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Heat kernels and Dirichlet forms in R"
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The classical Laplace operator A = ) , 3.7 In R"™ is associated with the Dirichlet

integral
/ VFI da (1)
]RTL

via the Green formula

(F=Afp = [ ViR

More precisely, the Dirichlet form (1) in the domain f € W12(R") has the generator
L = —A that is a non-negative definite self-adjoint operator in L?(R™) with the domain
W22(R™).

The associated heat equation
ou—Au=0

has a fundamental solution

( ) _ 1 o |3§‘ B y|2
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that is also the transition density function of a diffusion process — Brownian motion in
R™.




For any (8 € (0,2), the operator (—A)?? determines in a similar way the non-local
Dirichlet form )
(f(z) = f(¥))
c dxdy 2
nﬁ//}Rann |z — gy 2)
with the domain Bg /22 (R™). The associated heat equation

Bru+ (—A) 24 =0
has a non-negative fundamental solution pgﬁ )(q:, y), that also serves as the transition

density function of a symmetric stable Levy process of index 3 (a Markov process of
jump type).
It is known that, in the case 3 =1,

cpt
Pt (z,y) = — (3)

<t2 + |z — y|2) ’

(that is the Cauchy distribution), while for any § € (0,2) there is an estimate

—(n+p)
(8) t _ 1 < |z — y|>
T,Y) ~ = 1+ . 4

The sign ~ means that the ratio of two sides is bounded between two positive constants.



Dirichlet forms of jump type in metric measure spaces

Let (M,d) be a locally compact separable metric space and p be a Radon measure on
M with full support. Consider in L?(M, p) the following quadratic form

=3[ 0@ - 10 e n)du@aut), Q

where J(z,y) is a non-negative symmetric function on M x M that is called a jump
kernel. Assume that £ extends to a regular Dirichlet form with a domain F C L?(M, )
(that is,  is a dense subspace of L2, F is complete with respect to the norm | f||72 +
E(f, f), and F Ny is dense both in F and Cj). The generator of the form (5) is the
operator

£h@) = | (7@) = F) I(w. )ity
that is a non-positive definite self-adjoint operator in L?(M, u1). It determines the heat

semigroup {e **}4>0 in L2(M, ;1) and a certain Hunt
process ({Xt}i>0, {Pz}zen) that satisfies the identity

P.(X; € A) = e *14(x)

The heat kernel pi(z,y) of (£, F) is the integral density of the heat semigroup e~4, if
it exists. It is also the transition density function of the Hunt process.



Ultra-metric spaces

Let (M, d) be a metric space. The metric d is called an wltra-metric and (M, d) is called
an ultra-metric space if, for all z,y,z € M,

d(x,y) < max{d(zx, z),d(z,y)}. (6)

For example, the field QQ, of p-adic numbers is an ultra-metric space with the p-adic
distance

d(l‘,y) = ||$ - y||p7 €T,y < @p'
Also, Qp is an ultra-metric space with the max-distance
d(z,y) = max(||lz: —yill,, i=1,...,n), z,yeQy. (7)

On a general ultra-metric space M, d), consider the metric balls B,.(x) = {y € M : d(z,y) < r}.
The ultra-metric property (6) implies that any two metric balls of the same radius are
either disjoint or identical.




Indeed, let two balls B, (z) and B,(y) have a non-empty intersection, say z € B,(x) N
B, (y). Then d(z,z) <r and d(y, z) < r whence it follows d(z,y) < 7.
(

For any point z € B,(z) we have d (z,z) < r, which
together with d(x,y) < r implies d (y, z) < r so that
z € B,(y). Therefore, B,(x) C B,(y) and, similarly,
B, (y) C By(z) whence B,(z) = B;(y).
Consequently, the collection of all distinct balls of

the same radius r forms a partition of M.

Another consequence: every point inside a ball is its center. Indeed, if y € B,(z) then
the balls B, (y) and B,(x) have a non-empty intersection whence B, (z) = B, (y).

Therefore, all balls are closed and open sets. Consequently, M is totally disconnected,
that is, M has no connected subsets except for singletons. In particular, an ultra-metric
space cannot carry a non-trivial diffusion process.

It follows that any Dirichlet form on an ultra-metric space must be of jump type.



Isotropic Dirichlet forms on ultra-metric spaces

Let (M,d) be an ultra-metric space. We assume throughout that all balls in M are
compact. Let u be a Radon measure on M with full support.

Let o(r) be a cumulative probability e
distribution function on (0, c0) that is

strictly monotone increasing.

Consider on M the following jump kernel

_[* dlogo(r)

Theorem 1 (A.Bendikov, AG, Ch.Pittet, W.Woess, Uspechi, 2014) The jump kernel
(8) determines a regular Dirichlet form (£,F) in L?> (M, u) (as in (5)), and its heat

kernel 1s
Y dot(r)

The Dirichlet form (5) with the jump kernel (8) is called an isotropic Dirichlet form.



The jump process {X;},~, generated by the Dirichlet form with the jump kernel (8)
looks as follows: -

B,(X)

Xo

At any time ¢, it jumps from the current position X; to the next position that is
uniformly distributed in B, (X;), where r is randomly chosen by using the probability
distribution o.

The ultra-metric property is used in the proof as follows. On an ultra-metric space,
the averaging operators

@f@)=f  fWiulw)
Br(x)
are bounded in L? (M, p), self-adjoint, and satisfy the identity
QrQs = QsQr = Qmax{r,s} for all r,s > 0. (10)

In particular, Q? = Q,., that is, @, is an orthoprojector in L?.



Indeed, for any ball B of radius r, any point x € B is a center of B. Since the value
Q. f(x) is the average of f in B, we see that @, f(z) does not depend on = € B. Hence,
Q. f = const on any ball of radius r.

If s < r then the application of Q)5 to @),f does not change this constant, whence we

obtain QsQrf = Q, f.

If s > r then any ball of radius s is the disjoint union of finitely many balls of radius 7.
Since the integrals of f and @), f over any such ball are the same, we obtain Q;Q,f =

Qs /f.
The property (10) is used to prove that the family of operators

oo
P, :/ Q,do'(r), t>0, (11)
0
is a semigroup and that it coincides with the heat semigroup e ** of the isotropic

Dirichlet form, which leads to (9).

Since @, are orthoprojectors, the identity (11) implies by integration-by-parts the spec-
tral decomposition of P, which allows to determine the spectrum of P; and L.

Let us mention for comparison, that the averaging operator (), in R™ is also bounded
and self-adjoint, but it has a non-empty negative part of the spectrum. In particular,
it is mot an orthoprojector.



Isotropic Dirichlet forms on Q7

Consider M = Qp with the ultra-metric max-distance (7) and with the Haar measure
1 normalized to p(Bi(z)) = 1. One can show that if p™ < r < p™*! for some m € Z
then

(B (z)) = p™™". (12)

Fix any # > 0 and consider the distribution function

o(r) = exp (— (§)5> (13)

(a Fréchet distribution). Substituting (12) and (13) into (8), we obtain that

J(LIZ', y) = Cp,B,n d(l‘, y)_(n+ﬂ)7 (14)

pP—1

pEr——g Hence, the generator of the corresponding Dirichlet form is

flx) = f
£rte) = [ 11

Miraculously, £ coincides with the Taibleson-Vladimirov operator D? that was origi-
nally introduced by means of the Fourier transform in Qy:

where ¢, g, =

dp(y).

DAf(E) = |I€ll® Fle). (15)
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Substituting (12) and (13) into (9), we obtain that the heat kernel of the operator
DB = L satisfies the identity

pt(x’y):/oo deXp( (3) )

t
d(z,y) K (BT (‘/L’))

Estimating of the integral yields the following bound of the heat kernel:

1 d(z,y)\ ")
pt(xay) == W (1 + tl/ﬁ ) )

which is clearly similar to the estimate (4) of the heat kernel of (—A)? /2 in R™.

Let us emphasize that DP generates a Markov jump process in Qp for any > 0 unlike

the case of R™ where (—A)ﬁ/2 generates such a process only if 3 € (0,2).
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Jump kernels on a-regular ultra-metric spaces

Let an ultra-metric space (M, d) with measure pu be a-regular for some a > 0, that is,
for any metric ball B, (x),

p(Br(z)) ~r°. (16)
Fix some 3 > 0 and consider a jump kernel on M such that
J(x,y) ~ d(z,y) 0. (17)

The associated Dirichlet form is not necessarily isotropic, and the above approach does
not work. A much more elaborate method allows to prove the following.

Theorem 2 (A.Bendikov, AG, E. Hu, J.Hu, Ann. Scuola Norm. Sup. Pisa, 2021)
Assume that (16) and (17) are satisfied. Then the quadratic form

/ / @) I (@) dule)duly)
MxM

determines a regular Dirichlet form in L? (M, p). Moreover, its heat kernel pi(x,vy)
exists, is continuous in (t,x,y), Hélder continuous in (x,y) and satisfies the estimate

1 d(x y) —(a+p)

for all xz,y € M and t > 0. In fact, (16)+(17)<(18).
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Walk dimension on arbitrary regular metric spaces

Let now (M,d) be an arbitrary metric space that is regular in the following sense:
there exists a Radon measure p on M that is a-regular for some o > 0. It follows that
a =dimyg M and p ~ H,, where H,, denotes the Hausdorff measure of dimension «.

Assume in what follows that (M, d) is regular and that u = H, with a« = dimyg M.

Consider for any 3 > 0 the quadratic form

B 2
eatrh) =5 [ LT duwiuty)

and define the walk dimension % of (M,d) as follows:

B*=sup {3 > 0:3Fg C L*(M, p1) such that (£g, Fp) is a regular Dirichlet form in L?(M,p)} |

The point is that with increase of [ the set of functions f with 5 (f, f) < oo shrinks
and may become non-dense in L?. It is easy to show if 3 < 2 then E5(f, f) < oo for all
f € Lipo(M), which implies that 5* > 2.

For example:

e in R"” we have 5% = 2;
e on regular ultra-metric spaces * = oo (by Theorem 2);
e on typical fractal spaces 2 < 3% < co.
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On many fractal spaces (including SG, SC, VS), there exists a local regular Dirichlet
form (and associated diffusion), whose heat kernel satisfies sub-Gaussian estimate

1
_ C d(z,y)\ -1
pe(@,y) < o exp | —c (—t > (19)

for some a > 0 and v > 1 (Barlow, Bass, Chen, Hambly, Kigami, Kumagai, Kusuoka,
Perkins, et al.). If (19) is satisfied then the metric measure space is necessarily a-regular
and v = §*. Consequently, we have v > 2. As M.Barlow showed, any v > 2 can be
realized in (19) on some fractal space.
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On the diagram below, we represent graphically a classification of regular metric spaces
according to the value of the walk dimension 5*. The Euclidean spaces R™ and p-adic
spaces Q) lie at the opposite boundaries of this scale, while the entire interior is filled
with fractal spaces.

ultra-metric spaces
including Q,

fractal spaces

Euclidean spaces R”

Vicsek snowflake
B*=logl5/log3 ~2.46

Sierpinski carpet
B*=2.10

Sierpinski gasket
B*=log5/log2 =2.32

Parameter « is responsible for integration on M as it determines measure p = H,,
while 8% is responsible for differentiation on M as in many cases it determines the
generator L of a local Dirichlet form on M that is a natural Laplacian on M.
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