 then we have
by (5.15) B

spec A1 (K,) = {|K,|} = {n}.
Hence, assume in the sequel that p > 0 and prove (5.22) by induction in n.

Induction basis for n = 1. Then necessarily p = 0. By (5.16), the matrix of KO(K 1) consists

of a single entry 1, so that N
spec Ag(Kq) = {1}.

Induction step from n to n 4+ 1. Since K, 11 = K, * K; we obtain by (5.19) that, for any
0<r<mn,
spec A, (Kpy1) = || (spec A, (K,) +spec A, (K1)>
{p.a>—Lip+g=r—1}
= (Spec A, (K,) +spec A_, (K1)> L (spec A,_1 (K,) +specAq (Kl))
={n+1}u{n+1} ={n+1},

where we did not count the multiplicity.

5.6 Spectrum of A, on digraphs D,

We compute here spec A, (D)) where D!, is the n-th join power of the digraph D,, that
consists of m disjoint vertices (without edges).

Lemma 5.9. We have
Q1 (D) = (T)m". (5.23)

T

Proof. Induction in n. The induction basis for n = 1 is obvious as the only non-zero values
of |21 (D,,)| occur for the following values of r:
-forr =0, |Q_1(Dn)| = 1;
For the induction step we use D! = D" x D,, and Theorem 2.3 that yields
2 (DR = 32 19 (DR)12%-1(Di)]-

{p,q>0:p+q=r}

-forr =1,

Using the induction hypothesis and the induction basis, we obtain, for ¢ = 0 and ¢ = 1, that

‘Qr—l (D:Ln+1)| = (n)m’“-l—i— ( " )mrl-m: <n+1)mr,
T r—1 T

which finishes the proof. m

It follows from Lemma 5.9 that the Hodge Laplacian A, _; on D, is non-trivial only if n > r.
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Theorem 5.10. We have, for alln,m > 1 and r > 2,

T

spec A,_1(D) = {((n — k)m)(@(;z)(m_l)k} : (5.24)

k=0
More explicitly, (5.24) can be stated as follows: if n < r then
spec A,_1(D) =0,
while for n > r the spectrum of A,_; (D! ) consists of the following r + 1 eigenvalues
(n—r)m, (n—r+1m, (n—r+2)m,...,(n—1)m, nm, (5.25)
having the following multiplicities:

() on =1, () 0m =17 () ()= 1 (= 1), () (526)

Example. Let m = 1. Clearly, D} coincides with a complete digraph K, (thatis, an (n — 1)-
simplex digraph). In this case all the multiplicities in (5.26) are 0 except for the last one (’Z)
Hence, spec A,_1(K,,) consists of a single eigenvalue n with multiplicity ().

Example. Let m = 2. Then D} = S™! can be regarded as a digraph sphere of dimension
n — 1. For example, S! is a diamond and S? is an octahedron:

4

3p— ?1

.
>

2
St :Dg is a diamond 5

S 2:Dg is an octahedron

In this case (5.24) becomes

spec Arfl(sn_l) = {(2(n B k>)(r> (") }T

kJ\r k=0 '

For example, for » = 2 we have

spec A1 (1) = {(2(n = 2) () (200 = D)) » @)y

2 2 2

forr =3

spec A3(5"71) = {(2(n = 3)) (1) (2(n = 2))y) + (2 (0 = 1)y > (20) oy }

3 3 3 3

and forr =4

spec Az(S"71) = {(2(n =4y @ =3))y(mys 2(n = 2))g(my.

4 4 4

68



(2 = 1)y, 2n)y -

In particular,
spec A1 (S1) = {0, 25, 4},

spec A1(S?) = {23,4¢, 63}, specAy(S?) = {0, 23, 43, 6},

spec A1(S?) = {4, 612, 86}, specAq(S?) = {24, 419, 612, 84},
specAg(S3) = {0, 24, 4¢, 64, 8}.

Example. Let m = 3 and n = 2. Then D3 coincides with the complete bipartite digraph

Ks .
3 4 5
0 | 2
Digraph K3 3

In this case (5.24) yields for » = 2 that

spec Au(Kyg) = {82~ b))y @)Qk}izo — {04, 34, 6}

Proof of Theorem 5.10. Sincer —1 > 1, we have A, _; = &_1 so that (5.24) is equivalent
to

T

spec A,y (D) = {((n - k)m)(mﬁ)(m,l)k} . (5.27)

k=0
We will prove that (5.27) holds for all » > 0 and n,m > 1. Consider first the case r = 0.
Then the left hand side of (5.27) is

spec A_ (D) = {|D™ |} = {nm}, (5.28)

while the right hand side consists of a single value nm with the multiplicity 1, so that (5.27)
holds for r = 0.

Let us prove (5.27) for all r > 1 (and m > 1) by induction in n.
Induction basis for n = 1. If » = 1 then the right hand side of (5.27) is

{0p—1,m}.

On the other hand, we have by (4.7) that Ay (D,,) = 0, and by (5.16) the matrix of ﬁo(Dm)
is an m X m matrix with all entries = 1.1t follows that

spec Ag(Dy) = {Op_1,m}, (5.29)
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which proves (5.27) in this case. If » > 2 then
spec Erfl(Dm) = ma

and the right hand side of (5.27) is also empty as all the multiplicities vanish. Hence, we
have verified (5.27) for n = 1.

For the induction step from n to n + 1, let us use that
1
ij =Dy x D,,,

and
|Dy| = m, |D}| = nm.
Let us apply (5.19) and rewrite it in the form
spec A,y (D) = |_| (spec ﬁp_l (D;) + spec &,_1 (Dm)> :

{p,q>0:p+q=r}

Spectrum spec Kq_l (D,,) is empty if ¢ > 2. Hence, the values of ¢ should be restricted
toqg = 0 and ¢ = 1. Applying (5.28) and (5.29) to compute spec Aq,l (D,,) for ¢ = 0 and
g = 1 as well as the induction hypothesis (5.27) to compute spec ﬁp_l (D) for p = r and
p =r — 1, we obtain

spec A,_1 (DY)
= (Spec Ay (D) + spec A, (Dm)>

L (spec A,_5 (D™) + spec A (Dm)>

::“m—kmmgmm4w+miﬂ (5.30)
r—1
u{«n—%ﬁnkﬁg&zﬂm_w—%ﬂ%hhnﬁ}ko. (5.31)
The sequence in (5.30) is equal to
{(n+1=Bm) )y} (5:32)

and the sequence in (5.31) is equal to

r—1

{0 = 0m) ey o (= L+ D) iy}

! r—1 l r—1

= {(n=Dm) ey oo}
u{((nﬂ—z)m)c_l)(n>(m_])l}”_1

l r—1 =0

:{«n+1—@mNMX"XW®J

=0

r

“{“”+1‘“mNmWﬂJm1;E;
= {1 =Bm) oy Yo
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T

LI {((n +1-— k)m) (rﬂ)(:l)(m_l)k} . (5.33)

K k=0
Combining (5.32) and (5.33), we conclude that spec Ar 1(D "H)) consists of the eigenvalues
AM=m+1—Fkm, k=0,...,r

where the multiplicity of )\ is

(D) + G )+ (D)) m=1)F
=[G+ Q)] m =1
= () (") (m =1,

which proves the induction step. ®

6 Hodge Laplacian on Cartesian products

6.1 Weighted Hodge Laplacian

Let us fix a sequence of positive numbers a = {ap};io and define a weighted inner product
in A, by ) '
_ _ Jo---Jp
<€io...z'pa ejo...jp>a = <€io...z'pa €jo...jp> = 0y

ap ap

.

= i Denote by AI(,G) the corresponding Hodge Laplacian.

Lemma 6.1. For any u € (), we have

A@y = 225y + Oyt 00" u,

Ap—1 Qp

where O* refers to the adjoint operator with respect to the natural inner product.

Proof. We have forv € (), ; and w € (),

ap

(@0, 0), = (0,00), = —— (v, 0) = —— (7, w) =

Qp—1 ap—1 ap—1

(0", w)

a

whence

a
Ofv=—L-0% forveQ, .
ap—1

It follows that, for u € €2,

Ay = 920u + 0,07 = —2-5"9u + 99w

ap—1 Qp

because Ou € €2, andu € (2,. =
The significance of the weighted Hodge Laplacian is determined by the following statement.
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Proposition 6.2. Let
— . 6.1)
Then, foru € Q, (X), v € Q, (Y)andr =p+gq,

A (u x v) = A;‘L)u XU+ u X Ag“)v
Proof. The proof is based on the product rule (3.2) and on the identity

(uxv,ox), = (u,e), (v,9),

Indeed, using (3.9) we obtain

<U><v,<p><1/1>a=(p+q)!<uxv,¢X¢>
1 ptq
— ot (U7 e )
1

q
) )
— (@), (0 ),.

The rest goes in the same way as in Proposition 5.6. m
The following statement is a combination of the argument of separation of variables with the
Kiinneth formula.

Theorem 6.3. For the weight a, = p! we have

spec Al (XOY) = L] (spec Aé‘l) (X)+ Spec((f) (Y)).
{p,.a=0:p+q=r}
The proof goes in the same way as that of Theorem 5.8.
The weighted Hodge Laplacian A]E,a) with the weight (6.1) is called the normalized Hodge

Laplacian, in contrast ti the canonical Laplacian A,,.

Proposition 6.4. Let a be the weight (6.1). Then, for any p > 0 andn > 1,

n

spec Al(I") = {(2/@)@(2:5)} . 6.2)

k=p

In particular,
n

spec Al (1) = {(Qk) (2= )} (6.3)

k= 1

6.2 Some spectral properties of Hodge Laplacian

In this subsection let {Qp} >0 be any chain complex with a boundary operator 0 and any
inner product (-, -). Let 0* be the adjoint of 0 with respect to (-, -). Denote

D, = 00"|q, and D) = 0"0|q,

so that
A, =D,+D,.
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These operators are shown on the diagram:
P 9 9 P
— Q_l = Qp = Qp+1 — ...
a* *
T " T !/
Dp DP
Observe that both D}, and D] are also non-negative definite self-adjoint operators in ,,.

For any A > 0 consider the following subspaces of (,,:

EP<)‘) = {90 €, : Ap@ = )‘So}a
E\(\) ={p € Q: Dyp = Ao},
E;(N) ={v € Qy: Dyp = Ap}.

We will use the following known facts:
Ey(A) = E,(N) @ EJ(X)

and

Ey(A) = E, 1 (A),
where the linear isomorphism is given by 0 with inverse 0*.
It follows that

[E,(M)| = [E,(V)] + | By (V)]
- |Ez,7—1(/\)| + ‘EI,?/-H()‘)‘ :

Since the multiplicity of A as eigenvalue of A, is equal to |E,())], it follows that

spec; A, = spec, D, Uspec, D (6.4)

and
spec, A, =spec, D, ; Uspec, Dy, . (6.5)

6.3 Spectrum of the canonical Hodge Laplacian on cubes
Here we finally compute the spectrum of the canonical Hodge Laplacian A, on n-cube.

Theorem 6.5. For any n > 1, we have

spec Ay (I™) = {(2/@(”)}"71 U {k(m - }n . 6.6)

kD k= k=2

In particular,
Amax(A1(I")) = (2n),

and
Amin(Al (In)) = 2(n+1) .

2
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In particular, spec A1 (1™) contains all even numbers from 2 to 2n, and all odd numbers from

3 to n as was conjectures.

Outline of the proof. Let G = I". Observe first that spec A; > 0 as $; = 0. In order to
compute the positive spectrum spec, A;, we apply the identity (6.5) for the canonical A, as

well as to the normalized operator Aga) (with weight a,, = p!). This identity for A;E,a) becomes

spec,. Ay(oa) = pspec, D, ; U (p+1)spec, Dy, .

In particular, for p = 1 we obtain from (6.5) and (6.7) that

spec A} = spec, A = spec, Dy Uspec, Dy,

= spec, Ay Uspec, Dy,

and
spec., AE“) =spec, 1 - D{ U2 -spec, Dy
= spec, Ag U 2spec, Dy.
Since .
spec, Al = spec Al = {(Qk)n(zj) }k—l :
and

spec, Ay = spec, A(()a) = {(%)(Z) }kzl ’

we compute spec, D as follows:

2spec, Dj = spec,, A\ spec, Ay

- {(%) A(H)-(3) }::1 - {(%)w—n(@ }::2 |

Hence,

spec Ay = spec, Ay U spec, DY

={ehg - {kw@‘) }

k=2

Theorem 6.6. We have, for any n > 2,

pecfell) = {(%) (k—l)(n)}:_3 - {k<k—1>(2) }:_z'

2 k

In particular,
)\max (AZ([n)) = Np-1

and
/\min (A2(In)) - Q(néﬂ) .
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Outline of the proof. In order to compute the positive spectrum spec, A;, we apply the
identity (6.4) for the canonical A; as well as to the normalized operator AS‘” (with weight
a, = p). That identity for A" becomes

spec,, AI(?“) = (p+1)spec, D, Ll pspec, D). (6.8)
For p = 2 we obtain from (6.4) and (6.8) that
spec, Ay = spec, Dj Uspec, DY

and
spec, A = 3spec, D) L 2spec, DY.

It follows that

3spec, D)y = spec, A\ 2spec, DY

- {(2]{:)(3)(::5) }::2 \ {<2k>(k1>(2) }kQ
_ {(z@(n) . @} ={ehent,.,

n

2 )\ k-2 k=2
and, hence,
spec, Ay = spec, Dj Lspec, DY
ok ! "
- {<?> } o s
(390 ) s £/ ) k=2
n

Similar ideas are used to prove the following theorem.

Theorem 6.7. Forall 1 < p < n we have

pee Sl = { () =90 } ) { () () } B
In particular,
e (8,(17) = (%) -

and
Amin (Ap(I")) = 2(n+1) .

p+1
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