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Heat kernels in Rn

The heat kernel of the Laplace operator Δ =
∑n

i=1 ∂xixi
in Rn is the following function of

x, y ∈ Rn and t > 0:

pt(x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

that is called the Gauss-Weierstrass function. This function is a fundamental solution of
the heat equation ∂tu = Δu as well as the transition density of Brownian motion in Rn.

For any β ∈ (0, 2) consider the operator L = (−Δ)β/2 and the associated heat equation
∂tu = −Lu. Its fundamental solution pt(x, y) is the transition density of the symmetric
stable Levy process of index β. In the case β = 1, it coincides with the Cauchy distribution

pt(x, y) =
cnt

(
t2 + |x − y|2

)n+1
2

=
cn

tn

(

1 +
|x − y|2

t2

)−n+1
2

.

For a general β, the heat kernel of L admits the estimate

pt(x, y) '
1

tn/β

(

1 +
|x − y|
t1/β

)−(n+β)

, (1)
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where ' means that the ratio of the both sides is bounded from above and below by
positive constants.

The operator L = (−Δ)β/2 is a non-local operator given by

Lf(x) = p.v.

∫

Rn

Cn
f(x) − f(y)

|x − y|n+β
dy,

where the function

J(x, y) =
Cn

|x − y|n+β

is called the jump kernel of L and of the corresponding Levy process.

The Laplace operator Δ is associated with the Dirichlet integral by the Green formula

− (Δf, f)L2 =

∫

Rn

|∇f |2 dx.

Similarly, the operator L = (−Δ)β/2 is associated with the following quadratic form

(Lf, f)L2 =

∫ ∫

Rn×Rn

(f(x) − f(y))2 J(x, y)dxdy

that is referred to as the Dirichlet form of L.
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Dirichlet forms and heat kernels

Let (M,d) be a locally compact separable metric space and μ be a Radon measure with
full support on M . Let (E ,F) be a regular jump type Dirichlet form, that is, F is a dense
subspace of L2(M,μ) and E is a quadratic form on F given by

E (f, f) =

∫ ∫

M×M

(f(x) − f(y))2 J(x, y)dμ(x)dμ(y),

where J(x, y) is a non-negative symmetric function that is called the jump kernel.

Let L be the generator of (E ,F) that is a non-negative definite self-adjoint operator
in L2(M,μ) satisfying the identity (Lf, f)L2 = E(f, f). For any t ≥ 0, set Pt = e−tL

so that {Pt}t≥0 is the heat semigroup of (E ,F). For any f ∈ L2(M,μ), the function
u(x, t) = Ptf (x) solves in some sense the heat equation ∂tu = −Lu.

If, for any t > 0, the operator Pt is an integral operator with the integral kernel pt(x, y),

Ptf(x) =

∫

M

pt(x, y)f(y)dμ(y) for all f ∈ L2(M,μ),

then pt(x, y) and is referred to as the heat kernel of (E ,F) or L.

Main problem: obtaining upper and lower bounds of pt(x, y).
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Denote by B(x, r) open metric balls in M . We assume always that μ is α-regular in the
sense of Ahlfors for some α > 0, that is, for all x ∈ M and r > 0,

μ (B(x, r)) ' rα (V )

(although the main results are available also in the setting of a doubling measure).

By a result of AG and T.Kumagai (2008), if the heat kernel of a jump type Dirichlet form
satisfies a self-similar estimate

pt(x, y) '
1

tγ
Φ

(
d(x, y)

t1/β

)

for some β, γ > 0 and decreasing function Φ, then it is necessarily the following estimate:

pt(x, y) '
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

. (2)

We refer to (2) as a stable-like estimate of the heat kernel because of its similarity to (1).
The number β is called the index of the corresponding process.

If (2) holds then, using the identity J(x, y) = limt→0
1
2t

pt(x, y), we obtain that

J(x, y) ' d(x, y)−(α+β). (J)
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Z.-Q. Chen and T.Kumagai (2003) proved that if β < 2 then, in fact, (J)⇔(2).

However, on many fractal sets there exist regular Dirichlet forms with the jump kernel
satisfying (2) with β > 2. Indeed, by works of M.Barlow, J.Kigami, et al, on large families
of p.c.f. fractals and Sierpinski carpets, there are diffusion processes with heat kernels
satisfying the following sub-Gaussian estimate:

pt (x, y) �
C

tα/β∗ exp

(

−c

(
dβ∗

(x, y)

t

) 1
β∗−1

)

,

where β∗ > 2 is the walk dimension of the process. Using a subordination techniques,
one obtains a jump process satisfying (2) for any index β < β∗ . Clearly, β can be > 2.

To handle the case β > 2 in general, one needs one more condition: a generalized capacity
condition (Gcap) that will be explained below. This condition is closely related to the
cutoff Sobolev inequality introduced by M.Barlow and R.Bass (2004), and to the energy
inequality of S.Andres and M.Barlow (2015).

Theorem 1 (AG, E.Hu, J.Hu (2018), Chen, Kumagai, Wang (2020)) For any β > 0,

(Gcap) + (J) ⇔ (2). (3)
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Upper bounds of the heat kernel

The main question to be discussed here is how to obtain the estimates of the form

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−γ

, (4)

with some β, γ > 0. Since J(x, y) = limt→0
1
2t

pt(x, y), it is easy to obtain the following:
• if γ > α + β then J(x, y) = 0 (which excludes this case);
• if γ = α + β then

J(x, y) ≤
C

d(x, y)α+β
; (J≤)

• and if γ < α + β then there is no useful bound for J.

It is natural to expect the opposite implication: (J≤)⇒(4) where γ = α+β. However, for
that one needs additional conditions.

Definition. We say that the Faber-Krahn inequality (FK) of index β holds if, for any
precompact open set Ω ⊂ M ,

λ1 (Ω) ≥ cμ (Ω)−β/α , (FK)

where λ1 (Ω) = inf spec(LΩ) and LΩ is the generator of the restricted form (E ,F(Ω)).
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Equivalently, (FK) holds if, for any ϕ ∈ F ∩ C0(Ω)

E(ϕ, ϕ)≥ cμ (Ω)−β/α ‖ϕ‖2
L2 .

It is known that (FK) is equivalent to the diagonal upper estimate of the heat kernel

pt(x, y) ≤ Ct−α/β . (DUE)

It is also known that
J(x, y) ≥

c

d(x, y)α+β
⇒ (FK). (5)

In some sense, (FK) can be regarded as an integral version of the pointwise lower bound
of J .

Recall that the capacity associated with (E ,F) is defined as follows: for any open set
U ⊂ M and a Borel set A ⊂ U set

cap(A,U) = inf {E(φ, φ) : φ ∈ F , 0 ≤ φ ≤ 1, φ|A = 1, φ|Uc = 0} .
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Definition. For any bounded function u ∈ F + const and a real κ ≥ 1, define the

generalized capacity of the pair (A,U) by

cap
(κ)
u (A,U) = inf

φ
E(u2φ, φ),

where inf is taken over all φ ∈ F such that

0 ≤ φ ≤ κ, φ|A ≥ 1, φ|Uc = 0.

For example, if κ = 1 and u ≡ 1 then

cap(κ)
u (A,U) = cap(A,U).

Definition. We say that the generalized capacity condition (Gcap) of index β is satisfied if
there exist two constants κ ≥ 1, C > 0 such that, for any bounded function u ∈ F +const
and for all concentric balls B0 := B(x,R), B := B(x,R + r) with x ∈ M and R, r > 0,

cap(κ)
u (B0, B) ≤

C

rβ

∫

B

u2dμ. (Gcap)
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Equivalently, this condition means that, for any pair of concentric balls B0, B as above

and for any bounded u ∈ F + const,

there exists φ ∈ F such that

0 ≤ φ ≤ κ, φ|B0 ≥ 1, φ|Bc = 0

and

E(u2φ, φ) ≤
C

rβ

∫

B

u2dμ. (6)

Applying (6) with u ≡ 1 and replacing φ with φ ∧ 1, we obtain the capacity condition:

cap(B0, B) ≤
C

rβ
μ (B) . (cap)

Usually it is very difficult to verify (Gcap) (apart from some specific cases), and it is an
open problem to develop methods for verification of (Gcap).

It would ideal if in all our results (Gcap) could be replaced by a much simpler condition
(cap), but so far there is no technique for that.
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Now we can state a result about the upper estimate (4) with γ = α + β, that is,

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

. (UE)

Denote by (C) the hypothesis that (E ,F) is conservative, that is, Pt1 = 1. Recall also the
hypothesis

J(x, y) ≤
C

d(x, y)α+β
. (J≤)

The following theorem can be extracted from the results of AG, J.Hu, K.-S.Lau (2014)
and Z.-Q.Chen, T.Kumagai, J.Wang (2021).

Theorem 2 Under the hypothesis (V ) we have

(Gcap) + (FK) + (J≤) ⇔ (UE) + (C) .

Our next goal is to replace the assumption (J≤) containing pointwise upper bound of the
jump kernel J by a weaker (and more robust) assumption involving tail estimates of J .

11



L1-tails of jump kernels

We discuss now the situations when the pointwise upper bound of J is replaced the
integrals of J outside balls as follows: for all x ∈ M and r > 0

∫

Bc(x,r)

J(x, y)dμ(y) ≤
C

rβ
. (TJ)

The following result is proved in the setting of ultra-metric spaces. Recall that (M,d) is
called an ultra-metric space if d satisfies the ultra-metric triangle inequality

d (x, y) ≤ max (d (x, z) , d (y, z)) ∀x, y, z ∈ M.

For example, the field Qp of p-adic numbers is an ultra-metric space with respect to the
p-adic norm. Also, Qn

p is an ultra-metric space with respect to l∞ product distance.

It is interesting that on ultra-metric spaces (TJ) ⇒ (Gcap) .

Theorem 3 (A.Bendikov, AG, E.Hu, J.Hu, 2021) Let (M,d) be an ultra-metric space
satisfying (V ). Then

(FK) + (TJ) ⇒ pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−β

.
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Lq-tail of jump kernels

Fix β > 0, q ∈ [1,∞] and consider the following hypothesis: for all x ∈ M and r > 0

‖J(x, ∙)‖Lq(Bc(x,r)) ≤
C

rα/q′+β
, (TJq)

where q′ = q
q−1

. It is easy to see that (TJq) becomes stronger when q increases.

For example, if q = 1 then q′ = ∞ so that (TJq) is equivalent to (TJ):

∫

Bc(x,r)

J(x, y)dμ(y) ≤
C

rβ
, (TJ1)

If q = 2 then q′ = 2 and (TJq) is equivalent to

(∫

Bc(x,r)

J2(x, y)dμ(y)

)1/2

≤
C

rα/2+β
. (TJ2)

If q = ∞ then q′ = 1 and (TJq) is equivalent to (J≤):

essup
y∈Bc(x,r)

J(x, y) ≤
C

rα+β
. (TJ∞)
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Tails of the heat kernel

Consider the following hypotheses about the tail of the heat kernel pt(x, y):

‖pt (x, ∙)‖Lq(Bc(x,r)) ≤
C

tα/(q′β)

(
1 +

r

t1/β

)−(α/q′+β)

'
1

tα/(q′β)
∧

t

rα/q′+β
, (TPq)

for all x ∈ M and r > 0. Since J(x, y) = limt→0
1
2t

pt(x, y), we have the implication

(TPq) ⇒ (TJq). (7)

Condition (TPq) gets stronger when q increases. If q = 1 then (TPq) is equivalent to
∫

Bc(x,r)

pt(x, y)dμ(y) ≤ C
t

rβ
, (TP1)

if q = 2 then (TPq) becomes
(∫

Bc(x,r)

p2
t (x, y)dμ(y)

)1/2

≤
C

tα/(2β)

(
1 +

r

t1/β

)−(α/2+β)

, (TP2)

if q = ∞ then (TPq) is equivalent (UE) as it becomes

esssup
y∈Bc(x,r)

pt(x, y) ≤
C

tα/β

(
1 +

r

t1/β

)−(α+β)

. (TP∞)
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Main result

Consider also the following family of off-diagonal upper estimates of the heat kernel:

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−(α/q′+β)

, (UEq)

for all t > 0 and almost all x, y ∈ M. For example, if q = ∞ then (UEq) becomes

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

, (UE∞)

which coincides with (UE) and (TP∞). If q = 1 then (UEq) becomes

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−β

, (UE1)

as was used in Theorem 3. Now we can state our main result.

Theorem 4 (AG, E.Hu, J.Hu, in preparation) If (V ) is satisfied then, for any q ∈ [2,∞] ,

(Gcap) + (FK) + (TJq) ⇔ (TPq) + (C) ⇒ (UEq). (8)
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The case q = ∞ coincides with Theorem 2 while the case q ∈ [2,∞) is completely new.

In fact, we prove (8) in a much more general setting when measure μ is doubling, and the
scaling function rβ is replaced by a general scaling function W (x, r).

In the present setting of α-regular measure and the scaling function rβ, a similar equiva-
lence can be proved for the entire range q ∈ [1,∞]:

(FK) + (Gcap) + (TJq) ⇔ (TPq) + (UEq) + (C) . (9)

Recall that if M is an ultra-metric space then, by Theorem 3, we have

(FK) + (TJ1) ⇒ (UE1) ,

which also follows from (9) with q = 1 because in the ultra-metric space (TJ1)⇒(Gcap).

In the next theorem we replace (FK) with a stronger condition

J(x, y) ≥
c

d(x, y)α+β
, (J≥)

and look for the lower estimate of the heat kernel

pt(x, y) ≥
c

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

. (LE)
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Theorem 5 (AG, E.Hu, J.Hu, 2023) If (V ) is satisfied then, for any q ∈ [2,∞] ,

(Gcap) + (J≥) + (TJq) ⇔ (TPq) + (LE) ⇒ (UEq) + (LE).

That is, in this case the heat kernel satisfies the two-sides bounds:

c

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

≤ pt (x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−(α/q′+β)

. (10)

In the present setting the implication

(Gcap) + (J≥) + (TJq) ⇒ (10)

remains true for all q ∈ [1,∞].

The lower bound in (10) is always sharp in the sense that the exponent a + β cannot be
reduced (otherwise it would imply J ≡ ∞). In the setting of ultra-metric spaces, there
exists an example of a jump kernel that satisfies

(Gcap) + (J≥) + (TJ1)

(the case q = 1) so that the corresponding heat kernel admits the estimates

c

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

≤ pt (x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−β

.

The upper bound here is also sharp, in the sense that the exponent β cannot be enlarged.
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Approach to the proof of Theorem 4

Strong generalized capacity condition and elliptic mean value inequality

In the definition of (Gcap), in the inequality (6), that is, in

E
(
u2φ, φ

)
≤

C

rβ

∫

B

u2dμ,

the cutoff function φ may depend on the weight u. Denote by (Gcap′) a stronger version
of (Gcap) when function φ depends only on the pair B0, B of the balls and serves all
functions u simultaneously.

The next theorem is the first one in a sequence of results leading to heat kernel upper
bounds. We use again the following hypothesis about the tail of the jump kernel:

‖J(x, ∙)‖L1(Bc(x,r)) ≤
C

rβ
, ∀x ∈ M , r > 0. (TJ)

Theorem 6 (AG, E.Hu, J.Hu, 2023) Under the hypothesis (V ), we have the implication

(FK) + (Gcap) + (TJ) ⇒ (Gcap′) .
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The condition (Gcap′) will be used below for obtaining the parabolic mean value inequality
that in turn is needed for heat kernel upper bounds. The proof of Theorem 6 uses the
elliptic mean value inequality (EMV ).

Definition. We say that (EMV ) holds if, for any function u ∈ F ∩ L∞ that is non-
negative and subharmonic in a ball B = B(x0, R), and for any ε > 0,

esup
1
2
B

u ≤ Cε

(

−
∫

B

u2

)1/2

+ ε ‖u+‖L∞(( 1
2
B)

c
) .

The proof of Theorem 6 goes through the following implications (under the standing
assumptions (V ), (FK), (TJ)):

(Gcap) ⇒ (EMV ) + (cap) ⇒ (Gcap′) .
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Parabolic mean value inequality

Theorem 7 (AG, E.Hu, J.Hu, 2023) For any q ∈ [1,∞], we have

(FK) + (Gcap′) + (TJq) ⇒ (PMVq),

where (PMVq) stands for the Parabolic Mean Value inequality that means the following.

Fix an arbitrary ball B = B (x,R) in M and set T = Rβ. Let u be a bounded non-negative
function on M × (0, T ] that is subcaloric in the cylinder B × (0, T ]:

that is, for any t ∈ (0, T ],

u (∙, t) ∈ F+ ∩ L∞(M)

and u satisfies in B × (0, T ]

∂tu + Lu ≤ 0

in a certain weak sense.

Then, for any ε ∈ (0, 1],

sup
t∈[ 3

4
T,T ]

‖u(∙, t)‖L∞( 1
2
B) ≤ Cε

(

−
∫

B×[ 1
2
T,T ]

u2

)1/2

+ ε
Rα/q′ sup

t∈[ 1
2
T,T ]

‖u(∙, t)‖Lq′ (( 1
2
B)c). (PMVq)
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For the proof, consider a shrinking sequence

of cylinders Qk = B (x, rk) × [tk, T ] , k ≥ 0,

and an increasing sequence bk > 0. Set

ak :=

∫

Qk

(u − bk)
2
+ dμdt

so that ak clearly decreases, and prove that

ak+1 ≤
C

(bk+1 − bk)
2 β

α

(
rk

rk − rk+1

)C (
1

(rk − rk+1)β
+

1

tk+1 − tk
+

sk

bk+1 − bk

)1+ β
α

a
1+ β

α
k ,

where

sk = sup
t∈[tk,T ]

essup
z∈B(x,

rk+rk+1
2

)

∫

Bc(x,rk)

u(y, t)J(z, y)dμ(y).

The proof of the relation between ak and ak+1 uses essentially (FK) and (Gcap′).

Choose
rk = (1

2
+ 2−k−1)R and tk = (3

4
− 2−βk−2)T,
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so that
B × [1

2
T, T ] = Q0 ⊃ Qk ⊃ Q∞ = 1

2
B × [3

4
T, T ].

Setting also bk =
(
1 − 2−k

)
b for some b > 0, we obtain

ak+1 ≤ C2Ck

(

1 +
Rβsk

b

)1+ β
α a

1+ β
α

k

(Rα+βb2)
β
α

. (11)

Iterating (11), we show that if b is large enough then limk→∞ ak = 0,which implies that
u ≤ b in Q∞.The choice of b depends on supk

ak

Rα+β = ao

Rα+β and on an upper bound for
Rβsk. The value

a0

Rα+β
≤ const−

∫

B×[ 1
2
T,T ]

u2

yields the first term (PMVq). Estimating sk by means of the Hölder inequality and (TPq)
gives

Rβsk ≤ Rβ sup
t∈[ 1

2
T,T ]

‖u (∙, t)‖Lq′ ( 1
2
B)c)

C

(rk − rk+1)
α/q′+β

=
C2Ck

Rα/q′
sup

t∈[ 1
2
T,T ]

‖u (∙, t)‖Lq′ ( 1
2
B)c)

which yields the second term in (PMVq).

22



Outline of the proof of Theorem 4

Most of the proof is devoted to the implication

(FK) + (Gcap) + (TJq) ⇒ (TPq)

Step 0. As it was already mentioned above,

(FK) ⇒ (DUE).

However, in our proof we do not use this implication because we work in a more general
setting of doubling spaces where this result is unavailable. We use an alternative proof of
(DUE) with help of the mean value inequality of Theorem 7.

Step 1. By Theorem 6, we have

(FK) + (Gcap) + (TJ) ⇒ (Gcap′) ,

and, by Theorem 7,
(FK) + (Gcap′) + (TJq) ⇒ (PMVq).
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Step 2. We prove that
(PMV2) ⇒ (DUE) .

For that apply (PMV2) with u (∙, t) = Ptf where f ∈ C0(M) and f ≥ 0, and observe that
the both terms in the right hand side of (PMVq) are bounded by C

Ra/2 ‖f‖L2 which yields

‖PT f‖∞ ≤
C

T α/(2β)
‖f‖2 ,

which then implies (DUE). Consequently, we obtain that, for any q ∈ [2,∞],

(FK) + (Gcap) + (TJq) ⇒ (DUE) .

It follows from (DUE) that

‖pt (x, ∙)‖Lq(M) ≤
C

tα/(q′β)
.

Hence, in order to prove (TPq), it remains to prove

‖pt (x, ∙)‖Lq(Bc(x,r)) ≤
Ct

rα/q′+β
(12)

assuming that rβ ≥ t, which is done in the rest of the proof.
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Step 3. We deduce from (PMV1) a so called “Lemma of growth”:

there exist some ε, η ∈ (0, 1) such that,
for any ball B ⊂ M and for any u ∈ F

that is non-negative and bounded in M

and superharmonic in B, if

μ(B ∩ {u < 1})
μ(B)

≤ ε,

then

essinf
1
2
B

u ≥ η.

For that observe that v = 1
u+a

is subharmonic for any a > 0. For subharmonic functions,
we obtain from (PMV1) the following multiplicative form of the mean value inequality
(by choosing ε):

‖v‖L∞( 1
2
B) ≤ CAθ max (A, T )1−θ , (13)

where

A =

(

−
∫

B

v2dμ

)1/2

, T = ‖v‖L∞(( 1
2
B)c) ,

and θ = θ (α, β) ∈ (0, 1) .
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Let us estimate A as follows:

A2 =
1

μ(B)

(∫

B∩u<1}
+

∫

B∩{u≥1}

)
dμ

(u + a)2

≤
μ(B ∩ {u < 1})

μ(B)

1

a2
+

1

(1 + a)2 ≤
ε

a2
+

1

(1 + a)2 =
2

(1 + a)2 ,

for a = 1
ε−1/2−1

. Estimating also trivially

max (A, T ) ≤
1

a
,

we obtain from (13)

essup
1
2
B

1

u + a
≤ C

(
2

(1 + a)2

)θ/2(
1

a

)1−θ

=
C

(1 + a)θ a1−θ
,

whence
essinf

1
2
B

u ≥ C−1 (1 + a)θ a1−θ − a = a
(
C−1

(
1
a

+ 1
)θ

− 1
)

=: η,

where η > 0 if a is small enough, that is, when ε is small enough.
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Step 4. For any open set Ω ⊂ M and any x ∈ Ω set

EΩ(x) =

∫ ∞

0

PΩ
t 1(x)dt =

∫ ∞

0

∫

Ω

pΩ
t (x, y)dμ(y)dt.

It has the probabilistic meaning of the mean exit
time from Ω of the jump process Xt, associated
with (E ,F), that starts at x: EΩ(x) = Ex(τ

Ω),
where τΩ is the first exit time from Ω.

In this step we prove that, under (FK), for any ball B of radius r,

essup
B

EB ≤ Crβ. (14)

Step 5. We prove the opposite inequality: the Lemma of growth and (cap) imply that

essinf
1
4
B

EB ≥ crβ. (15)

It is known that (14) and (15) imply (C) .
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Step 6. Using the upper and lower estimates of EB, we deduce the survival inequality:
there exist ε > 0 such that, for any ball B of radius r and for any t > 0,

PB
t 1B ≥ ε −

Ct

rβ
in 1

4
B. (S)

In probabilistic terms,
PB

t 1B(x) = Px (τB > t)

that is the probability of survival of the process in B up to time t assuming the killing
condition in Bc.

Step 7. For any ρ > 0 consider a truncated Dirichlet form

E (ρ)(f, f) :=

∫∫

{d(x,y)<ρ}
(f(x) − f(y))2J(x, y)d(x)dμ(y).

Denote by Qt the heat semigroup of
(
E (ρ),F

)
and by qt(x, y) its heat kernel. We prove

that, under all the above hypotheses, the heat kernel of
(
E (ρ),F

)
exists and satisfies the

following diagonal upper bound

qt(x, y) ≤
C

tα/β
exp

(
Ct

ρβ

)

. (16)
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Step 8. We deduce from (S) a similar condition for the truncated semigroup Qt:

QB
t 1B ≥ ε − Ct

(
r−β + ρ−β

)
in 1

4
B

where B = B (x, r). A certain iteration procedure allows to self-improve this estimate
and to obtain that, for any k ∈ N, if r ≥ 8kρ then

QB
t 1B ≥ 1 − C (k)

(
t

ρβ

)k

,

which implies that
∫

Bc(x,r)

qt(x, y)dμ(y) ≤ C(k)

(
t

ρβ

)k

.

Combining this with (16), we obtain that, in the case q < ∞,

‖qt (x, ∙)‖Lq(Bc) ≤ ‖qt (x, ∙)‖1/q′

L∞(Bc) ‖qt (x, ∙)‖1/q

L1(Bc) ≤
C(k)

tα/(q′β)
exp

(
Ct

ρβ

)(
t

ρβ

) k
q

. (17)

In the case q = ∞ we improve (16) in a different way and obtain that if r ≥ 4kρ then

‖qt (x, ∙)‖L∞(Bc) ≤
C(k)

tα/β
exp

(
Ct

ρβ

)(

1 +
ρβ

t

)α/β (
t

ρβ

)k

. (18)

29



Step 9. We prove that, under all the above conditions, including (TJq), we have, for any
t > 0 and for any ball B = B(x, r),

‖pt(x, ∙)‖Lq(Bc) ≤ ‖qt(x, ∙)‖Lq(Bc) +
Ct

ρα/q′+β
exp

(
Ct

ρβ

)

. (19)

Step 10. In the case q < ∞, combining (17) and (19), we obtain that if r ≥ 8kρ then

‖pt(x, ∙)‖Lq(Bc) ≤
C(k)

tα/(q′β)
exp

(
Ct

ρβ

)(
t

ρβ

)k/q

+
Ct

ρα/q′+β
exp

(
Ct

ρβ

)

.

Assuming that rβ ≥ t and setting ρ = r/ (8k), we obtain

‖pt(x, ∙)‖Lq(Bc) ≤
C(k)

tα/(q′β)

(
t

rβ

)k/q

+
C(k)t

rα/q′+β

≤ C
t

rα/q′+β
,

provided k is chosen so that

(
t

rβ

)k/q

≤

(
t

rβ

) α
q′β

+1

,
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that is,
k

q
≥

α

q′β
+ 1.

This finishes the proof of (TPq) if q < ∞.

In the case q = ∞ we obtain from (18) and (19), assuming that rβ ≥ t and setting
ρ = r/ (4k) that

‖pt(x, ∙)‖Lq(Bc) ≤
C(k)

tα/β

(
t

rβ

)k−α
β

+
C(k)t

rα+β

≤ C
t

rα+β
,

provided k is chosen so that (
t

rβ

)k−α
β

≤

(
t

rβ

)α
β

+1

that is,

k ≥ 2
α

β
+ 1.
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Step 11. We prove now consequences of (TPq). Let us first prove that if q ∈ [2,∞] then

(TPq) ⇒ (UEq) .

Setting r = 1
2
d (x, y), we obtain by the semigroup property

p2t (x, y) =

∫

M

pt (x, z) pt (z, y) dμ (z)

≤

(∫

Bc(x,r)

+

∫

Bc(y,r)

)

pt (x, z) pt (z, y) dμ (z) .

It suffices to estimate the first integral. By the Hölder inequality, we have
∫

Bc(x,r)

pt (x, z) pt (z, y) dμ (z) ≤ ‖pt (x, ∙)‖Lq(Bc(x,r)) ‖pt (∙, y)‖Lq′ (M) .

Since q ≥ 2 and, hence, q′ ≤ q, we have not only (TPq) but also (TPq′). Hence,

‖pt (x, ∙)‖Lq(Bc(x,r)) ≤
C

tα/(q′β)

(
1 +

r

t1/β

)−(α/q′+β)

and

‖pt (∙, y)‖Lq′ (M) ≤
C

tα/(qβ)
.
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Since α
q′β

+ α
qβ

= α
β
, we obtain

∫

Bc(x,r)

pt (x, z) pt (z, y) dμ (z) ≤
C

tα/β

(
1 +

r

t1/β

)−(α/q′+β)

.

Estimating in the same manner the second integral, we obtain

p2t (x, y) ≤
C

tα/β

(
1 +

r

t1/β

)−(α/q′+β)

,

that is, (UEq).

Step 12. Since (UEq) ⇒ (DUE) ⇒ (FK), we obtain that

(TPq) ⇒ (FK) .

The implication

(TPq) ⇒ (TJq)

was already mentioned in (7).
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Step 13. Finally, the implication

(TPq) + (C) ⇒ (Gcap)

is proved as follows. By (TPq) we have also (TP1), that is,

∫

Bc(x,r)

pt(x, y)dμ(y) ≤ C
(
1 +

r

t1/β

)−β

≤
Ct

rβ
.

This and (C) imply that

P
B(x,r)
t 1(x) ≥ ε −

Ct

rβ

that is, (S), and it is known that (S) ⇒ (Gcap).
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