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Non-local heat kernels in Rn

Consider in Rn a fractional Laplace operator L = (−Δ)β/2 that is a non-negative definite
self-adjoint operator in L2(Rn). If β ∈ (0, 2) then this operator is the generator of the
symmetric stable Levy process of index β.

Denote by pt(x, y) the heat kernel of L that is the fundamental solution of the associated
heat equation ∂tu = −Lu and, at the same time, the transition density of the Levy
process. The heat kernel of L admits the estimate

pt(x, y) '
1

tn/β

(

1 +
|x − y|
t1/β

)−(n+β)

, (1)

where A ' B means that c1B ≤ A ≤ c2B for some positive constants c1, c2.

The operator L = (−Δ)β/2 is the generator of the non-local Dirichlet form (E ,F) given
by

E (f, f) = Cn

∫

Rn

∫

Rn

(f(x) − f(y))2

|x − y|n+β
dxdy,

with the domain F = B
β/2
2,2 (Rn).
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Jump type Dirichlet forms on metric measure spaces

Let (M,d) be a locally compact separable metric space and μ be a Radon measure with
full support on M . Let (E ,F) be a regular jump type Dirichlet form, where F is a dense
subspace of L2(M,μ) and E is a bilinear form on F given by

E (f, f) =

∫ ∫

M×M

(f(x) − f(y))2 J(x, y)dμ(x)dμ(y),

Here J(x, y) is a jump kernel, that is, a non-negative measurable symmetric function on
M × M .

Let L be the (non-negative definite) generator of (E ,F) and Pt = e−tL, t ≥ 0, be the heat
semigroup of (E ,F).

If, for any t > 0, the operator Pt is an integral operator with the integral kernel pt(x, y),

Ptf(x) =

∫

M

pt(x, y)f(y)dμ(y) for all f ∈ L2(M,μ),

then pt(x, y) is referred to as the heat kernel of (E ,F).

Major problem: obtaining estimates of pt(x, y) depending on the geometry of the under-
lying space and on J .
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Two-sides estimates of the heat kernel

Denote by B(x, r) open metric balls in M . In this talk we always assume that μ is
α-regular for some α > 0, that is, for all x ∈ M and r > 0,

μ (B(x, r)) ' rα (V )

(although the main results are available also in the setting of a doubling measure).

By a result of AG and T.Kumagai (2008), if the heat kernel of a jump type Dirichlet form
satisfies a self-similar estimate

pt(x, y) '
1

tγ
Φ

(
d(x, y)

t1/β

)

for some β, γ > 0 and decreasing function Φ, then it is necessarily the following estimate:

pt(x, y) '
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

. (2)

We refer to (2) as a stable-like estimate of the heat kernel because it matches (1) with
α = n. The number β is called the index of the corresponding Dirichlet form.
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If (2) holds then, using the identity J(x, y) = limt→0
1
2t

pt(x, y), we obtain that

J(x, y) ' d(x, y)−(α+β). (J)

Z.-Q. Chen and T.Kumagai (2003) proved that if β < 2 then, in fact, (J) ⇔ (2).

To obtain the implication (J)⇒(2) in the case β > 2 in general, one has to assume one
more hypothesis: a generalized capacity condition (Gcap) that will be explained below.
It was proved by AG, E.Hu, J.Hu (2018) and Chen, Kumagai, Wang (2020) that, for any
β > 0,

(Gcap) + (J) ⇔ (2). (3)

Our goal here is obtaining the upper estimates of the form

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−γ

, (4)

with some β, γ > 0, using certain information about the jump kernel J . Here necessarily
γ ≤ α + β because otherwise (4) implies J ≡ 0. If γ = α + β then the necessary condition
for (4) is

J(x, y) ≤
C

d(x, y)α+β
. (J≤)
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Tail conditions

The case γ < α+β will be of main interest. In order to obtain (4) with such γ, we will use
a tall estimate of the jump kernel. Consider for any q ∈ [1,∞] the following hypothesis:

‖J(x, ∙)‖Lq(Bc(x,r)) ≤
C

rα/q′+β
, ∀x ∈ M, r > 0, (TJq)

where q′ = q
q−1

. It is easy to verify that (TJq) becomes stronger when q increases.

For example, if q = 1 then q′ = ∞ so that (TJq) becomes

∫

Bc(x,r)

J(x, y)dμ(y) ≤
C

rβ
, (TJ1)

If q = 2 then q′ = 2 and (TJq) becomes
(∫

Bc(x,r)

J2(x, y)dμ(y)

)1/2

≤
C

rα/2+β
. (TJ2)

If q = ∞ then q′ = 1 and (TJq) is equivalent to (J≤):

esssup
y∈Bc(x,r)

J(x, y) ≤
C

rα+β
. (TJ∞)
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Consider also the following condition about the tail estimate of the heat kernel:

‖pt (x, ∙)‖Lq(Bc(x,r)) ≤
C

tα/(q′β)

(
1 +

r

t1/β

)−(α/q′+β)

'
1

tα/(q′β)
∧

t

rα/q′+β
, (TPq)

for all x ∈ M and t, r > 0. Condition (TPq) gets stronger when q increases. If q = 1 then
q′ = ∞ and (TPq) is equivalent to

∫

Bc(x,r)

pt(x, y)dμ(y) ≤ C
t

rβ
, (TP1)

if q = 2 then q′ = 2 and (TPq) becomes

(∫

Bc(x,r)

p2
t (x, y)dμ(y)

)1/2

≤
C

tα/(2β)

(
1 +

r

t1/β

)−(α/2+β)

, (TP2)

if q = ∞ then q′ = 1 and (TPq) is becomes

esssup
y∈Bc(x,r)

pt(x, y) ≤
C

tα/β

(
1 +

r

t1/β

)−(α+β)

, (TP∞)

which is equivalent to (4) with γ = α + β.
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Lemma 1 If q ∈ [2,∞] then (TPq) implies the following pointwise upper estimate

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−(α/q′+β)

, (UEq)

for all t > 0 and μ-almost all x, y ∈ M (that is the estimate (4) with γ = α/q′ + β).

Clearly, (UEq) gets stronger when q increases. For example, if q = 1 then (UEq) becomes

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−β

, (UE1)

and if q = ∞ then (UEq) becomes

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

, (UE∞)

which is equivalent to (TP∞) and to (4) with γ = α + β.

Using J(x, y) = limt→0
1
2t

pt(x, y), one obtains easily the implication (TPq) ⇒ (TJq). Our
main result states that, under some additional hypotheses, also the converse implication
holds, that is, (additional hypotheses)+(TJq) ⇒ (TPq).
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Additional hypothesis

We introduce here two hypotheses for any regular Dirichlet form (E ,F).

Definition. We say that the Faber-Krahn inequality (FK) of index β is satisfied for
(E ,F) if, for any precompact open set Ω ⊂ M ,

λ1 (Ω) ≥ cμ(Ω)−β/α, (FK)

where λ1 (Ω) = inf spec(LΩ) and LΩ is the generator of the restricted form (E ,F(Ω)).

Equivalently, (FK) holds if, for any ϕ ∈ F ∩ C0(Ω)

E(ϕ, ϕ)≥ cμ(Ω)−β/α ‖ϕ‖2
L2 .

It is known that (FK) is equivalent to the diagonal upper estimate of the heat kernel

pt(x, y) ≤ Ct−α/β. (DUE)

It is also known that
J(x, y) ≥

c

d(x, y)α+β
⇒ (FK). (5)

Hence, (FK) can be regarded as a weaker version of the lower bound of J .
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Recall that the capacity associated with (E ,F) is defined as follows: for any open set
U ⊂ M and a Borel set A ⊂ U set

cap(A,U) = inf {E(φ, φ) : φ ∈ F , 0 ≤ φ ≤ 1, φ|A = 1, φ|Uc = 0} .

Definition. For any bounded function u ∈ F + const and a real κ ≥ 1, define the

generalized capacity of the pair (A,U) by

cap
(κ)
u (A,U) = inf

φ
E(u2φ, φ),

where inf is taken over all φ ∈ F such that

0 ≤ φ ≤ κ, φ|A ≥ 1, φ|Uc = 0.

For example, if κ = 1 and u ≡ 1 then cap
(κ)
u (A,U) = cap(A,U).

Definition. We say that the generalized capacity condition (Gcap) of index β is satisfied
for (E ,F) if there exist κ ≥ 1, C > 0 such that, for any bounded function u ∈ F + const
and for all concentric balls B0 := B(x,R), B := B(x,R + r) with x ∈ M and R, r > 0,

cap(κ)
u (B0, B) ≤

C

rβ

∫

B

u2dμ. (Gcap)
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Equivalently, this condition means that, for any pair of concentric balls B0, B as above

and for any bounded u ∈ F + const,

there exists φ ∈ F such that

0 ≤ φ ≤ κ, φ|B0 ≥ 1, φ|Bc = 0

and the following inequality is true:

E(u2φ, φ) ≤
C

rβ

∫

B

u2dμ. (6)

Setting u ≡ 1 in (6) and replacing φ with φ ∧ 1, we obtain the capacity condition:

cap(B0, B) ≤
C

rβ
μ (B) . (cap)

Usually it is very difficult to verify (Gcap) (apart from some specific cases), and it is
an open problem to develop methods for verification of (Gcap). In contrast to that, the
capacity condition (cap) can be proved in many examples of interest.

Conjecture. If in all our results (Gcap) can be replaced by (cap).
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Main result

Denote by (C) the hypothesis that the Dirichlet form (E ,F) is conservative, that is,
Pt1 ≡ 1 for all t > 0.

Theorem 2 Let (V ) be satisfied. Then, for any q ∈ [1,∞] ,

(FK) + (Gcap) + (TJq) ⇔ (TPq) + (UEq) + (C) . (7)

Recall for comparison that if (E ,F) is a strongly local Dirichlet form then

(FK) + (Gcap) ⇔

{

pt (x, y) ≤
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)}

+ (C) ,

by S.Andres and M.Barlow (2015) and AG, J.Hu, K.-S. Lau (2015).

In the present case of jump-type Dirichlet form, we add one more condition (TJq) about
the tail of J , and obtain both tail and pointwise estimates of the heat kernel.

If q ≥ 2 then, by Lemma 1, (TPq)⇒(UEq) so that Theorem 2 can be restated as follows:
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Theorem 3 If q ∈ [2,∞] then

(FK) + (Gcap) + (TJq) ⇔ (TPq) + (C) . (8)

In fact, we have proved Theorem 3 in a more general setting when measure μ is doubling,
and the scaling function rβ is replaced by a general scaling function W (x, r).

Recall some previously known related results. In the case q = ∞ we obtain from (8)

(FK) + (Gcap) + (J≤) ⇔ (UE∞) + (C) ,

which can also be extracted from the results of AG, J.Hu, K.-S.Lau (2014) and Z.-Q.Chen,
T.Kumagai, J.Wang (2021).

Let M be an ultra-metric space, that is, d satisfies the ultra-metric triangle inequality

d (x, y) ≤ max (d (x, z) , d (y, z)) ∀x, y, z ∈ M.

It is known that in ultrametric spaces (TJ1)⇒(Gcap), and we obtain from (7) that

(FK) + (TJ1) ⇒ (UE1) that is, pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−β

,

which was previously proved by A.Bendikov, AG, E.Hu, J.Hu (2021) .
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Approach to the proof of Theorem 2

Strong generalized capacity condition and elliptic mean value inequality

In the definition of (Gcap), in the inequality (6), that is, in

E
(
u2φ, φ

)
≤

C

rβ

∫

B

u2dμ,

the cutoff function φ may depend on the weight u. Denote by (Gcap′) a stronger version
of (Gcap) when function φ depends only on the pair B0, B of the balls and serves all
functions u simultaneously.

The next theorem is the first one in a sequence of results leading to heat kernel upper
bounds. We use again the following hypothesis about the tail of the jump kernel:

‖J(x, ∙)‖L1(Bc(x,r)) ≤
C

rβ
, ∀x ∈ M , r > 0. (TJ)

Theorem 4 Under the hypothesis (V ), we have the implication

(FK) + (Gcap) + (TJ) ⇒ (Gcap′) .
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The condition (Gcap′) will be used below for obtaining the parabolic mean value inequality
that in turn is needed for heat kernel upper bounds. The proof of Theorem 4 uses the
elliptic mean value inequality (EMV ).

Definition. We say that (EMV ) holds if, for any function u ∈ F ∩ L∞ that is non-
negative and subharmonic in a ball B = B(x0, R), and for any ε > 0,

esup
1
2
B

u ≤ Cε

(

−
∫

B

u2

)1/2

+ ε ‖u+‖L∞(( 1
2
B)

c
) .

The proof of Theorem 4 goes through the following implications (under the standing
assumptions (V ), (FK), (TJ)):

(Gcap) ⇒ (EMV ) + (cap) ⇒ (Gcap′) .
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Parabolic mean value inequality

Theorem 5 For any q ∈ [1,∞], we have

(FK) + (Gcap′) + (TJq) ⇒ (PMVq),

where (PMVq) stands for the Parabolic Mean Value inequality that means the following.

Fix an arbitrary ball B = B (x,R) in M and set T = Rβ. Let u be a bounded non-negative
function on M × (0, T ] that is subcaloric in the cylinder B × (0, T ]:

that is, for any t ∈ (0, T ],

u (∙, t) ∈ F+ ∩ L∞(M)

and u satisfies in B × (0, T ]

∂tu + Lu ≤ 0

in a certain weak sense.

Then, for any ε ∈ (0, 1],

sup
t∈[ 3

4
T,T ]

‖u(∙, t)‖L∞( 1
2
B) ≤ Cε

(

−
∫

B×[ 1
2
T,T ]

u2

)1/2

+ ε
Rα/q′ sup

t∈[ 1
2
T,T ]

‖u(∙, t)‖Lq′ (( 1
2
B)c). (PMVq)
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For the proof, consider a shrinking sequence

of cylinders Qk = B (x, rk) × [tk, T ] , k ≥ 0,

and an increasing sequence bk > 0. Set

ak :=

∫

Qk

(u − bk)
2
+ dμdt

so that ak clearly decreases, and prove that

ak+1 ≤
C

(bk+1 − bk)
2 β

α

(
rk

rk − rk+1

)C (
1

(rk − rk+1)β
+

1

tk+1 − tk
+

sk

bk+1 − bk

)1+ β
α

a
1+ β

α
k ,

where

sk = sup
t∈[tk,T ]

essup
z∈B(x,

rk+rk+1
2

)

∫

Bc(x,rk)

u(y, t)J(z, y)dμ(y).

The proof of the relation between ak and ak+1 uses essentially (FK) and (Gcap′).

Choose
rk = (1

2
+ 2−k−1)R and tk = (3

4
− 2−βk−2)T,
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so that
B × [1

2
T, T ] = Q0 ⊃ Qk ⊃ Q∞ = 1

2
B × [3

4
T, T ].

Setting also bk =
(
1 − 2−k

)
b for some b > 0, we obtain

ak+1 ≤ C2Ck

(

1 +
Rβsk

b

)1+ β
α a

1+ β
α

k

(Rα+βb2)
β
α

. (9)

Iterating (9), we show that if b is large enough then limk→∞ ak = 0,which implies that
u ≤ b in Q∞.The choice of b depends on supk

ak

Rα+β = ao

Rα+β and on an upper bound for
Rβsk. The value

a0

Rα+β
≤ const−

∫

B×[ 1
2
T,T ]

u2

yields the first term (PMVq). Estimating sk by means of the Hölder inequality and (TPq)
gives

Rβsk ≤ Rβ sup
t∈[ 1

2
T,T ]

‖u (∙, t)‖Lq′ ( 1
2
B)c)

C

(rk − rk+1)
α/q′+β

=
C2Ck

Rα/q′
sup

t∈[ 1
2
T,T ]

‖u (∙, t)‖Lq′ ( 1
2
B)c)

which yields the second term in (PMVq).
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Outline of the proof of Theorem 2

Most of the proof is devoted to the implication

(FK) + (Gcap) + (TJq) ⇒ (TPq)

Step 0. As it was already mentioned above,

(FK) ⇒ (DUE).

However, this implication does not work in a more general setting of doubling spaces,
where we use an alternative proof of (DUE) with help of the mean value inequality of
Theorem 5.

Step 1. By Theorem 4, we have

(FK) + (Gcap) + (TJ) ⇒ (Gcap′) ,

and, by Theorem 5,
(FK) + (Gcap′) + (TJq) ⇒ (PMVq).
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Step 2. We prove that
(PMV2) ⇒ (DUE) .

For that apply (PMV2) with u (∙, t) = Ptf where f ∈ C0(M) and f ≥ 0, and observe that
the both terms in the right hand side of (PMVq) are bounded by C

Ra/2 ‖f‖L2 which yields

‖PT f‖∞ ≤
C

T α/(2β)
‖f‖2 ,

which then implies (DUE). Consequently, we obtain that, for any q ∈ [2,∞],

(FK) + (Gcap) + (TJq) ⇒ (DUE) .

It follows from (DUE) that

‖pt (x, ∙)‖Lq(M) ≤
C

tα/(q′β)
.

Hence, in order to prove (TPq), it remains to prove

‖pt (x, ∙)‖Lq(Bc(x,r)) ≤
Ct

rα/q′+β
(10)

assuming that rβ ≥ t, which is done in the rest of the proof.
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Step 3. We deduce from (PMV1) a so called “Lemma of growth”:

there exist some ε, η ∈ (0, 1) such that,
for any ball B ⊂ M and for any u ∈ F

that is non-negative and bounded in M

and superharmonic in B, if

μ(B ∩ {u < 1})
μ(B)

≤ ε,

then

essinf
1
2
B

u ≥ η.

For that observe that v = 1
u+a

is subharmonic for any a > 0. For subharmonic functions,
we obtain from (PMV1) the following multiplicative form of the mean value inequality
(by choosing ε):

‖v‖L∞( 1
2
B) ≤ CAθ max (A, T )1−θ , (11)

where

A =

(

−
∫

B

v2dμ

)1/2

, T = ‖v‖L∞(( 1
2
B)c) ,

and θ = θ (α, β) ∈ (0, 1) .
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Let us estimate A as follows:

A2 =
1

μ(B)

(∫

B∩u<1}
+

∫

B∩{u≥1}

)
dμ

(u + a)2

≤
μ(B ∩ {u < 1})

μ(B)

1

a2
+

1

(1 + a)2 ≤
ε

a2
+

1

(1 + a)2 =
2

(1 + a)2 ,

for a = 1
ε−1/2−1

. Estimating also trivially

max (A, T ) ≤
1

a
,

we obtain from (11)

essup
1
2
B

1

u + a
≤ C

(
2

(1 + a)2

)θ/2(
1

a

)1−θ

=
C

(1 + a)θ a1−θ
,

whence
essinf

1
2
B

u ≥ C−1 (1 + a)θ a1−θ − a = a
(
C−1

(
1
a

+ 1
)θ

− 1
)

=: η,

where η > 0 if a is small enough, that is, when ε is small enough.
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Step 4. For any open set Ω ⊂ M and any x ∈ Ω set

EΩ(x) =

∫ ∞

0

PΩ
t 1(x)dt =

∫ ∞

0

∫

Ω

pΩ
t (x, y)dμ(y)dt.

It has the probabilistic meaning of the mean exit
time from Ω of the jump process Xt, associated
with (E ,F), that starts at x: EΩ(x) = Ex(τ

Ω),
where τΩ is the first exit time from Ω.

In this step we prove that, under (FK), for any ball B of radius r,

essup
B

EB ≤ Crβ. (12)

Step 5. We prove the opposite inequality: the Lemma of growth and (cap) imply that

essinf
1
4
B

EB ≥ crβ. (13)

It is known that (12) and (13) imply (C) .
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Step 6. Using the upper and lower estimates of EB, we deduce the survival inequality:
there exist ε > 0 such that, for any ball B of radius r and for any t > 0,

PB
t 1B ≥ ε −

Ct

rβ
in 1

4
B. (S)

In probabilistic terms,
PB

t 1B(x) = Px (τB > t)

that is the probability of survival of the process in B up to time t assuming the killing
condition in Bc.

Step 7. For any ρ > 0 consider a truncated Dirichlet form

E (ρ)(f, f) :=

∫∫

{d(x,y)<ρ}
(f(x) − f(y))2J(x, y)d(x)dμ(y).

Denote by Qt the heat semigroup of
(
E (ρ),F

)
and by qt(x, y) its heat kernel. We prove

that, under all the above hypotheses, the heat kernel of
(
E (ρ),F

)
exists and satisfies the

following diagonal upper bound

qt(x, y) ≤
C

tα/β
exp

(
Ct

ρβ

)

. (14)
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Step 8. We deduce from (S) a similar condition for the truncated semigroup Qt:

QB
t 1B ≥ ε − Ct

(
r−β + ρ−β

)
in 1

4
B

where B = B (x, r). A certain iteration procedure allows to self-improve this estimate
and to obtain that, for any k ∈ N, if r ≥ 8kρ then

QB
t 1B ≥ 1 − C (k)

(
t

ρβ

)k

,

which implies that
∫

Bc(x,r)

qt(x, y)dμ(y) ≤ C(k)

(
t

ρβ

)k

.

Combining this with (14), we obtain that, in the case q < ∞,

‖qt (x, ∙)‖Lq(Bc) ≤ ‖qt (x, ∙)‖1/q′

L∞(Bc) ‖qt (x, ∙)‖1/q

L1(Bc) ≤
C(k)

tα/(q′β)
exp

(
Ct

ρβ

)(
t

ρβ

) k
q

. (15)

In the case q = ∞ we improve (14) in a different way and obtain that if r ≥ 4kρ then

‖qt (x, ∙)‖L∞(Bc) ≤
C(k)

tα/β
exp

(
Ct

ρβ

)(

1 +
ρβ

t

)α/β (
t

ρβ

)k

. (16)
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Step 9. We prove that, under all the above conditions, including (TJq), we have, for any
t > 0 and for any ball B = B(x, r),

‖pt(x, ∙)‖Lq(Bc) ≤ ‖qt(x, ∙)‖Lq(Bc) +
Ct

ρα/q′+β
exp

(
Ct

ρβ

)

. (17)

Step 10. In the case q < ∞, combining (15) and (17), we obtain that if r ≥ 8kρ then

‖pt(x, ∙)‖Lq(Bc) ≤
C(k)

tα/(q′β)
exp

(
Ct

ρβ

)(
t

ρβ

)k/q

+
Ct

ρα/q′+β
exp

(
Ct

ρβ

)

.

Assuming that rβ ≥ t and setting ρ = r/ (8k), we obtain

‖pt(x, ∙)‖Lq(Bc) ≤
C(k)

tα/(q′β)

(
t

rβ

)k/q

+
C(k)t

rα/q′+β

≤ C
t

rα/q′+β
,

provided k is chosen so that

(
t

rβ

)k/q

≤

(
t

rβ

) α
q′β

+1

,

27



that is,
k

q
≥

α

q′β
+ 1.

This finishes the proof of (TPq) if q < ∞.

In the case q = ∞ we obtain from (16) and (17), assuming that rβ ≥ t and setting
ρ = r/ (4k) that

‖pt(x, ∙)‖Lq(Bc) ≤
C(k)

tα/β

(
t

rβ

)k−α
β

+
C(k)t

rα+β

≤ C
t

rα+β
,

provided k is chosen so that (
t

rβ

)k−α
β

≤

(
t

rβ

)α
β

+1

that is,

k ≥ 2
α

β
+ 1.
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Step 11. We prove now consequences of (TPq). Let us first prove Lemma 1, that is, if
q ∈ [2,∞] then

(TPq) ⇒ (UEq) .

Setting r = 1
2
d (x, y), we obtain by the semigroup property

p2t (x, y) =

∫

M

pt (x, z) pt (z, y) dμ (z)

≤

(∫

Bc(x,r)

+

∫

Bc(y,r)

)

pt (x, z) pt (z, y) dμ (z) .

It suffices to estimate the first integral. By the Hölder inequality, we have
∫

Bc(x,r)

pt (x, z) pt (z, y) dμ (z) ≤ ‖pt (x, ∙)‖Lq(Bc(x,r)) ‖pt (∙, y)‖Lq′ (M) .

Since q ≥ 2 and, hence, q′ ≤ q, we have not only (TPq) but also (TPq′). Hence,

‖pt (x, ∙)‖Lq(Bc(x,r)) ≤
C

tα/(q′β)

(
1 +

r

t1/β

)−(α/q′+β)

and

‖pt (∙, y)‖Lq′ (M) ≤
C

tα/(qβ)
.
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Since α
q′β

+ α
qβ

= α
β
, we obtain

∫

Bc(x,r)

pt (x, z) pt (z, y) dμ (z) ≤
C

tα/β

(
1 +

r

t1/β

)−(α/q′+β)

.

Estimating in the same manner the second integral, we obtain

p2t (x, y) ≤
C

tα/β

(
1 +

r

t1/β

)−(α/q′+β)

,

that is, (UEq).

Step 12. Since (UEq) ⇒ (DUE) ⇒ (FK), we obtain that

(TPq) ⇒ (FK) .

The implication

(TPq) ⇒ (TJq)

was already mentioned in (??).
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Step 13. Finally, the implication

(TPq) + (C) ⇒ (Gcap)

is proved as follows. By (TPq) we have also (TP1), that is,

∫

Bc(x,r)

pt(x, y)dμ(y) ≤ C
(
1 +

r

t1/β

)−β

≤
Ct

rβ
.

This and (C) imply that

P
B(x,r)
t 1(x) ≥ ε −

Ct

rβ

that is, (S), and it is known that (S) ⇒ (Gcap).
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