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1 Stable-like estimates of the heat kernel

Let (M,d) be a locally compact separable metric space and μ be a Radon measure with
full support on M . Let (E ,F) be a regular jump type Dirichlet form with a symmetric
jump kernel J(x, y), that is,

E (f, f) =

∫ ∫

M×M

(f(x) − f(y))2 J(x, y)dμ(x)dμ(y).

Let {Pt} denote the associated heat semigroup, that is, Pt = etL, where L is the generator
of (E ,F), and pt(x, y) be the heat kernel, that is, the integral kernel of Pt, should it exist.

For example, if M = Rn and

J(x, y) =
c

|x − y|n+β

where 0 < β < 2, then L = − (−Δ)β/2 (that generates a symmetric stable process of
index β), and

pt(x, y) '
1

tn/β

(

1 +
d(x, y)

t1/β

)−(n+β)

. (1)

We aim at similar estimates in a general metric measure space M .
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Denote by B(x, r) open metric balls in M . We assume always that μ is α-regular for some
α > 0, that is, for all x ∈ M and r > 0,

μ (B(x, r)) ' rα. (V )

By a result of AG and T.Kumagai (2008), if the heat kernel satisfies a self-similar estimate

pt(x, y) ' t−γΦ

(
d(x, y)

t1/β

)

for some β, γ > 0 and some function Φ then it is necessarily the following estimate:

pt(x, y) '
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

. (2)

We refer to (2) as a stable-like estimate of the heat kernel because of its similarity to (1).

A natural question arises: what conditions on the jump kernel ensure (2)?

Z.-Q. Chen and T.Kumagai proved in Stoch.Process.Appl. 108 (2003) that if β < 2 then
(2) is equivalent to the condition

J(x, y) ' d(x, y)−(α+β) for all x, y ∈ M. (J)
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However, on most of fractal sets there exist regular Dirichlet forms with the jump kernel
satisfying (J) with β > 2. In this case one needs one more condition: a generalized capacity
condition denoted shortly by (Gcap) that will be explained below.

Condition (Gcap) is closely related to the cutoff Sobolev inequality introduced by M.Barlow
and R.Bass in Trans.AMS 356 (2004), and to the energy inequality of S.Andres and
M.Barlow in J.ReineAngew.Math. 699 (2015).

With help of this condition, the following result was proved in AG, E.Hu, J.Hu, Adv.Math.
330 (2018) and in a more general setting – in Z.-Q.Chen, T.Kumagai, J.Wang, Adv.Math.
374 (2020).

Theorem 1 Under the standing assumption (V ) we have, for any β > 0,

(Gcap) + (J) ⇔ (2), (3)

The main purpose of the present work is to obtain off-diagonal upper bounds of the
heat kernel under weaker hypothesis about J(x, y): using integral rather than pointwise
estimates of J(x, y).
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2 Condition (Gcap)

Let us now state (Gcap) . Recall that the capacity associated with (E ,F) is defined as
follows: for any open set U ⊂ M and a Borel set A ⊂ U set

cap(A,U) = inf {E (φ, φ) : φ ∈ F , 0 ≤ φ ≤ 1, φ|A = 1, φ|Uc = 0} .

Definition. For any bounded function u ∈ F + const and a real κ ≥ 1, define

the generalized capacity of the pair (A,U) by

cap
(κ)
u (A,U) = inf

φ
E (u2φ, φ)

where inf is taken over all φ ∈ F such that

0 ≤ φ ≤ κ, φ|A ≥ 1, φ|Uc = 0.

For example, if κ = 1 and u ≡ 1 then

cap(κ)
u (A,U) = cap(A,U).
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Definition. We say that the generalized capacity condition (Gcap) is satisfied if there
exist two constants κ ≥ 1, C > 0 such that, for any bounded function u ∈ F + const and
for all concentric balls B0 := B(x,R), B := B(x,R + r) with x ∈ M and R, r > 0,

cap(κ)
u (B0, B) ≤

C

rβ

∫

B

u2dμ. (Gcap)

Equivalently, this condition means that, for any pair of concentric balls B0, B as above

and for any bounded u ∈ F + const,

there exists φ ∈ F such that

0 ≤ φ ≤ κ, φ|B0 ≥ 1, φ|Bc = 0

and

E
(
u2φ, φ

)
≤

C

rβ

∫

B

u2dμ. (4)

Applying (Gcap) with u ≡ 1 and replacing φ with φ∧1, we obtain the capacity condition:

cap(B0, B) ≤
C

rβ
μ (B) . (cap)
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It would ideal if in all our results (Gcap) could be replaced by a much simpler condition
(cap), but so far there is no technique for that.

Usually it is very difficult to verify (Gcap). However, there are two cases when (Gcap) is
trivially satisfied. In the both cases, we assume that all balls are precompact.

Case 1. If β < 2 and if the jump kernel satisfies the upper bound in (J), that is,

J(x, y) ≤
C

d(x, y)α+β
(J≤)

then (Gcap) holds with κ = 1.

Indeed, in this case (4) is satisfied

for a bump function φ of (B0, B)

which follows from

|φ(x) − φ(y)| ≤
d(x, y)

r
.

However, on most fractal spaces there exist regular jump type Dirichlet forms satisfying
(J) with β > 2. Besides, in our main results J(x, y) does not have to satisfy (J≤).

7



Case 2. Let (M,d) be an ultra-metric space, that is, d satisfies the ultra-metric triangle
inequality

d(x, y) ≤ max (d(x, z), d(y, z))

(for example, a field Qp of p-adic numbers with p-adic distance is an ultra-metric space).
Assume that the jump kernel satisfies a tail estimate

∫

Bc(x,r)

J(x, y)dμ(y) ≤
C

rβ
, (TJ1)

for all x ∈ M and r > 0, where β > 0 is any. Then (Gcap) is satisfied with κ = 1, because
(4) is satisfied for φ = 1B.

In our main results, the jump kernels will always satisfy (TJ1). Hence, if M is an ultra-
metric space then the hypothesis (Gcap) can be dropped.

For general metric spaces, it is an interesting open problem to understand which properties
of d and J imply (Gcap) for a given β > 0. This problem is open even for a simpler
condition (cap).
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3 Upper bounds of the heat kernel

Let us first ask when the following upper bound holds:

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

, (UE)

for all t > 0 and almost all x, y ∈ M. If (UE) is satisfied then, using the identity,

J(x, y) = lim
t→0

pt(x, y)

2t
, (5)

we obtain

J(x, y) ≤
C

d(x, y)α+β
. (J≤)

For the opposite implication (J≤) ⇒ (UE) we need additional conditions.

Definition. We say that a Faber-Krahn inequality (FK) holds if, for any precompact
open set Ω ⊂ M ,

λ1 (Ω) ≥ cμ (Ω)−β/α , (FK)

where λ1 (Ω) = inf spec
(
−LΩ

)
.
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Or, equivalently, (FK) holds if, for any ϕ ∈ F ∩ C0 (Ω) \ {0},

E (ϕ, ϕ)

‖ϕ‖2
L2

≥ cμ (Ω)−β/α .

It is known that (FK) is equivalent to the diagonal upper estimate of the heat kernel

pt(x, y) ≤ Ct−α/β . (DUE)

It is also known that
J(x, y) ≥

c

d(x, y)α+β
⇒ (FK). (6)

Denote by (C) the hypothesis that (E ,F) is conservative, that is, Pt1 = 1.

The following theorem can be extracted from the results of AG, J.Hu, K.-S.Lau K.-S.
Trans.AMS 366 (2014) and Z.-Q.Chen, T.Kumagai, J.Wang, Mem.AMS 271 (2021).

Theorem 2 Under the hypothesis (V ) we have

(FK) + (Gcap) + (J≤) ⇔ (UE) + (C) .

Or, if we take (FK), (Gcap) and (C) as standing assumptions, then

(J≤) ⇔ (UE).
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4 Main results

Now we impose on J(x, y) a weaker hypothesis than a pointwise upper bound (J≤). Fix
some β > 0, q ∈ [1,∞] and consider the following hypothesis for the tail of for J :

‖J(x, ∙)‖Lq(Bc(x,r)) ≤
C

rα/q′+β
, (TJq)

for all x ∈ M and r > 0, where q′ = q
q−1

is the Hölder conjugate of q. The abbreviation

TJ means “Tail of J”. It is easy to see that (TJq) becomes stronger when q increases.

For example, if q = 1 then q′ = ∞ and (TJq) becomes

∫

Bc(x,r)

J(x, y)dμ(y) ≤
C

rβ
. (TJ1)

In the case q = 2 (TJq) becomes

(∫

Bc(x,r)

J2(x, y)dμ(y)

)1/2

≤
C

rα/2+β
, (TJ2)
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and, in the case q = ∞, (TJq) becomes

essup
y∈Bc(x,r)

J(x, y) ≤
C

rα+β
, (TJ∞)

which is equivalent to (J≤).

Consider similar hypotheses about the tail of the heat kernel pt(x, y):

‖pt (x, ∙)‖Lq(Bc(x,r)) ≤
C

tα/(q′β)

(
1 +

r

t1/β

)−(α/q′+β)

'
1

tα/(q′β)
∧

t

rα/q′+β
, (TPq)

for all x ∈ M and r > 0. The abbreviation TP means “Tail of P”.

The condition (TPq) gets stronger when q increases. By (5), we have

(TPq) ⇒ (TJq). (7)

For q = 1, (TPq) is equivalent to

∫

Bc(x,r)

pt(x, y)dμ(y) ≤ C
t

rβ
, (TP1)
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for q = 2, (TPq) is equivalent to
∫

Bc(x,r)

p2
t (x, y)dμ(y) ≤

C

tα/(2β)

(
1 +

r

t1/β

)−(α/2+β)

, (TP2)

and, for q = ∞, (TPq) is equivalent to

esssup
y∈Bc(x,r)

pt(x, y) ≤
C

tα/β

(
1 +

r

t1/β

)−(α+β)

, (TP∞)

which coincides with (UE).

Finally, consider the following family of off-diagonal Upper Estimates of the heat kernel:

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−(α/q′+β)

, (UEq)

for all t > 0 and almost all x, y ∈ M. For example, for q = ∞ we have

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

, (UE∞)

which coincides with (UE) and (TP∞).
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For q = 1 we have a weaker estimate

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−β

. (UE1)

Now we can state our main result.

Theorem 3 Under the standing assumption (V ), we have for any q ∈ [2,∞] the following
equivalence/implication:

(FK) + (Gcap) + (TJq) ⇔ (TPq) + (C) ⇒ (UEq).

Or, considering (FK), (Gcap), (C) as standing assumptions, we have

(TJq) ⇔ (TPq) ⇒ (UEq) .

The case q = ∞ coincides with Theorem 2 while the case q < ∞ is completely new. The
case q ∈ [1, 2) is not covered but some of the implications are true for all q ≥ 1.

If q = 1 and M is an ultra-metric space then (UE1) can be obtained without using (TP1):

(FK) + (TJ1) ⇒ (UE1) ,
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which was proved in A.Bendikov, AG, E.Hu, J.Hu, Ann. Scuola Norm. Sup. Pisa 22
(2021) ((Gcap) in this setting is true automatically). That paper contains also an example
of a jump kernel satisfying

J(x, y) ≥
c

d(x, y)α+β
(J≥)

(which implies (FK)) and
∫

Bc(x,r)

J(x, y)dμ(y) ≤
C

rβ
,

(that is, (TJ1)), and the upper bound (UE1) is optimal in the sense that the exponent
−β cannot be replaced by − (β + ε) for any ε > 0.

In the general case, replacing (FK) with a stronger condition (J≥) allows to obtain also
a lower bound of the heat kernel.

Theorem 4 Under the standing assumption (V ), we have for any q ∈ [2,∞]

(J≥) + (Gcap) + (TJq) ⇔ (TPq) + (LE) ⇒ (UEq) + (LE),

where (LE) is the Lower Estimate

pt(x, y) ≥
c

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

. (LE)
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5 Outline of the proof

We describe here the most important steps in the proof of the main implication

(FK) + (Gcap) + (TJq) ⇒ (TPq).

Step 0. As it was already mentioned,

(FK) ⇒ (DUE).

However, in our proof we do not use this implication because we work in a more general
setting of doubling spaces where this result is unavailable. We use an alternative proof of
(DUE) with help of the mean value inequality.

Step 1. We prove that, for any q ∈ [1,∞],

(FK) + (Gcap) + (TJq) ⇒ (PMVq)

where (PMVq) stands for the Parabolic Mean Value inequality that means the following.

Fix in M a ball B = B (x,R) and set T = Rβ. Let u be a bounded non-negative function
on M × (0, T ] that is subcaloric in the cylinder B × (0, T ]:
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that is, for any t ∈ (0, T ],

u (∙, t) ∈ F+ ∩ L∞(M)

and u satisfies in B × (0, T ]

∂tu − Lu ≤ 0

in a certain weak sense.

Then, for any ε ∈ (0, 1],

sup
t∈[ 3

4
T,T ]

‖u(∙, t)‖L∞( 1
2
B) ≤ ( C

ε1/βR
)

α+β
2 ‖u‖L2(B×[ 1

2
T,T ])+

ε
Rα/q′ sup

t∈[ 1
2
T,T ]

‖u(∙, t)‖Lq′ (( 1
2
B)c).

(PMVq)

For that, we consider a shrinking sequence

of cylinders Qk = B (x, rk) × [tk, T ] , k ≥ 0,

an increasing sequence bk > 0, a sequence

ak :=

∫

Qk

(u − bk)
2
+ dμdt

that clearly decreases, and prove that
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ak+1 ≤
C

(bk+1 − bk)
2 β

α

(
rk

rk − rk+1

)C (
1

(rk − rk+1)β
+

1

tk+1 − tk
+

sk

bk+1 − bk

)1+ β
α

a
1+ β

α
k ,

where

sk = sup
t∈[tk,T ]

essup
z∈B(x,

rk+rk+1
2

)

∫

Bc(x,rk)

u(y, t)J(z, y)dμ(y).

The proof uses essentially (FK) and (Gcap).

Choose
rk = (1

2
+ 2−k−1)R and tk = (3

4
− 2−βk−2)T,

so that
B × [1

2
T, T ] = Q0 ⊃ Qk ⊃ Q∞ = 1

2
B × [3

4
T, T ].

Setting also bk =
(
1 − 2−k

)
b for some b > 0, we obtain

ak+1 ≤ C2Ck

(

1 +
Rβsk

b

)1+ β
α a

1+ β
α

k

(Rα+βb2)
β
α

. (8)
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Iterating (8), we show that, for a large enough b,

lim
k→∞

ak = 0,

which implies that
u ≤ b in Q∞.

The choice of b depends on supk
ak

Rα+β = ao

Rα+β and on an upper bound for Rβsk. The value

a0

Rα+β
=

1

Rα+β
‖u‖2

L2(B×[ 1
2
T,T ])

yields the first term (PMVq). Estimating sk by means of the Hölder inequality and (TPq)
gives

Rβsk ≤ Rβ sup
t∈[ 1

2
T,T ]

‖u (∙, t)‖Lq′ ( 1
2
B)c)

C

(rk − rk+1)
α/q′+β

=
C2Ck

Rα/q′
sup

t∈[ 1
2
T,T ]

‖u (∙, t)‖Lq′ ( 1
2
B)c)

which yields the second term in (PMVq).
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Step 2. We prove that
(PMV2) ⇒ (DUE) .

For that apply (PMV2) with u (∙, t) = Ptf where f ∈ C0(M) and f ≥ 0, and observe that
the both terms in the right hand side of (PMVq) are bounded by C

Ra/2 ‖f‖L2 which yields

‖PT f‖∞ ≤
C

T α/(2β)
‖f‖2 ,

which then implies (DUE). Consequently, we obtain that, for any q ∈ [2,∞],

(FK) + (Gcap) + (TJq) ⇒ (DUE) .

It follows from (DUE) that

‖pt (x, ∙)‖Lq(M) ≤
C

tα/(q′β)
.

Hence, in order to prove (TPq), it remains to prove

‖pt (x, ∙)‖Lq(Bc(x,r)) ≤
Ct

rα/q′+β
(9)

assuming that rβ ≥ t, which is done in the rest of the proof.
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Step 3. We deduce from (PMV1) a so called “Lemma of growth”:

there exist some ε, η ∈ (0, 1) such that,
for any ball B ⊂ M and for any u ∈ F

that is non-negative and bounded in M

and superharmonic in B, if

μ(B ∩ {u < 1})
μ(B)

≤ ε,

then

essinf
1
2
B

u ≥ η.

For that observe that v = 1
u+a

is subharmonic for any a > 0. For subharmonic functions,
we obtain from (PMV1) the following multiplicative form of the mean value inequality
(by choosing ε):

‖v‖L∞( 1
2
B) ≤ CAθ max (A, T )1−θ , (10)

where

A =

(

−
∫

B

v2dμ

)1/2

, T = ‖v‖L∞(( 1
2
B)c) ,

and θ = θ (α, β) ∈ (0, 1) .
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Let us estimate A as follows:

A2 =
1

μ(B)

(∫

B∩u<1}
+

∫

B∩{u≥1}

)
dμ

(u + a)2

≤
μ(B ∩ {u < 1})

μ(B)

1

a2
+

1

(1 + a)2 ≤
ε

a2
+

1

(1 + a)2 =
2

(1 + a)2 ,

for a = 1
ε−1/2−1

. Estimating also trivially

max (A, T ) ≤
1

a
,

we obtain from (10)

essup
1
2
B

1

u + a
≤ C

(
2

(1 + a)2

)θ/2(
1

a

)1−θ

=
C

(1 + a)θ a1−θ
,

whence
essinf

1
2
B

u ≥ C−1 (1 + a)θ a1−θ − a = a
(
C−1

(
1
a

+ 1
)θ

− 1
)

=: η,

where η > 0 if a is small enough, that is, when ε is small enough.
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Step 4. For any open set Ω ⊂ M and any x ∈ Ω set

EΩ(x) =

∫ ∞

0

PΩ
t 1(x)dt =

∫ ∞

0

∫

Ω

pΩ
t (x, y)dμ(y)dt.

It has the probabilistic meaning of the mean exit
time from Ω of the jump process Xt, associated
with (E ,F), that starts at x: EΩ(x) = Ex(τ

Ω),
where τΩ is the first exit time from Ω.

In this step we prove that, under (FK), for any ball B of radius r,

essup
B

EB ≤ Crβ. (11)

Step 5. We prove the opposite inequality: the Lemma of growth and (cap) imply that

essinf
1
4
B

EB ≥ crβ. (12)

It is known that (11) and (12) imply (C) .
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Step 6. Using the upper and lower estimates of EB, we deduce the survival inequality:
there exist ε > 0 such that, for any ball B of radius r and for any t > 0,

PB
t 1B ≥ ε −

Ct

rβ
in 1

4
B. (S)

In probabilistic terms,
PB

t 1B (x) = Px (τB > t)

that is the probability of survival of the process in B up to time t assuming the killing
condition in Bc.

Step 7. For any ρ > 0 consider a truncated Dirichlet form

E (ρ)(f, f) :=

∫∫

{d(x,y)<ρ}
(f(x) − f(y))2J(x, y)d(x)dμ(y).

Denote by Qt the heat semigroup of
(
E (ρ),F

)
and by qt(x, y) its heat kernel. We prove

that, under all the above hypotheses, the heat kernel of
(
E (ρ),F

)
exists and satisfies the

following diagonal upper bound

qt(x, y) ≤
C

tα/β
exp

(
Ct

ρβ

)

. (13)
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Step 8. We deduce from (S) a similar condition for the truncated semigroup Qt:

QB
t 1B ≥ ε − Ct

(
r−β + ρ−β

)
in 1

4
B

where B = B (x, r). A certain iteration procedure allows to self-improve this estimate
and to obtain that, for any k ∈ N, if r ≥ 8kρ then

QB
t 1B ≥ 1 − C (k)

(
t

ρβ

)k

,

which implies that
∫

Bc(x,r)

qt(x, y)dμ(y) ≤ C(k)

(
t

ρβ

)k

.

Combining this with (13), we obtain that, in the case q < ∞,

‖qt (x, ∙)‖Lq(Bc) ≤ ‖qt (x, ∙)‖1/q′

L∞(Bc) ‖qt (x, ∙)‖1/q

L1(Bc) ≤
C(k)

tα/(q′β)
exp

(
Ct

ρβ

)(
t

ρβ

) k
q

. (14)

In the case q = ∞ we improve (13) in a different way and obtain that if r ≥ 4kρ then

‖qt (x, ∙)‖L∞(Bc) ≤
C(k)

tα/β
exp

(
Ct

ρβ

)(

1 +
ρβ

t

)α/β (
t

ρβ

)k

. (15)
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Step 9. We prove that, under all the above conditions, including (TJq), we have, for any
t > 0 and for any ball B = B(x, r),

‖pt(x, ∙)‖Lq(Bc) ≤ ‖qt(x, ∙)‖Lq(Bc) +
Ct

ρα/q′+β
exp

(
Ct

ρβ

)

. (16)

Step 10. In the case q < ∞, combining (14) and (16), we obtain that if r ≥ 8kρ then

‖pt(x, ∙)‖Lq(Bc) ≤
C(k)

tα/(q′β)
exp

(
Ct

ρβ

)(
t

ρβ

)k/q

+
Ct

ρα/q′+β
exp

(
Ct

ρβ

)

.

Assuming that rβ ≥ t and setting ρ = r/ (8k), we obtain

‖pt(x, ∙)‖Lq(Bc) ≤
C(k)

tα/(q′β)

(
t

rβ

)k/q

+
C(k)t

rα/q′+β

≤ C
t

rα/q′+β
,

provided k is chosen so that

(
t

rβ

)k/q

≤

(
t

rβ

) α
q′β

+1

,
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that is,
k

q
≥

α

q′β
+ 1.

This finishes the proof of (TPq) if q < ∞.

In the case q = ∞ we obtain from (15) and (16), assuming that rβ ≥ t and setting
ρ = r/ (4k) that

‖pt(x, ∙)‖Lq(Bc) ≤
C(k)

tα/β

(
t

rβ

)k−α
β

+
C(k)t

rα+β

≤ C
t

rα+β
,

provided k is chosen so that (
t

rβ

)k−α
β

≤

(
t

rβ

)α
β

+1

that is,

k ≥ 2
α

β
+ 1.
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6 Consequences of (TPq)

Let us first prove that if q ∈ [2,∞] then

(TPq) ⇒ (UEq) .

Setting r = 1
2
d (x, y), we obtain by the semigroup property

p2t (x, y) =

∫

M

pt (x, z) pt (z, y) dμ (z)

≤

(∫

Bc(x,r)

+

∫

Bc(y,r)

)

pt (x, z) pt (z, y) dμ (z) .

It suffices to estimate the first integral. By the Hölder inequality, we have
∫

Bc(x,r)

pt (x, z) pt (z, y) dμ (z) ≤ ‖pt (x, ∙)‖Lq(Bc(x,r)) ‖pt (∙, y)‖Lq′ (M) .

Since q ≥ 2 and, hence, q′ ≤ q, we have not only (TPq) but also (TPq′). Hence,

‖pt (x, ∙)‖Lq(Bc(x,r)) ≤
C

tα/(q′β)

(
1 +

r

t1/β

)−(α/q′+β)
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and

‖pt (∙, y)‖Lq′ (M) ≤
C

tα/(qβ)
.

Since α
q′β

+ α
qβ

= α
β
, we obtain

∫

Bc(x,r)

pt (x, z) pt (z, y) dμ (z) ≤
C

tα/β

(
1 +

r

t1/β

)−(α/q′+β)

.

Estimating in the same manner the second integral, we obtain

p2t (x, y) ≤
C

tα/β

(
1 +

r

t1/β

)−(α/q′+β)

,

that is, (UEq).

Since (UEq) ⇒ (DUE) ⇒ (FK), we obtain that

(TPq) ⇒ (FK) .

The implication

(TPq) ⇒ (TJq)

was already mentioned in (7).
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Finally, the implication

(TPq) + (C) ⇒ (Gcap)

is proved as follows. By (TPq) we have also (TP1), that is,

∫

Bc(x,r)

pt(x, y)dμ(y) ≤ C
(
1 +

r

t1/β

)−β

≤
Ct

rβ
.

This and (C) imply that

P
B(x,r)
t 1 (x) ≥ ε −

Ct

rβ

that is, (S), and it is known that (S) ⇒ (Gcap).
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7 Appendix: (Gcap) on ultra-metric spaces

Let us prove the following: if M is an ultra-metric space with compact balls and if J
satisfies (TJ1) that is, ∫

Bc(x,ρ)

J(x, y)dμ(y) ≤
C

ρβ

for some β > 0 and all x ∈ M and ρ > 0, then (Gcap) is satisfied. Indeed, given two
concentric B0 and B of radii R and ρ = R + r, it suffices to find a function φ ∈ F such
that

0 ≤ φ ≤ 1, φ|B0 = 1, φ|Bc = 0

and

E
(
u2φ, φ

)
≤

C

rβ

∫

B

u2dμ (17)

for any u ∈ F + const . A key point is that on ultra-metric space the indicator functions
of balls belong to F so that we take

φ = 1B
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(it is a consequence of the fact that in any ball B of radius r, the distance between any
point inside B and any point outside B is at least r). With this φ we have

E
(
u2φ, φ

)
=

∫∫

M×M

(
u2ϕ(x) − u2ϕ(y)

)
(ϕ(x) − ϕ(y)) J(x, y)dμ(x)dμ(y)

= 2

∫

x∈B

∫

y∈Bc

(
u2ϕ(x) − u2ϕ(y)

)
(ϕ(x) − ϕ(y)) J(x, y)dμ(x)dμ(y)

=

∫

x∈B

∫

y∈Bc

u2(x)J(x, y)dμ(x)dμ(y)

=

∫

x∈B

u2(x)

(∫

B(x,ρ)c
J(x, y)dμ(y)

)

dμ(x)

≤
C

ρβ

∫

B

u2dμ,

whence (17) follows. We have used here that in an ultra-metric ball B of radius ρ any
point is its center, that is, B = B (x, ρ) for any x ∈ B.
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