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Heat kernels in Rn

The heat equation ∂u
∂t

= Δu in Rn has the following fundamental solution

pt(x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

(1)

also called the heat kernel. This function (also known as the Gauss-Weierstrass function)
coincides with the transition density for Brownian motion {Xt}t≥0 in Rn: for any Borel
set A ⊂ Rn,

Px (Xt ∈ A) =

∫

A

pt(x, y)dμ (y)

The operator −Δ can be extended to a self-adjoint non-negative definite operator in
L2 (Rn), which allows to define the heat semigroup

{
etΔ
}

t≥0
. Then the operator etΔ is an

integral operator with the integral kernel pt (x, y) .
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For any β ∈ (0, 2) the operator (−Δ)β/2 is also a self-adjoint non-negative definite oper-

ator, and the associated the heat semigroup
{

e−t(−Δ)β/2
}

t≥0
also has the integral kernel

p
(β)
t (x, y) that is the transition density of a symmetric stable Levy process of index β that

is a Markov jump process.

It is known that in the case β = 1

p
(1)
t (x, y) =

cnt
(
t2 + |x − y|2

)n+1
2

(2)

with some cn > 0, which is the Cauchy distribution with the parameter t.

For any β ∈ (0, 2), the heat kernel of −(−Δ)β/2 satisfies the estimate

p
(β)
t (x, y) '

t

(t1/β + |x − y|)n+β
=

1

tn/β

(

1 +
|x − y|
t1/β

)−(n+β)

. (3)

The sign ' means that the ratio of two sides is bounded between two positive constants.

The formulas (2) and (3) are obtained from the heat kernel of Δ by using subordination
techniques.

2



The theory of Dirichlet forms of M.Fukushima provides the following method of con-
struction of Markov jump processes. Let (M,d) be a locally compact separable metric
space and μ be a Radon measure on M with full support. Fix a non-negative symmetric
function J(x, y) on M × M and consider in L2 (M,μ) the following quadratic form

E (f, f) =

∫∫

M×M

(f(x) − f(y))2 J(x, y)dμ(x)dμ(y).

Assume that E extends to a regular Dirichlet form with a domain F ⊂ L2 (M,μ) . Then
it has a generator

Lf (x) =

∫

M

(f (y) − f (x)) J(x, y)dμ (y)

that is a self-adjoint non-positive definite operator in L2 with an appropriate domain.
The associated heat semigroup

{
etL
}

t≥0
determines a jump Markov process {Xt}t≥0 such

that E∙f(Xt) = etLf.

The heat kernel pt(x, y) of (E ,F) is the integral density of the heat semigroup:

etLf (x) =

∫

M

pt(x, y)f (y) dμ (y) .

Equivalently, pt(x, y) is the transition density of the jump process {Xt}.
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For example, in Rn the jump process generated by −(−Δ)β/2 has the jump kernel

J(x, y) = cn,β |x − y|−(n+β) .

provided 0 < β < 2. If β ≥ 2 then E with this jump kernel does not extend to a Dirichlet
form.

Question: Under what conditions on a metric measure space (M,d, μ) and a jump kernel
J , the heat kernel of the associated Dirichlet form exists and satisfies for all x, y ∈ M and
t > 0 the stable-like estimate

pt(x, y) '
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

(4)

with some positive parameters α, β? This question is motivated by the following theorem.

Theorem 1 (AG and T.Kumagai 2008). Assume that the heat kernel of a jump process
is conservative and satisfies the estimate

pt(x, y) �
C

tα/β
Φ

(

c
d(x, y)

t1/β

)

for some function Φ and for all x, y ∈ M and t > 0. Then it has to be (4).
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The following necessary conditions for (4) are known:

• the α-regularity: for any metric ball Br(x), we have

μ (Br(x)) ' rα (V )

(consequently, α = dimH M and μ ' Hα).

• the jump kernel estimate: for all x, y ∈ M ,

J(x, y) ' d(x, y)−(α+β). (J)

Theorem 2 (Z.-Q.Chen and T.Kumagai 2003) If 0 < β < 2 then

(V )+(J) ⇔ (4).

However, there are many examples of fractal spaces where jump kernels (J) generate
regular Dirichlet forms even with β > 2.
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It was proved in 1990s by M.Barlow et al., that on a large class of fractals (like unbounded
Sierpinski gasket and carpet) there is a diffusion process whose heat kernel satisfies a sub-
Gaussian estimate

pt(x, y) �
C

tα/β∗ exp

(

−c

(
dβ∗

(x, y)

t

) 1
β∗−1

)

, (5)

where α = dimH M and β∗ is the walk dimension that is an invariant of (M,d). If (5) is
satisfied on some space then necessarily β∗ ≥ 2. Conversely, for any α > 0 and β∗ ≥ 2
there exists a heat kernel on some space satisfying (5) for these α and β∗ (M.Barlow ’04).
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In Rn we have α = n and β∗ = 2 but “typically” β∗ > 2! For example, on the Sierpinski
gasket α = log 3/ log 2 and β∗ = log 5/ log 2.

By subordinating such a diffusion, one obtains a jump process with the heat kernel sat-
isfying the stable-like estimate

pt(x, y) '
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

, (6)

and the jump kernel satisfying (J), where the index β can take any value from (0, β∗). In
particular, β can be larger than 2.

Coming back to a general setting, assume that (V ) and (J) are satisfied with β > 2.
Then, in order to obtain the heat kernel estimates (4), one needs on top of (V ) and (J)
one more quite complicated condition that was established in 2016 independently by

• Z.-Q. Chen, T. Kumagai, J. Wang: condition SCJ (cutoff Sobolev inequality);

• AG, Jiaxin Hu, Eryan Hu: condition Gcap (generalized capacity condition).

A common result of these works: (V )+(J)+ (Gcap) ⇔(V )+(J)+ (SCJ) ⇔(6).

The purpose of this talk to discuss question of obtaining heat kernel bounds for jump
processes in the setting of ultra-metric spaces and, in particular, to show that one can
manage without the third condition.
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Ultra-metric spaces

Let (M,d) be a metric space. The metric d is called an ultra-metric if it satisfies the
ultra-metric inequality

d(x, y) ≤ max{d(x, z), d(z, y)}. (7)

In this case (M,d) is called an ultra-metric space.

Consider the metric balls Br(x) = {y ∈ M : d(x, y) ≤ r} . The ultra-metric property (7)
implies that any two metric balls of the same radius are either disjoint or identical. Indeed,
let two balls Br(x) and Br(y) have a non-empty intersection, say z ∈ Br(x)∩Br(y). Then
d (x, z) ≤ r and d (y, z) ≤ r whence it follows d(x, y) ≤ r.

For any point z ∈ Br(x) we have d (x, z) ≤ r, which
together with d(x, y) ≤ r implies d (y, z) ≤ r so that
z ∈ Br(y). Therefore, Br(x) ⊂ Br(y) and, similarly,
Br(y) ⊂ Br(x) whence Br(x) = Br(y).

Consequently, the collection of all distinct balls of
the same radius r forms a partition of M .

Another consequence: every point inside a ball is its center. Indeed, if y ∈ Br(x) then
the balls Br(y) and Br(x) have a non-empty intersection whence Br(x) = Br(y).
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Therefore, all balls are closed and open sets, and M is totally disconnected. In particular,
an ultra-metric space cannot carry a non-trivial diffusion process.

A well-known example of an ultra-metric space is the field Qp of p-adic numbers, where p
is a prime. It is defined as the closure of Q with respect to the p-adic norm: if x = pn a

b
,

where a, b are integers not divisible by p, then

‖x‖p := p−n.

If x = 0 then ‖x‖p := 0. The p-adic norm satisfies the ultra-metric inequality: if y = pm c
d

and m ≤ n then

x + y = pm

(
pn−ma

b
+

c

d

)

whence
‖x + y‖p ≤ p−m = max

{
‖x‖p , ‖y‖p

}
.

Hence, Q with the metric ‖x − y‖p is an ultra-metric space, and so is its completion Qp.

Every p-adic number x ∈ Qp has the form

x =
∞∑

k=−N

akp
k = ...ak...a2a1a0.a−1a−2....a−N
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where N ∈ N and each ak is a p-adic digit: ak ∈ {0, 1, ..., p − 1}. Then ‖x‖p = p−m, where

m = min {k ∈ Z : ak 6= 0} .

It follows that the ball Br(x) of radius r = p−m (where m ∈ Z) consists of all numbers

y =
∞∑

k=−N

bkp
k = ...bk...b2b1b0.b−1b−2....b−N

such that bk = ak for k < m and bk are arbitrary for k ≥ m; that is,

y = ...bm+1bmam−1am−2...

Consequently, any ball Br(x) of radius r = p−m consists of p disjoint balls of radii p−(m+1)

that are determined by the value of bm.

Let μ be the Haar measure on Qp with the normalization condition

μ (B1(x)) = 1.

Then we obtain that
μ (Bp−m(x)) = p−m.

If p−m ≤ r < p−(m−1) then Br(x) = Bp−m(x) which implies

μ (Br(x)) = p−m ' r.
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Isotropic Dirichlet forms

Let (M,d) be an ultra-metric space where all balls are compact, and μ be a Radon measure
on M with full support.

Let σ(r) be a cumulative probability
distribution function on (0,∞) that
is strictly monotone increasing.

Consider on M a jump kernel

J(x, y) =

∫ ∞

d(x,y)

d log σ (r)

μ (Br(x))
. (8)

This jump kernel determines a regular Dirichlet form that is referred to as an isotropic
Dirichlet form. Its heat kernel admits the explicit formula

pt(x, y) =

∫ ∞

d(x,y)

dσt (r)

μ (Br(x))
(9)

(A.Bendikov, AG, Ch.Pittet, W.Woess 2014).
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For example, consider M = Qn
p with the ultra-metric

d(x, y) = max
1≤i≤n

‖xi − yi‖p .

Let μ be the Haar measure on Qn
p . If p−m ≤ r < p−(m−1) then

μ (Br(x)) = p−nm ' rn.

Fix any β > 0 and consider the distribution function

σ (r) = exp

(

−
(p

r

)β
)

(10)

(Fréchet distribution). Computing J(x, y) from (8), one obtains

J(x, y) = cp,n,βd(x, y)−(n+β). (11)

We have shown that the generator L of the Dirichlet form in Qn
p with the jump kernel (8)

coincides with the Taibleson operator T β defined by Taibleson in ’75 using the Fourier
transform in Qn

p .

The Fourier transform for functions f on Qn
p is defined by

f̂ (ξ) =

∫

Qn
p

e2πi〈x,ξ〉f (x) dμ (x) ,
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where ξ ∈ Qn
p and

〈x, ξ〉 =
n∑

k=1

{xkξk} .

Taibleson has defined T β by means of its Fourier transform:

T̂ βf(ξ) = ‖ξ‖β
p f̂(ξ).

Substituting (10) to the identity (9), we obtain that the heat kernel of T β satisfies the
estimate

pt(x, y) '
1

tn/β

(

1 +
d(x, y)

t1/β

)−(n+β)

,

that is similar to the stable-like estimate in Rn.

Let us now consider a more general jump kernel on Qn
p satisfying for some β > 0 the

estimate
J(x, y) ' d(x, y)−(n+β).

Then the associated Dirichlet form is not necessarily isotropic, and the above method of
computing the heat kernel does not work.

In the rest of this talk, we discuss the problem of estimating of the heat kernel under and
milder assumptions.
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Jump kernels on α-regular ultra-metric spaces

Assume for the rest of the talk that the ultra-metric space (M,d, μ) satisfies the hypothesis
(V ) for some α > 0, that is, μ (Br(x)) ' rα for all x ∈ M and r > 0.

The results below are proved by A.Bendikov, AG, Eryan Hu (yet to be published).

Theorem 3 Let J be a symmetric non-negative function on M × M such that

J(x, y) ' d(x, y)−(α+β) (J)

for some β > 0. Then the quadratic form

E (f, f) =

∫∫

M×M

(f(x) − f(y))2 J(x, y)dμ(x)dμ(y)

determines a regular Dirichlet form in L2 (M,μ). Its heat kernel pt(x, y) exists, is contin-
uous in (t, x, y), Hölder continuous in (x, y) and satisfies the stable-like estimate

pt(x, y) '
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

(12)

for all x, y ∈ M and t > 0. Consequently, (V )+(J)⇔(12).

14



Next, let us relax the pointwise upper and lower estimates of J(x, y) in (J). We consider
two types of conditions instead.

Definition. We say that J satisfies the β-Poincaré inequality if, for any ball B = Br (x0)
and any function f ∈ L2 (B, μ),

∫

B

∣
∣f − f

∣
∣2 dμ ≤ Crβ

∫∫

B×B

(f(x) − f(y))2 J(x, y)dμ(x)dμ(y) (PI)

where f = −
∫

B
fdμ and the constant C is the same for all balls and all functions f .

Definition. We say that J satisfies the β-tail condition if, for any ball Br(x),
∫

M\Br(x)

J(x, y)dμ(y) ≤ Cr−β. (TJ)

It is easy to verify that
J(x, y) ≥ cd(x, y)−(α+β) ⇒ (PI)

and
J(x, y) ≤ Cd(x, y)−(α+β) ⇒ (TJ),

so that (PI) and (TJ) can be regarded as relaxed (integral) versions of the lower resp.
upper bounds of J(x, y). In fact, both (PI) and (TJ) can be stated for jump measures.
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Theorem 4 If (TJ) and (PI) are satisfied then the heat kernel pt(x, y) exists, is contin-
uous in (t, x, y), Hölder continuous in (x, y) and satisfies the following weak upper bound

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−β

∀x, y ∈ M and ∀t > 0, (WUE)

and the near-diagonal lower bound

pt(x, y) ≥
c

tα/β
∀x, y ∈ M and ∀t > d(x, y)β. (NLE)

Moreover, under the standing assumption (TJ), we have

(PI) ⇔ (WUE) + (NLE).

Note that the exponent −β in (WUE) does not match the exponent − (α + β) in the
optimal heat kernel bound (12). There are examples showing that, under (TJ) and (PI),
one cannot guarantee any exponent better than −β. In the same way, the lower bound
(NLE) cannot be improved to any estimate of the form

pt(x, y) ≥
c

tα/β

(

1 +
d(x, y)

t1/β

)−N

.
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An example

Let us give an example showing that the estimates of Theorem 4 cannot be improved. Let
{(Mi, di, μi)}

n
i=1 be a sequence of ultra-metric measure spaces such that Mi is αi-regular.

Consider on Mi the jump kernel

Ji(x, y) = di(x, y)−(αi+β)

where β > 0 is the same for all i. By Theorem 3, the heat kernel p
(i)
t (x, y) on Mi satisfies

p
(i)
t (x, y) '

1

tαi/β

(

1 +
di(x, y)

t1/β

)−(αi+β)

.

Consider now the product space M = M1 × ... × Mn with the ultra-metric

d(x, y) = max
1≤i≤n

di(xi, yi)

and with the product measure μ = μ1 × ... × μn. Then M is α-regular with

α = α1 + ... + αn.

Consider the following jump measure J (x, dy) (not kernel!) on M :

J(x, dy) =
n∑

i=1

δx1(dy1) . . . δxi−1
(dyi−1) Ji(xi, yi)dμi(yi)δxi+1

(dyi+1) . . . δxn(dyn),
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It induces a Dirichlet form on M with the generator

L = L1 + ... + Ln

where Li acts on the coordinate xi. The heat kernel on M is given by

pt(x, y) =
n∏

i=1

p
(i)
t (xi, yi) '

1

tα/β

n∏

i=1

(

1 +
di (xi, yi)

t1/β

)−(αi+β)

. (13)

It is easy to show that J satisfies (TJ) and that pt(x, y) satisfies both (WUE) and
(NLE). By extension of Theorem 4 to jump measures, the Poincaré inequality (PI) is
also satisfied.

Consider the range of x, y such that

d1 (x1, y1) > t1/β and di (xi, yi) ≤ t1/β for i = 2, ..., n.

Then (13) yields

pt(x, y) '
1

tα/β

(

1 +
d1 (x1, y1)

t1/β

)−(α1+β)

=
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α1+β)

.

Since α1 can be chosen arbitrarily small, we see that (WUE) is optimal.
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Similarly, consider the range of x, y such that

di (xi, yi) ' dj (xj, yj) for all i, j.

Then d(x, y) ' di (xi, yi) and

pt(x, y) '
1

tα/β

n∏

i=1

(

1 +
di (xi, yi)

t1/β

)−(αi+β)

'
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α+nβ)

.

Since n can be chosen arbitrarily large, while α and β are fixed, we see that no lower
bound of the form

pt(x, y) ≥
c

tα/β

(

1 +
d(x, y)

t1/β

)−N

can be guaranteed.
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Semi-bounded kernels

In the above setting of an α-regular ultra-metric space (M,d, μ), consider the following
two conditions: the pointwise upper bound of the jump kernel

J(x, y) ≤ Cd(x, y)−(α+β) (J≤)

and the pointwise lower bound:

J(x, y) ≥ cd(x, y)−(α+β). (J≥)

Theorem 5 If (J≤) and (PI) are satisfied then the heat kernel satisfies for all x, y ∈ M
and t > 0 the optimal upper bound

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

(UE)

and the near-diagonal lower bound

pt(x, y) ≥
c

tα/β
∀x, y ∈ M and ∀t > d(x, y)β. (NLE)

In fact, we have
(J≤) + (PI) ⇔ (UE) + (NLE).
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Theorem 6 If (J≥) and (TJ) are satisfied then the heat kernel satisfies for all x, y ∈ M
and t > 0 the optimal lower bound

pt(x, y) ≥
c

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

(LE)

and the weak upper bound

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−β

. (WUE)

Moreover, under the standing assumption (TJ), we have

(J≥) ⇔ (WUE) + (LE).

Clearly, Theorems 5 and 6 imply that

(J) ⇔ (UE) + (LE),

which is equivalent to Theorem 3.
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