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Heat kernels and Dirichlet forms in Rn

The classical Laplace operator Δ =
∑n

i=1
∂2

∂x2
i

in Rn is associated with the Dirichlet

integral ∫

Rn

|∇f |2 dx (1)

via the Green formula

(f,−Δf)L2 =
∫

Rn

|∇f |2 dx.

More precisely, the Dirichlet form (1) in the domain f ∈ W 1,2(Rn) has the generator
L = −Δ that is a non-negative definite self-adjoint operator in L2(Rn) with the domain
W 2,2(Rn).

The associated heat equation
∂tu − Δu = 0

has a fundamental solution

pt(x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

,

that is also the transition density function of a diffusion process – Brownian motion in
Rn.
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For any β ∈ (0, 2), the operator (−Δ)β/2 determines in a similar way the non-local
Dirichlet form

cn,β

∫∫

Rn×Rn

(f(x) − f(y))2

|x − y|n+β
dxdy (2)

with the domain B
β/2
2,2 (Rn). The associated heat equation

∂tu + (−Δ)β/2 u = 0

has a non-negative fundamental solution p
(β)
t (x, y), that also serves as the transition

density function of a symmetric stable Levy process of index β (a Markov process of
jump type).

It is known that, in the case β = 1,

p
(1)
t (x, y) =

cnt
(
t2 + |x − y|2

)n+1
2

, (3)

(that is the Cauchy distribution), while for any β ∈ (0, 2) there is an estimate

p
(β)
t (x, y) '

t
(
t1/β + |x − y|

)n+β
=

1
tn/β

(

1 +
|x − y|
t1/β

)−(n+β)

. (4)

The sign ' means that the ratio of two sides is bounded between two positive constants.
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Dirichlet forms of jump type in metric measure spaces

Let (M,d) be a locally compact separable metric space and μ be a Radon measure on
M with full support. Consider in L2(M,μ) the following quadratic form

E(f, f) =
1
2

∫∫

M×M
(f(x) − f(y))2 J(x, y)dμ(x)dμ(y), (5)

where J(x, y) is a non-negative symmetric function on M × M that is called a jump
kernel. Assume that E extends to a regular Dirichlet form with a domain F ⊂ L2(M,μ)
(that is, F is a dense subspace of L2, F is complete with respect to the norm ‖f‖2

L2 +
E(f, f), and F ∩ C0 is dense both in F and C0). The generator of the form (5) is the
operator

Lf(x) =
∫

M
(f(x) − f(y)) J(x, y)dμ(y),

that is a non-positive definite self-adjoint operator in L2(M,μ). It determines the heat

semigroup {e−tL}t≥0 in L2(M,μ) and a certain Hunt

process ({Xt}t≥0, {Px}x∈M ) that satisfies the identity

Px(Xt ∈ A) = e−tL1A(x)

The heat kernel pt(x, y) of (E ,F) is the integral density of the heat semigroup e−tL, if
it exists. It is also the transition density function of the Hunt process.
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Ultra-metric spaces

Let (M,d) be a metric space. The metric d is called an ultra-metric and (M,d) is called
an ultra-metric space if, for all x, y, z ∈ M,

d(x, y) ≤ max{d(x, z), d(z, y)}. (6)

For example, the field Qp of p-adic numbers is an ultra-metric space with the p-adic
distance

d(x, y) = ‖x − y‖p , x, y ∈ Qp.

Also, Qn
p is an ultra-metric space with the max-distance

d(x, y) = max(‖xi − yi‖p , i = 1, . . . , n), x, y ∈ Qn
p . (7)

On a general ultra-metric space M,d), consider the metric balls Br(x) = {y ∈ M : d(x, y) ≤ r} .
The ultra-metric property (6) implies that any two metric balls of the same radius are
either disjoint or identical.

4



Indeed, let two balls Br(x) and Br(y) have a non-empty intersection, say z ∈ Br(x) ∩
Br(y). Then d (x, z) ≤ r and d (y, z) ≤ r whence it follows d(x, y) ≤ r.

For any point z ∈ Br(x) we have d (x, z) ≤ r, which

together with d(x, y) ≤ r implies d (y, z) ≤ r so that

z ∈ Br(y). Therefore, Br(x) ⊂ Br(y) and, similarly,

Br(y) ⊂ Br(x) whence Br(x) = Br(y).

Consequently, the collection of all distinct balls of

the same radius r forms a partition of M .

Another consequence: every point inside a ball is its center. Indeed, if y ∈ Br(x) then
the balls Br(y) and Br(x) have a non-empty intersection whence Br(x) = Br(y).

Therefore, all balls are closed and open sets. Consequently, M is totally disconnected,
that is, M has no connected subsets except for singletons. In particular, an ultra-metric
space cannot carry a non-trivial diffusion process.

It follows that any Dirichlet form on an ultra-metric space must be of jump type.
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Isotropic Dirichlet forms on ultra-metric spaces

Let (M,d) be an ultra-metric space. We assume throughout that all balls in M are
compact. Let μ be a Radon measure on M with full support.

Let σ(r) be a cumulative probability

distribution function on (0,∞) that is

strictly monotone increasing.

Consider on M the following jump kernel

J(x, y) =
∫ ∞

d(x,y)

d log σ(r)
μ (Br(x))

. (8)

Theorem 1 (A.Bendikov, AG, Ch.Pittet, W.Woess, Uspechi, 2014) The jump kernel
(8) determines a regular Dirichlet form (E ,F) in L2 (M,μ) (as in (5)), and its heat
kernel is

pt(x, y) =
∫ ∞

d(x,y)

dσt(r)
μ (Br(x))

. (9)

The Dirichlet form (5) with the jump kernel (8) is called an isotropic Dirichlet form.
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The jump process {Xt}t≥0 generated by the Dirichlet form with the jump kernel (8)
looks as follows:

At any time t, it jumps from the current position Xt to the next position that is
uniformly distributed in Br(Xt), where r is randomly chosen by using the probability
distribution σ.
The ultra-metric property is used in the proof as follows. On an ultra-metric space,
the averaging operators

Qrf(x) = −
∫

Br(x)
f(y)dμ(y)

are bounded in L2 (M,μ), self-adjoint, and satisfy the identity

QrQs = QsQr = Qmax{r,s} for all r, s > 0. (10)

In particular, Q2
r = Qr, that is, Qr is an orthoprojector in L2.
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Indeed, for any ball B of radius r, any point x ∈ B is a center of B. Since the value
Qrf(x) is the average of f in B, we see that Qrf(x) does not depend on x ∈ B. Hence,
Qrf = const on any ball of radius r.

If s ≤ r then the application of Qs to Qrf does not change this constant, whence we
obtain QsQrf = Qrf.

If s > r then any ball of radius s is the disjoint union of finitely many balls of radius r.
Since the integrals of f and Qrf over any such ball are the same, we obtain QsQrf =
Qsf.

The property (10) is used to prove that the family of operators

Pt =
∫ ∞

0
Qr dσt(r), t > 0, (11)

is a semigroup and that it coincides with the heat semigroup e−tL of the isotropic
Dirichlet form, which leads to (9).

Since Qr are orthoprojectors, the identity (11) implies by integration-by-parts the spec-
tral decomposition of Pt, which allows to determine the spectrum of Pt and L.

Let us mention for comparison, that the averaging operator Qr in Rn is also bounded
and self-adjoint, but it has a non-empty negative part of the spectrum. In particular,
it is not an orthoprojector.
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Isotropic Dirichlet forms on Qn
p

Consider M = Qn
p with the ultra-metric max-distance (7) and with the Haar measure

μ normalized to μ(B1(x)) = 1. One can show that if pm ≤ r < pm+1 for some m ∈ Z
then

μ (Br(x)) = pnm. (12)

Fix any β > 0 and consider the distribution function

σ(r) = exp

(

−
(p

r

)β
)

(13)

(a Fréchet distribution). Substituting (12) and (13) into (8), we obtain that

J(x, y) = cp,β,n d(x, y)−(n+β), (14)

where cp,β,n = pβ−1
1−p−n−β . Hence, the generator of the corresponding Dirichlet form is

Lf(x) = cp,β,n

∫

M

f(x) − f(y)
d(x, y)n+β

dμ(y).

Miraculously, L coincides with the Taibleson-Vladimirov operator Dβ that was origi-
nally introduced by means of the Fourier transform in Qn

p :

D̂βf(ξ) = ‖ξ‖β
p f̂(ξ). (15)
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Substituting (12) and (13) into (9), we obtain that the heat kernel of the operator
Dβ = L satisfies the identity

pt(x, y) =
∫ ∞

d(x,y)

d exp
(
−t
(p

r

)β)

μ (Br(x))
.

Estimating of the integral yields the following bound of the heat kernel:

pt(x, y) '
1

tn/β

(

1 +
d(x, y)
t1/β

)−(n+β)

,

which is clearly similar to the estimate (4) of the heat kernel of (−Δ)β/2 in Rn.

Let us emphasize that Dβ generates a Markov jump process in Qn
p for any β > 0 unlike

the case of Rn where (−Δ)β/2 generates such a process only if β ∈ (0, 2) .
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Jump kernels on α-regular ultra-metric spaces

Let an ultra-metric space (M,d) with measure μ be α-regular for some α > 0, that is,
for any metric ball Br(x),

μ (Br(x)) ' rα. (16)

Fix some β > 0 and consider a jump kernel on M such that

J(x, y) ' d(x, y)−(α+β). (17)

The associated Dirichlet form is not necessarily isotropic, and the above approach does
not work. A much more elaborate method allows to prove the following.

Theorem 2 (A.Bendikov, AG, E. Hu, J.Hu, Ann. Scuola Norm. Sup. Pisa, 2021)
Assume that (16) and (17) are satisfied. Then the quadratic form

E (f, f) =
1
2

∫∫

M×M
(f(x) − f(y))2 J(x, y)dμ(x)dμ(y)

determines a regular Dirichlet form in L2 (M,μ). Moreover, its heat kernel pt(x, y)
exists, is continuous in (t, x, y), Hölder continuous in (x, y) and satisfies the estimate

pt(x, y) '
1

tα/β

(

1 +
d(x, y)
t1/β

)−(α+β)

, (18)

for all x, y ∈ M and t > 0. In fact, (16)+(17)⇔(18).
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Walk dimension on arbitrary regular metric spaces

Let now (M,d) be an arbitrary metric space that is regular in the following sense:
there exists a Radon measure μ on M that is α-regular for some α > 0. It follows that
α = dimH M and μ ' Hα, where Hα denotes the Hausdorff measure of dimension α.

Assume in what follows that (M,d) is regular and that μ = Hα with α = dimH M.

Consider for any β > 0 the quadratic form

Eβ (f, f) =
1
2

∫∫

M×M

(f(x) − f(y))2

d(x, y)α+β
dμ(x)dμ(y),

and define the walk dimension β∗ of (M,d) as follows:

β∗=sup
{
β > 0 : ∃Fβ ⊂ L2(M,μ) such that (Eβ ,Fβ) is a regular Dirichlet form in L2(M,μ)

}
.

The point is that with increase of β the set of functions f with Eβ (f, f) < ∞ shrinks
and may become non-dense in L2. It is easy to show if β < 2 then Eβ(f, f) < ∞ for all
f ∈ Lip 0(M), which implies that β∗ ≥ 2.

For example:

• in Rn we have β∗ = 2;
• on regular ultra-metric spaces β∗ = ∞ (by Theorem 2);
• on typical fractal spaces 2 < β∗ < ∞.
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Sierpinski gasket (SG)

α = log 3
log 2 , β∗= log 5

log 3≈ 2.32
Sierpinski carpet (SC)

α = log 8
log 3 , β∗≈ 2.10

Vicsek snowflake (VS)

α = log 5
log 3 , β∗= log 15

log 3 ≈ 2.46

On many fractal spaces (including SG, SC, VS), there exists a local regular Dirichlet
form (and associated diffusion), whose heat kernel satisfies sub-Gaussian estimate

pt (x, y) �
C

tα/γ
exp

(

−c

(
dγ(x, y)

t

) 1
γ−1

)

(19)

for some α > 0 and γ > 1 (Barlow, Bass, Chen, Hambly, Kigami, Kumagai, Kusuoka,
Perkins, et al.). If (19) is satisfied then the metric measure space is necessarily α-regular
and γ = β∗. Consequently, we have γ ≥ 2. As M.Barlow showed, any γ ≥ 2 can be
realized in (19) on some fractal space.
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On the diagram below, we represent graphically a classification of regular metric spaces
according to the value of the walk dimension β∗. The Euclidean spaces Rn and p-adic
spaces Qn

p lie at the opposite boundaries of this scale, while the entire interior is filled
with fractal spaces.

Parameter α is responsible for integration on M as it determines measure μ = Hα,
while β∗ is responsible for differentiation on M as in many cases it determines the
generator L of a local Dirichlet form on M that is a natural Laplacian on M .
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