Tails of heat kernels for jump processes

Alexander Grigor'yan University of Bielefeld

International Conference on Fractal Geometry and Related Topics

CUHK, December 11-15, 2023

Dedicated to the memory of Ka-Sing Lau

Based on a joint work with Eryan Hu and Jiaxin Hu

Heat kernels in \mathbb{R}^n

The heat kernel of the Laplace operator $\Delta = \sum_{i=1}^{n} \partial_{x_i x_i}$ in \mathbb{R}^n is the following function of $x, y \in \mathbb{R}^n$ and t > 0:

$$p_t(x,y) = \frac{1}{(4\pi t)^{n/2}} \exp\left(-\frac{|x-y|^2}{4t}\right)$$

that is called the *Gauss-Weierstrass function*. This function is a fundamental solution of the heat equation $\partial_t u = \Delta u$ as well as the transition density of Brownian motion in \mathbb{R}^n .

For any $\beta \in (0,2)$ consider the operator $\mathcal{L} = (-\Delta)^{\beta/2}$ and the associated heat equation $\partial_t u = -\mathcal{L}u$. Its fundamental solution $p_t(x,y)$ is the transition density of the symmetric stable Levy process of index β . In the case $\beta = 1$, it coincides with the Cauchy distribution

$$p_t(x,y) = \frac{c_n t}{\left(t^2 + |x-y|^2\right)^{\frac{n+1}{2}}} = \frac{c_n}{t^n} \left(1 + \frac{|x-y|^2}{t^2}\right)^{-\frac{n+1}{2}}$$

For a general β , the heat kernel of \mathcal{L} admits the estimate

$$p_t(x,y) \simeq \frac{1}{t^{n/\beta}} \left(1 + \frac{|x-y|}{t^{1/\beta}} \right)^{-(n+\beta)},$$
 (1)

where \simeq means that the ratio of the both sides is bounded from above and below by positive constants.

The operator $\mathcal{L} = (-\Delta)^{\beta/2}$ is a *non-local* operator given by

$$\mathcal{L}f(x) = p.v. \int_{\mathbb{R}^n} C_n \frac{f(x) - f(y)}{|x - y|^{n+\beta}} dy,$$

where the function

$$J(x,y) = \frac{C_n}{|x-y|^{n+\beta}}$$

is called the *jump kernel* of \mathcal{L} and of the corresponding Levy process.

The Laplace operator Δ is associated with the Dirichlet integral by the Green formula

$$-\left(\Delta f,f\right)_{L^2} = \int_{\mathbb{R}^n} \left|\nabla f\right|^2 dx.$$

Similarly, the operator $\mathcal{L} = (-\Delta)^{\beta/2}$ is associated with the following quadratic form

$$(\mathcal{L}f,f)_{L^2} = \iint_{\mathbb{R}^n \times \mathbb{R}^n} \left(f(x) - f(y) \right)^2 J(x,y) dx dy$$

that is referred to as the *Dirichlet form* of \mathcal{L} .

Dirichlet forms and heat kernels

Let (M, d) be a locally compact separable metric space and μ be a Radon measure with full support on M. Let $(\mathcal{E}, \mathcal{F})$ be a regular jump type Dirichlet form, that is, \mathcal{F} is a dense subspace of $L^2(M, \mu)$ and \mathcal{E} is a quadratic form on \mathcal{F} given by

$$\mathcal{E}(f,f) = \iint_{M \times M} \left(f(x) - f(y) \right)^2 J(x,y) d\mu(x) d\mu(y),$$

where J(x, y) is a non-negative symmetric function that is called the jump kernel.

Let \mathcal{L} be the generator of $(\mathcal{E}, \mathcal{F})$ that is a non-negative definite self-adjoint operator in $L^2(M, \mu)$ satisfying the identity $(\mathcal{L}f, f)_{L^2} = \mathcal{E}(f, f)$. For any $t \geq 0$, set $P_t = e^{-t\mathcal{L}}$ so that $\{P_t\}_{t\geq 0}$ is the *heat semigroup* of $(\mathcal{E}, \mathcal{F})$. For any $f \in L^2(M, \mu)$, the function $u(x, t) = P_t f(x)$ solves in some sense the heat equation $\partial_t u = -\mathcal{L}u$.

If, for any t > 0, the operator P_t is an integral operator with the integral kernel $p_t(x, y)$,

$$P_t f(x) = \int_M p_t(x, y) f(y) d\mu(y) \text{ for all } f \in L^2(M, \mu),$$

then $p_t(x, y)$ and is referred to as the heat kernel of $(\mathcal{E}, \mathcal{F})$ or \mathcal{L} . Main problem: obtaining upper and lower bounds of $p_t(x, y)$. Denote by B(x, r) open metric balls in M. We assume always that μ is α -regular in the sense of Ahlfors for some $\alpha > 0$, that is, for all $x \in M$ and r > 0,

$$\mu\left(B(x,r)\right) \simeq r^{\alpha} \tag{V}$$

(although the main results are available also in the setting of a doubling measure).

By a result of AG and T.Kumagai (2008), if the heat kernel of a jump type Dirichlet form satisfies a self-similar estimate

$$p_t(x,y) \simeq \frac{1}{t^{\gamma}} \Phi\left(\frac{d(x,y)}{t^{1/\beta}}\right)$$

for some $\beta, \gamma > 0$ and decreasing function Φ , then it is necessarily the following estimate:

$$p_t(x,y) \simeq \frac{1}{t^{\alpha/\beta}} \left(1 + \frac{d(x,y)}{t^{1/\beta}} \right)^{-(\alpha+\beta)}.$$
(2)

We refer to (2) as a *stable-like* estimate of the heat kernel because of its similarity to (1). The number β is called the index of the corresponding process.

If (2) holds then, using the identity $J(x,y) = \lim_{t\to 0} \frac{1}{2t} p_t(x,y)$, we obtain that

$$J(x,y) \simeq d(x,y)^{-(\alpha+\beta)}.$$
 (J)

Z.-Q. Chen and T.Kumagai (2003) proved that if $\beta < 2$ then, in fact, $(J) \Leftrightarrow (2)$.

However, on many fractal sets there exist regular Dirichlet forms with the jump kernel satisfying (2) with $\beta > 2$. Indeed, by works of M.Barlow, J.Kigami, et al, on large families of p.c.f. fractals and Sierpinski carpets, there are diffusion processes with heat kernels satisfying the following *sub-Gaussian* estimate:

$$p_t(x,y) \asymp \frac{C}{t^{\alpha/\beta^*}} \exp\left(-c\left(\frac{d^{\beta^*}(x,y)}{t}\right)^{\frac{1}{\beta^*-1}}\right),$$

where $\beta^* > 2$ is the *walk dimension* of the process. Using a subordination techniques, one obtains a jump process satisfying (2) for any index $\beta < \beta^*$. Clearly, β can be > 2.

To handle the case $\beta > 2$ in general, one needs one more condition: a generalized capacity condition (*Gcap*) that will be explained below. This condition is closely related to the *cutoff Sobolev inequality* introduced by M.Barlow and R.Bass (2004), and to the *energy inequality* of S.Andres and M.Barlow (2015).

Theorem 1 (AG, E.Hu, J.Hu (2018), Chen, Kumagai, Wang (2020)) For any $\beta > 0$,

$$(Gcap) + (J) \Leftrightarrow (2). \tag{3}$$

Upper bounds of the heat kernel

The main question to be discussed here is how to obtain the estimates of the form

$$p_t(x,y) \le \frac{C}{t^{\alpha/\beta}} \left(1 + \frac{d(x,y)}{t^{1/\beta}} \right)^{-\gamma},\tag{4}$$

with some $\beta, \gamma > 0$. Since $J(x, y) = \lim_{t \to 0} \frac{1}{2t} p_t(x, y)$, it is easy to obtain the following: • if $\gamma > \alpha + \beta$ then J(x, y) = 0 (which excludes this case);

• if $\gamma = \alpha + \beta$ then

$$J(x,y) \le \frac{C}{d(x,y)^{\alpha+\beta}}; \qquad (J_{\le})$$

• and if $\gamma < \alpha + \beta$ then there is no useful bound for J.

It is natural to expect the opposite implication: $(J_{\leq}) \Rightarrow (4)$ where $\gamma = \alpha + \beta$. However, for that one needs additional conditions.

Definition. We say that the *Faber-Krahn inequality* (FK) of index β holds if, for any precompact open set $\Omega \subset M$,

$$\lambda_1(\Omega) \ge c\mu(\Omega)^{-\beta/\alpha}, \qquad (FK)$$

where $\lambda_1(\Omega) = \inf \operatorname{spec}(\mathcal{L}^{\Omega})$ and \mathcal{L}^{Ω} is the generator of the restricted form $(\mathcal{E}, \mathcal{F}(\Omega))$.

Equivalently, (FK) holds if, for any $\varphi \in \mathcal{F} \cap C_0(\Omega)$

 $\mathcal{E}(\varphi,\varphi) \ge c\mu\left(\Omega\right)^{-\beta/\alpha} \|\varphi\|_{L^2}^2.$

It is known that (FK) is equivalent to the *diagonal upper estimate* of the heat kernel

$$p_t(x,y) \le Ct^{-\alpha/\beta}$$
. (DUE)

It is also known that

$$J(x,y) \ge \frac{c}{d(x,y)^{\alpha+\beta}} \quad \Rightarrow \ (FK).$$
(5)

In some sense, (FK) can be regarded as an integral version of the pointwise lower bound of J.

Recall that the *capacity* associated with $(\mathcal{E}, \mathcal{F})$ is defined as follows: for any open set $U \subset M$ and a Borel set $A \subset U$ set

$$\operatorname{cap}(A, U) = \inf \left\{ \mathcal{E}(\phi, \phi) : \phi \in \mathcal{F}, \ 0 \le \phi \le 1, \ \phi|_A = 1, \ \phi|_{U^c} = 0 \right\}.$$

Definition. For any bounded function $u \in \mathcal{F} + \text{const}$ and a real $\kappa \geq 1$, define the generalized capacity of the pair (A, U) by

$$\operatorname{cap}_{u}^{(\kappa)}(A,U) = \inf_{\phi} \mathcal{E}(u^{2}\phi,\phi),$$

where inf is taken over all $\phi \in \mathcal{F}$ such that

$$0 \le \phi \le \kappa, \quad \phi|_A \ge 1, \quad \phi|_{U^c} = 0.$$

For example, if $\kappa = 1$ and $u \equiv 1$ then

$$\operatorname{cap}_{u}^{(\kappa)}(A,U) = \operatorname{cap}(A,U).$$

Definition. We say that the generalized capacity condition (Gcap) of index β is satisfied if there exist two constants $\kappa \geq 1, C > 0$ such that, for any bounded function $u \in \mathcal{F} + \text{const}$ and for all concentric balls $B_0 := B(x, R), B := B(x, R + r)$ with $x \in M$ and R, r > 0,

$$\operatorname{cap}_{u}^{(\kappa)}(B_{0},B) \leq \frac{C}{r^{\beta}} \int_{B} u^{2} d\mu.$$
 (Gcap)

Equivalently, this condition means that, for any pair of concentric balls B_0 , B as above and for any bounded $u \in \mathcal{F} + \text{const}$, there exists $\phi \in \mathcal{F}$ such that

$$0 \le \phi \le \kappa, \quad \phi|_{B_0} \ge 1, \quad \phi|_{B^c} = 0$$

and

$$\mathcal{E}(u^2\phi,\phi) \le \frac{C}{r^\beta} \int_B u^2 d\mu.$$
(6)

Applying (6) with $u \equiv 1$ and replacing ϕ with $\phi \wedge 1$, we obtain the *capacity* condition:

$$\operatorname{cap}(B_0, B) \le \frac{C}{r^{\beta}} \mu(B) \,. \tag{cap}$$

Usually it is very difficult to verify (Gcap) (apart from some specific cases), and it is an open problem to develop methods for verification of (*Gcap*).

It would ideal if in all our results (Gcap) could be replaced by a much simpler condition (*cap*), but so far there is no technique for that.

Now we can state a result about the upper estimate (4) with $\gamma = \alpha + \beta$, that is,

$$p_t(x,y) \le \frac{C}{t^{\alpha/\beta}} \left(1 + \frac{d(x,y)}{t^{1/\beta}}\right)^{-(\alpha+\beta)}.$$
 (UE)

Denote by (C) the hypothesis that $(\mathcal{E}, \mathcal{F})$ is *conservative*, that is, $P_t 1 = 1$. Recall also the hypothesis

$$J(x,y) \le \frac{C}{d(x,y)^{\alpha+\beta}}.$$
 (J_{\leq})

The following theorem can be extracted from the results of AG, J.Hu, K.-S.Lau (2014) and Z.-Q.Chen, T.Kumagai, J.Wang (2021).

Theorem 2 Under the hypothesis (V) we have

$$(Gcap) + (FK) + (J_{\leq}) \Leftrightarrow (UE) + (C).$$

Our next goal is to replace the assumption (J_{\leq}) containing pointwise upper bound of the jump kernel J by a weaker (and more robust) assumption involving *tail estimates* of J.

L^1 -tails of jump kernels

We discuss now the situations when the pointwise upper bound of J is replaced the integrals of J outside balls as follows: for all $x \in M$ and r > 0

$$\int_{B^c(x,r)} J(x,y) d\mu(y) \le \frac{C}{r^\beta}.$$
 (TJ)

The following result is proved in the setting of *ultra-metric* spaces. Recall that (M, d) is called an ultra-metric space if d satisfies the ultra-metric triangle inequality

$$d(x, y) \le \max(d(x, z), d(y, z)) \quad \forall x, y, z \in M.$$

For example, the field \mathbb{Q}_p of *p*-adic numbers is an ultra-metric space with respect to the *p*-adic norm. Also, \mathbb{Q}_p^n is an ultra-metric space with respect to l^{∞} product distance.

It is interesting that on ultra-metric spaces $(TJ) \Rightarrow (Gcap)$.

Theorem 3 (A.Bendikov, AG, E.Hu, J.Hu, 2021) Let (M, d) be an ultra-metric space satisfying (V). Then

$$(FK) + (TJ) \Rightarrow p_t(x,y) \le \frac{C}{t^{\alpha/\beta}} \left(1 + \frac{d(x,y)}{t^{1/\beta}}\right)^{-\beta}.$$

L^q -tail of jump kernels

Fix $\beta > 0$, $q \in [1, \infty]$ and consider the following hypothesis: for all $x \in M$ and r > 0

$$\|J(x,\cdot)\|_{L^q(B^c(x,r))} \le \frac{C}{r^{\alpha/q'+\beta}},\tag{TJ}_q$$

where $q' = \frac{q}{q-1}$. It is easy to see that (TJ_q) becomes stronger when q increases. For example, if q = 1 then $q' = \infty$ so that (TJ_q) is equivalent to (TJ):

$$\int_{B^c(x,r)} J(x,y) d\mu(y) \le \frac{C}{r^\beta},\tag{TJ}_1$$

If q = 2 then q' = 2 and (TJ_q) is equivalent to

$$\left(\int_{B^c(x,r)} J^2(x,y) d\mu(y)\right)^{1/2} \le \frac{C}{r^{\alpha/2+\beta}}.$$
 (TJ₂)

If $q = \infty$ then q' = 1 and (TJ_q) is equivalent to (J_{\leq}) :

$$\operatorname{essup}_{y \in B^c(x,r)} J(x,y) \le \frac{C}{r^{\alpha+\beta}}.$$
 (TJ_{\infty})

Tails of the heat kernel

Consider the following hypotheses about the tail of the heat kernel $p_t(x, y)$:

$$\|p_t(x,\cdot)\|_{L^q(B^c(x,r))} \le \frac{C}{t^{\alpha/(q'\beta)}} \left(1 + \frac{r}{t^{1/\beta}}\right)^{-(\alpha/q'+\beta)} \ge \frac{1}{t^{\alpha/(q'\beta)}} \land \frac{t}{r^{\alpha/q'+\beta}}, \qquad (TP_q)$$

for all $x \in M$ and r > 0. Since $J(x, y) = \lim_{t \to 0} \frac{1}{2t} p_t(x, y)$, we have the implication $(TP_a) \Rightarrow (TJ_a).$

Condition (TP_q) gets stronger when q increases. If q = 1 then (TP_q) is equivalent to

$$\int_{B^c(x,r)} p_t(x,y) d\mu(y) \le C \frac{t}{r^\beta},\tag{TP}_1$$

(7)

if q = 2 then (TP_q) becomes

$$\left(\int_{B^c(x,r)} p_t^2(x,y) d\mu(y)\right)^{1/2} \le \frac{C}{t^{\alpha/(2\beta)}} \left(1 + \frac{r}{t^{1/\beta}}\right)^{-(\alpha/2+\beta)}, \qquad (TP_2)$$

if $q = \infty$ then (TP_q) is equivalent (UE) as it becomes

$$\operatorname{esssup}_{y \in B^{c}(x,r)} p_{t}(x,y) \leq \frac{C}{t^{\alpha/\beta}} \left(1 + \frac{r}{t^{1/\beta}}\right)^{-(\alpha+\beta)}.$$
 (*TP*_{\infty})

Main result

Consider also the following family of off-diagonal *upper estimates* of the heat kernel:

$$p_t(x,y) \le \frac{C}{t^{\alpha/\beta}} \left(1 + \frac{d(x,y)}{t^{1/\beta}} \right)^{-(\alpha/q'+\beta)}, \qquad (UE_q)$$

for all t > 0 and almost all $x, y \in M$. For example, if $q = \infty$ then (UE_q) becomes

$$p_t(x,y) \le \frac{C}{t^{\alpha/\beta}} \left(1 + \frac{d(x,y)}{t^{1/\beta}} \right)^{-(\alpha+\beta)}, \qquad (UE_{\infty})$$

which coincides with (UE) and (TP_{∞}) . If q = 1 then (UE_q) becomes

$$p_t(x,y) \le \frac{C}{t^{\alpha/\beta}} \left(1 + \frac{d(x,y)}{t^{1/\beta}} \right)^{-\beta}, \qquad (UE_1)$$

as was used in Theorem 3. Now we can state our main result.

Theorem 4 (AG, E.Hu, J.Hu, in preparation) If (V) is satisfied then, for any $q \in [2, \infty]$, $(Gcap) + (FK) + (TJ_q) \Leftrightarrow (TP_q) + (C) \Rightarrow (UE_q).$ (8) The case $q = \infty$ coincides with Theorem 2 while the case $q \in [2, \infty)$ is completely new. In fact, we prove (8) in a much more general setting when measure μ is doubling, and the scaling function r^{β} is replaced by a general scaling function W(x, r).

In the present setting of α -regular measure and the scaling function r^{β} , a similar equivalence can be proved for the entire range $q \in [1, \infty]$:

$$(FK) + (Gcap) + (TJ_q) \Leftrightarrow (TP_q) + (UE_q) + (C).$$
(9)

Recall that if M is an ultra-metric space then, by Theorem 3, we have

 $(FK) + (TJ_1) \Rightarrow (UE_1),$

which also follows from (9) with q = 1 because in the ultra-metric space $(TJ_1) \Rightarrow (Gcap)$. In the next theorem we replace (FK) with a stronger condition

$$J(x,y) \ge \frac{c}{d(x,y)^{\alpha+\beta}},\tag{J}_{\ge})$$

and look for the lower estimate of the heat kernel

$$p_t(x,y) \ge \frac{c}{t^{\alpha/\beta}} \left(1 + \frac{d(x,y)}{t^{1/\beta}} \right)^{-(\alpha+\beta)}.$$
 (LE)

Theorem 5 (AG, E.Hu, J.Hu, 2023) If (V) is satisfied then, for any $q \in [2, \infty]$, $(Gcap) + (J_{\geq}) + (TJ_q) \Leftrightarrow (TP_q) + (LE) \Rightarrow (UE_q) + (LE).$

That is, in this case the heat kernel satisfies the two-sides bounds:

$$\frac{c}{t^{\alpha/\beta}} \left(1 + \frac{d(x,y)}{t^{1/\beta}} \right)^{-(\alpha+\beta)} \le p_t(x,y) \le \frac{C}{t^{\alpha/\beta}} \left(1 + \frac{d(x,y)}{t^{1/\beta}} \right)^{-(\alpha/q'+\beta)}.$$
 (10)

In the present setting the implication

$$(Gcap) + (J_{\geq}) + (TJ_q) \Rightarrow (10)$$

remains true for all $q \in [1, \infty]$.

The lower bound in (10) is always sharp in the sense that the exponent $a + \beta$ cannot be reduced (otherwise it would imply $J \equiv \infty$). In the setting of ultra-metric spaces, there exists an example of a jump kernel that satisfies

$$(Gcap) + (J_{\geq}) + (TJ_1)$$

(the case q = 1) so that the corresponding heat kernel admits the estimates

$$\frac{c}{t^{\alpha/\beta}} \left(1 + \frac{d(x,y)}{t^{1/\beta}} \right)^{-(\alpha+\beta)} \le p_t(x,y) \le \frac{C}{t^{\alpha/\beta}} \left(1 + \frac{d(x,y)}{t^{1/\beta}} \right)^{-\beta}$$

The upper bound here is also sharp, in the sense that the exponent β cannot be enlarged.

Approach to the proof of Theorem 4

Strong generalized capacity condition and elliptic mean value inequality

In the definition of (Gcap), in the inequality (6), that is, in

$$\mathcal{E}\left(u^{2}\phi,\phi\right)\leq\frac{C}{r^{\beta}}\int_{B}u^{2}d\mu,$$

the cutoff function ϕ may depend on the weight u. Denote by (Gcap') a stronger version of (Gcap) when function ϕ depends only on the pair B_0, B of the balls and serves all functions u simultaneously.

The next theorem is the first one in a sequence of results leading to heat kernel upper bounds. We use again the following hypothesis about the tail of the jump kernel:

$$\|J(x,\cdot)\|_{L^1(B^c(x,r))} \le \frac{C}{r^\beta}, \quad \forall x \in M, \, r > 0.$$

$$(TJ)$$

Theorem 6 (AG, E.Hu, J.Hu, 2023) Under the hypothesis (V), we have the implication

$$(FK) + (Gcap) + (TJ) \Rightarrow (Gcap').$$

The condition (Gcap') will be used below for obtaining the *parabolic mean value inequality* that in turn is needed for heat kernel upper bounds. The proof of Theorem 6 uses the *elliptic mean value inequality* (EMV).

Definition. We say that (EMV) holds if, for any function $u \in \mathcal{F} \cap L^{\infty}$ that is non-negative and subharmonic in a ball $B = B(x_0, R)$, and for any $\varepsilon > 0$,

$$\sup_{\frac{1}{2}B} u \le C_{\varepsilon} \left(\oint_{B} u^{2} \right)^{1/2} + \varepsilon \left\| u_{+} \right\|_{L^{\infty}\left(\left(\frac{1}{2}B \right)^{c} \right)}.$$

The proof of Theorem 6 goes through the following implications (under the standing assumptions (V), (FK), (TJ)):

 $(Gcap) \Rightarrow (EMV) + (cap) \Rightarrow (Gcap').$

Parabolic mean value inequality

Theorem 7 (AG, E.Hu, J.Hu, 2023) For any $q \in [1, \infty]$, we have $(FK) + (Gcap') + (TJ_q) \Rightarrow (PMV_q),$

where (PMV_q) stands for the Parabolic Mean Value inequality that means the following. Fix an arbitrary ball B = B(x, R) in M and set $T = R^{\beta}$. Let u be a bounded non-negative function on $M \times (0, T]$ that is subcaloric in the cylinder $B \times (0, T]$:

$$\sup_{t \in [\frac{3}{4}T,T]} \|u(\cdot,t)\|_{L^{\infty}(\frac{1}{2}B)} \le C_{\varepsilon} \left(\oint_{B \times [\frac{1}{2}T,T]} u^2 \right)^{1/2} + \frac{\varepsilon}{R^{\alpha/q'}} \sup_{t \in [\frac{1}{2}T,T]} \|u(\cdot,t)\|_{L^{q'}((\frac{1}{2}B)^c)}. \quad (PMV_q)$$

For the proof, consider a shrinking sequence of cylinders $Q_k = B(x, r_k) \times [t_k, T], \quad k \ge 0$, and an increasing sequence $b_k > 0$. Set

$$a_k := \int_{Q_k} \left(u - b_k \right)_+^2 d\mu dt$$

so that a_k clearly decreases, and prove that

$$a_{k+1} \le \frac{C}{(b_{k+1} - b_k)^{2\frac{\beta}{\alpha}}} \left(\frac{r_k}{r_k - r_{k+1}}\right)^C \left(\frac{1}{(r_k - r_{k+1})^\beta} + \frac{1}{t_{k+1} - t_k} + \frac{s_k}{b_{k+1} - b_k}\right)^{1 + \frac{\beta}{\alpha}} a_k^{1 + \frac{\beta}{\alpha}},$$

where

$$s_{k} = \sup_{t \in [t_{k}, T]} \underset{z \in B(x, \frac{r_{k} + r_{k+1}}{2})}{\operatorname{essup}} \int_{B^{c}(x, r_{k})} u(y, t) J(z, y) d\mu(y).$$

The proof of the relation between a_k and a_{k+1} uses essentially (FK) and (Gcap'). Choose

$$r_k = (\frac{1}{2} + 2^{-k-1})R$$
 and $t_k = (\frac{3}{4} - 2^{-\beta k-2})T$,

so that

$$B \times \left[\frac{1}{2}T, T\right] = Q_0 \supset Q_k \supset Q_\infty = \frac{1}{2}B \times \left[\frac{3}{4}T, T\right].$$

Setting also $b_k = (1 - 2^{-k}) b$ for some b > 0, we obtain

$$a_{k+1} \le C2^{Ck} \left(1 + \frac{R^{\beta}s_k}{b}\right)^{1+\frac{\beta}{\alpha}} \frac{a_k^{1+\frac{\beta}{\alpha}}}{\left(R^{\alpha+\beta}b^2\right)^{\frac{\beta}{\alpha}}}.$$
(11)

Iterating (11), we show that if b is large enough then $\lim_{k\to\infty} a_k = 0$, which implies that $u \leq b$ in Q_{∞} . The choice of b depends on $\sup_k \frac{a_k}{R^{\alpha+\beta}} = \frac{a_o}{R^{\alpha+\beta}}$ and on an upper bound for $R^{\beta}s_k$. The value

$$\frac{a_0}{R^{\alpha+\beta}} \le \operatorname{const} \int_{B \times [\frac{1}{2}T,T]} u^2$$

yields the first term (PMV_q) . Estimating s_k by means of the Hölder inequality and (TP_q) gives

$$R^{\beta}s_{k} \leq R^{\beta} \sup_{t \in [\frac{1}{2}T,T]} \|u(\cdot,t)\|_{L^{q'}(\frac{1}{2}B)^{c}} \frac{C}{(r_{k}-r_{k+1})^{\alpha/q'+\beta}}$$
$$= \frac{C2^{Ck}}{R^{\alpha/q'}} \sup_{t \in [\frac{1}{2}T,T]} \|u(\cdot,t)\|_{L^{q'}(\frac{1}{2}B)^{c}}$$

which yields the second term in (PMV_q) .

Outline of the proof of Theorem 4

Most of the proof is devoted to the implication

 $(FK) + (Gcap) + (TJ_q) \Rightarrow (TP_q)$

Step 0. As it was already mentioned above,

 $(FK) \Rightarrow (DUE).$

However, in our proof we do not use this implication because we work in a more general setting of doubling spaces where this result is unavailable. We use an alternative proof of (DUE) with help of the mean value inequality of Theorem 7.

Step 1. By Theorem 6, we have

$$(FK) + (Gcap) + (TJ) \Rightarrow (Gcap'),$$

and, by Theorem 7,

$$(FK) + (Gcap') + (TJ_q) \Rightarrow (PMV_q)$$

Step 2. We prove that

 $(PMV_2) \Rightarrow (DUE).$

For that apply (PMV_2) with $u(\cdot, t) = P_t f$ where $f \in C_0(M)$ and $f \ge 0$, and observe that the both terms in the right of (PMV_q) are bounded by $\frac{C}{R^{a/2}} ||f||_{L^2}$ which yields

$$\left\|P_T f\right\|_{\infty} \le \frac{C}{T^{\alpha/(2\beta)}} \left\|f\right\|_2,$$

which then implies (DUE). Consequently, we obtain that, for any $q \in [2, \infty]$,

$$(FK) + (Gcap) + (TJ_q) \Rightarrow (DUE).$$

It follows from (DUE) that

$$\|p_t(x,\cdot)\|_{L^q(M)} \le \frac{C}{t^{\alpha/(q'\beta)}}.$$

Hence, in order to prove (TP_q) , it remains to prove

$$\|p_t(x,\cdot)\|_{L^q(B^c(x,r))} \le \frac{Ct}{r^{\alpha/q'+\beta}}$$
(12)

assuming that $r^{\beta} \ge t$, which is done in the rest of the proof.

Step 3. We deduce from (PMV_1) a so called "Lemma of growth":

there exist some $\varepsilon, \eta \in (0, 1)$ such that, for any ball $B \subset M$ and for any $u \in \mathcal{F}$ that is non-negative and bounded in Mand superharmonic in B, if

$$\frac{\mu(B \cap \{u < 1\})}{\mu(B)} \le \varepsilon,$$

then

$$\operatorname{essinf}_{\frac{1}{2}B} u \ge \eta$$

For that observe that $v = \frac{1}{u+a}$ is subharmonic for any a > 0. For subharmonic functions, we obtain from (PMV_1) the following multiplicative form of the mean value inequality (by choosing ε):

$$||v||_{L^{\infty}(\frac{1}{2}B)} \le CA^{\theta} \max(A, T)^{1-\theta},$$
(13)

where

$$A = \left(\oint_B v^2 d\mu \right)^{1/2}, \qquad T = \|v\|_{L^{\infty}((\frac{1}{2}B)^c)},$$

and $\theta = \theta(\alpha, \beta) \in (0, 1)$.

Let us estimate A as follows:

$$\begin{split} A^2 &= \frac{1}{\mu(B)} \left(\int_{B \cap u < 1\}} + \int_{B \cap \{u \ge 1\}} \right) \frac{d\mu}{(u+a)^2} \\ &\leq \frac{\mu(B \cap \{u < 1\})}{\mu(B)} \frac{1}{a^2} + \frac{1}{(1+a)^2} \le \frac{\varepsilon}{a^2} + \frac{1}{(1+a)^2} = \frac{2}{(1+a)^2}, \end{split}$$

for $a = \frac{1}{\varepsilon^{-1/2} - 1}$. Estimating also trivially

$$\max\left(A,T\right) \le \frac{1}{a}$$

we obtain from (13)

$$\operatorname{essup}_{\frac{1}{2}B} \frac{1}{u+a} \le C \left(\frac{2}{(1+a)^2}\right)^{\theta/2} \left(\frac{1}{a}\right)^{1-\theta} = \frac{C}{(1+a)^{\theta} a^{1-\theta}},$$

whence

$$\operatorname{essinf}_{\frac{1}{2}B} u \ge C^{-1} (1+a)^{\theta} a^{1-\theta} - a = a \left(C^{-1} \left(\frac{1}{a} + 1 \right)^{\theta} - 1 \right) =: \eta,$$

where $\eta > 0$ if a is small enough, that is, when ε is small enough.

Step 4. For any open set $\Omega \subset M$ and any $x \in \Omega$ set

$$E^{\Omega}(x) = \int_0^\infty P_t^{\Omega} \mathbf{1}(x) dt = \int_0^\infty \int_\Omega p_t^{\Omega}(x, y) d\mu(y) dt$$

It has the probabilistic meaning of the mean exit time from Ω of the jump process X_t , associated with $(\mathcal{E}, \mathcal{F})$, that starts at x: $E^{\Omega}(x) = \mathbb{E}_x(\tau^{\Omega})$, where τ^{Ω} is the first exit time from Ω .

In this step we prove that, under (FK), for any ball B of radius r,

$$\operatorname{essup}_{B} E^{B} \le Cr^{\beta}.$$
(14)

Step 5. We prove the opposite inequality: the Lemma of growth and (cap) imply that

$$\operatorname{essinf}_{\frac{1}{4}B} E^B \ge cr^{\beta}. \tag{15}$$

It is known that (14) and (15) imply (C).

Step 6. Using the upper and lower estimates of E^B , we deduce the *survival* inequality: there exist $\varepsilon > 0$ such that, for any ball B of radius r and for any t > 0,

$$P_t^B \mathbf{1}_B \ge \varepsilon - \frac{Ct}{r^\beta} \quad \text{in } \frac{1}{4}B. \tag{S}$$

In probabilistic terms,

$$P_t^B \mathbf{1}_B(x) = \mathbb{P}_x \left(\tau_B > t \right)$$

that is the probability of survival of the process in B up to time t assuming the killing condition in B^c .

Step 7. For any $\rho > 0$ consider a *truncated* Dirichlet form

$$\mathcal{E}^{(\rho)}(f,f) := \iint_{\{d(x,y) < \rho\}} (f(x) - f(y))^2 J(x,y) d(x) d\mu(y).$$

Denote by Q_t the heat semigroup of $(\mathcal{E}^{(\rho)}, \mathcal{F})$ and by $q_t(x, y)$ its heat kernel. We prove that, under all the above hypotheses, the heat kernel of $(\mathcal{E}^{(\rho)}, \mathcal{F})$ exists and satisfies the following diagonal upper bound

$$q_t(x,y) \le \frac{C}{t^{\alpha/\beta}} \exp\left(\frac{Ct}{\rho^\beta}\right).$$
 (16)

Step 8. We deduce from (S) a similar condition for the truncated semigroup Q_t :

$$Q_t^B \mathbf{1}_B \ge \varepsilon - Ct \left(r^{-\beta} + \rho^{-\beta} \right) \text{ in } \frac{1}{4}B$$

where B = B(x, r). A certain iteration procedure allows to self-improve this estimate and to obtain that, for any $k \in \mathbb{N}$, if $r \ge 8k\rho$ then

$$Q_t^B \mathbf{1}_B \ge 1 - C\left(k\right) \left(\frac{t}{\rho^\beta}\right)^k,$$

which implies that

$$\int_{B^c(x,r)} q_t(x,y) d\mu(y) \le C(k) \left(\frac{t}{\rho^\beta}\right)^k$$

Combining this with (16), we obtain that, in the case $q < \infty$,

$$\|q_t(x,\cdot)\|_{L^q(B^c)} \le \|q_t(x,\cdot)\|_{L^{\infty}(B^c)}^{1/q'} \|q_t(x,\cdot)\|_{L^1(B^c)}^{1/q} \le \frac{C(k)}{t^{\alpha/(q'\beta)}} \exp\left(\frac{Ct}{\rho^{\beta}}\right) \left(\frac{t}{\rho^{\beta}}\right)^{\frac{k}{q}}.$$
 (17)

In the case $q = \infty$ we improve (16) in a different way and obtain that if $r \ge 4k\rho$ then

$$\|q_t(x,\cdot)\|_{L^{\infty}(B^c)} \le \frac{C(k)}{t^{\alpha/\beta}} \exp\left(\frac{Ct}{\rho^{\beta}}\right) \left(1 + \frac{\rho^{\beta}}{t}\right)^{\alpha/\beta} \left(\frac{t}{\rho^{\beta}}\right)^k.$$
 (18)

Step 9. We prove that, under all the above conditions, including (TJ_q) , we have, for any t > 0 and for any ball B = B(x, r),

$$\|p_t(x,\cdot)\|_{L^q(B^c)} \le \|q_t(x,\cdot)\|_{L^q(B^c)} + \frac{Ct}{\rho^{\alpha/q'+\beta}} \exp\left(\frac{Ct}{\rho^{\beta}}\right).$$
 (19)

Step 10. In the case $q < \infty$, combining (17) and (19), we obtain that if $r \ge 8k\rho$ then

$$\|p_t(x,\cdot)\|_{L^q(B^c)} \le \frac{C(k)}{t^{\alpha/(q'\beta)}} \exp\left(\frac{Ct}{\rho^\beta}\right) \left(\frac{t}{\rho^\beta}\right)^{k/q} + \frac{Ct}{\rho^{\alpha/q'+\beta}} \exp\left(\frac{Ct}{\rho^\beta}\right).$$

Assuming that $r^{\beta} \geq t$ and setting $\rho = r/(8k)$, we obtain

$$\begin{aligned} \|p_t(x,\cdot)\|_{L^q(B^c)} &\leq \frac{C(k)}{t^{\alpha/(q'\beta)}} \left(\frac{t}{r^{\beta}}\right)^{k/q} + \frac{C(k)t}{r^{\alpha/q'+\beta}} \\ &\leq C\frac{t}{r^{\alpha/q'+\beta}}, \end{aligned}$$

provided k is chosen so that

$$\left(\frac{t}{r^{\beta}}\right)^{k/q} \le \left(\frac{t}{r^{\beta}}\right)^{\frac{\alpha}{q'\beta}+1},$$

that is,

$$\frac{k}{q} \ge \frac{\alpha}{q'\beta} + 1$$

This finishes the proof of (TP_q) if $q < \infty$.

In the case $q = \infty$ we obtain from (18) and (19), assuming that $r^{\beta} \ge t$ and setting $\rho = r/(4k)$ that

$$\begin{aligned} \|p_t(x,\cdot)\|_{L^q(B^c)} &\leq \frac{C(k)}{t^{\alpha/\beta}} \left(\frac{t}{r^{\beta}}\right)^{k-\frac{\alpha}{\beta}} + \frac{C(k)t}{r^{\alpha+\beta}} \\ &\leq C\frac{t}{r^{\alpha+\beta}}, \end{aligned}$$

provided k is chosen so that

$$\left(\frac{t}{r^{\beta}}\right)^{k-\frac{\alpha}{\beta}} \le \left(\frac{t}{r^{\beta}}\right)^{\frac{\alpha}{\beta}+1}$$

that is,

$$k \ge 2\frac{\alpha}{\beta} + 1$$

Step 11. We prove now consequences of (TP_q) . Let us first prove that if $q \in [2, \infty]$ then

 $(TP_q) \Rightarrow (UE_q)$.

Setting $r = \frac{1}{2}d(x, y)$, we obtain by the semigroup property

$$p_{2t}(x,y) = \int_{M} p_t(x,z) p_t(z,y) d\mu(z) \\ \leq \left(\int_{B^c(x,r)} + \int_{B^c(y,r)} \right) p_t(x,z) p_t(z,y) d\mu(z).$$

It suffices to estimate the first integral. By the Hölder inequality, we have

$$\int_{B^{c}(x,r)} p_{t}(x,z) p_{t}(z,y) d\mu(z) \leq \|p_{t}(x,\cdot)\|_{L^{q}(B^{c}(x,r))} \|p_{t}(\cdot,y)\|_{L^{q'}(M)}.$$

Since $q \ge 2$ and, hence, $q' \le q$, we have not only (TP_q) but also $(TP_{q'})$. Hence,

$$\|p_t(x,\cdot)\|_{L^q(B^c(x,r))} \le \frac{C}{t^{\alpha/(q'\beta)}} \left(1 + \frac{r}{t^{1/\beta}}\right)^{-(\alpha/q'+\beta)}$$

and

$$\|p_t(\cdot, y)\|_{L^{q'}(M)} \le \frac{C}{t^{\alpha/(q\beta)}}.$$

Since
$$\frac{\alpha}{q'\beta} + \frac{\alpha}{q\beta} = \frac{\alpha}{\beta}$$
, we obtain
$$\int_{B^{c}(x,r)} p_{t}(x,z) p_{t}(z,y) d\mu(z) \leq \frac{C}{t^{\alpha/\beta}} \left(1 + \frac{r}{t^{1/\beta}}\right)^{-(\alpha/q'+\beta)}.$$

Estimating in the same manner the second integral, we obtain

$$p_{2t}(x,y) \leq \frac{C}{t^{\alpha/\beta}} \left(1 + \frac{r}{t^{1/\beta}}\right)^{-(\alpha/q'+\beta)},$$

that is, (UE_q) .

Step 12. Since $(UE_q) \Rightarrow (DUE) \Rightarrow (FK)$, we obtain that

$$(TP_q) \Rightarrow (FK)$$
.

The implication

$$(TP_q) \Rightarrow (TJ_q)$$

was already mentioned in (7).

Step 13. Finally, the implication

$(TP_q) + (C) \Rightarrow (Gcap)$

is proved as follows. By (TP_q) we have also (TP_1) , that is,

$$\int_{B^c(x,r)} p_t(x,y) d\mu(y) \le C \left(1 + \frac{r}{t^{1/\beta}}\right)^{-\beta} \le \frac{Ct}{r^{\beta}}.$$

This and (C) imply that

$$P_t^{B(x,r)} \mathbf{1}(x) \ge \varepsilon - \frac{Ct}{r^{\beta}}$$

that is, (S), and it is known that $(S) \Rightarrow (Gcap)$.