
Random walks on ultra-metric spaces

Alexander Grigor’yan
Nankai University and Bielefeld University

Mini-course, September 2018, AMSS CAS, Beijing

Based on a series of joint works with
A.Bendikov, Eryan Hu, Ch.Pittet, W.Woess



Contents

1 Ultra-metric spaces 3

2 Markov operators 10

3 Heat kernel and isotropic Dirichlet form 19

4 Laplacian and Green function 23

5 Isotropic semigroup in Qp 29

6 Ultra-metric product spaces 34

7 Heat kernels on more general spaces 39

8 α-regular ultra-metric spaces 51

1



9 Example: jump measure on products 55

10 Operators of Vladimirov and Taibleson 61

11 Semi-bounded jump kernels 64

12 Example: degenerated jump kernel 66

13 Approach to the proof 73

14 Lemma of growth 84

15 Weak Harnack inequality 93

2



1 Ultra-metric spaces

Let (X, d) be a metric space. The metric d is called ultra-metric if it
satisfies the ultra-metric inequality

d(x, y) ≤ max{d(x, z), d(z, y)}, (1)

that is obviously stronger than the usual triangle inequality. In this case
(X, d) is called an ultra-metric space.

A well-known example of an ultra-metric distance is given by the p-adic
norm. Given a prime p, the p-adic norm on Q is defined as follows: if
x = pn a

b
, where a, b, n ∈ Z and a, b are not divisible by p, then

‖x‖p := p−n.

If x = 0 then ‖x‖p := 0. The p-adic norm on Q satisfies the ultra-metric

inequality. Indeed, if y = pm c
d

and m ≤ n then x + y = pm
(

pn−ma
b

+ c
d

)
.

Since the denominator bd is not divisible by p, it follows that

‖x + y‖p ≤ p−m = max
{
‖x‖p , ‖y‖p

}
.
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Hence, Q with the metric ‖x − y‖p is an ultra-metric space, and so is its
completion Qp – the field of p-adic numbers.

The next example of an ultra-metric space is the product

Qn
p =

n times
︷ ︸︸ ︷
Qp × . . . ×Qp

where the ultra-metric is given by the vector p-norm

‖(x1, . . . , xn)‖p := max
i=1,...,n

‖xi‖p .

Various constructions of Markov processes on Qp and on more general
locally compact Abelian groups carrying an ultra-metric, were developed
by Steven Evans 1989, Albeverio and Karwowski 1991, Kochubei 2001,
Del Muto and Figà-Talamanca 2004, Rodŕıges-Vega and Zúňiga-Galindo
2008 and many others, by means of Fourier transform on such groups.
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Analysis on Qp was developed by Taibleson 1975 and by Vladimirov and
Volovich 1989, also using Fourier transform. They have introduced a
class of pseudo-differential operators on Qp and on Qn

p , in particular, a
p-adic Laplacian.

Vladimirov et al. studied the corresponding p-adic Schrödinger equation.
Among other results, they explicitly computed (as series expansions)
certain heat kernels as well as the Green function of the p-adic Laplacian.

In this work we define a natural class of random walks on an ultra-
metric space (X, d) that satisfies in addition the following conditions: it
is separable, proper (that is, all balls are compact), and non-compact.

Our construction is very easy, takes full advantage of ultra-metric prop-
erty and uses no Fourier Analysis. In the case of Qp this class of processes
coincides with the one constructed by Albeverio and Karwowski, and
their generators coincide with the operators of Taibleson and Vladimirov.
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Let us first discuss some properties of ultra-metric balls

Br(x) = {y ∈ X : d(x, y) ≤ r} ,

where x ∈ X and r > 0. The ultra-metric property (1) implies that
any two metric balls of the same radius are either disjoint or identical.

Indeed, let two balls Br(x) and Br(y) have a non-empty intersection:

∃z ∈ Br(x) ∩ Br(y).

Then d(x, z) ≤ r and d(y, z) ≤ r whence it follows d(x, y) ≤ r.

Consider now an arbitrary point z ∈ Br(x).
We have d(x, z) ≤ r and d(x, y) ≤ r
whence d(y, z) ≤ r and z ∈ Br(y).
Therefore, Br(x) ⊂ Br(y) and, similarly,
Br(y) ⊂ Br(x) whence Br(x) = Br(y).

Consequently, a collection of all distinct balls of the same radius r forms
a partition of X, which is a key property for our construction.
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Other properties of ultra-metric spaces:

• Every point inside a ball is its center.

Indeed, if y ∈ Br(x) then the balls Br(y) and Br(x) have a non-
empty intersection whence Br(x) = Br(y).

Consequently, the distance
from any point y ∈ Br(x)
to the complement Br(x)c

is larger than r.

• Every ball is open and closed as a set.

Indeed, any ball Br(x) is closed by definition, but it is also open
because any y ∈ Br(x) has a neighborhood Br(y) ⊂ Br(x).

Consequently, the topological boundary ∂Br(x) is empty.
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• Any ultrametric space X is totally disconnected, that is, any non-
empty connected subset S of X is an one-point set.

Indeed, if S contains two distinct
points, say x and y, set r = 1

2
d(x, y)

and observe that S is covered by
two disjoint open sets Br(x), Br(x)c

both having non-empty intersection
with S. Hence, S is disconnected.

Consequently, X cannot carry any
non-trivial diffusion process.

• Any two balls Br1(x) and Br2(y) of arbitrary radii r1, r2 > 0 are
either disjoint or one of them contains the other.

Indeed, let r1 ≥ r2. If the balls Br1(x) and Br2(y) are not disjoint
then also the balls Br1(x) and Br1(y) are not disjoint, whence

Br1(x) = Br1(y) ⊃ Br2(y).
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• Any triangle {x, y, z} ⊂ X is isosceles; moreover, the largest two
sides of the triangle are equal.

Indeed, if d(y, z) is smallest among
all three distances then we obtain
d(x, y) ≤ max (d(x, z), d(y, z)) = d(x, z)
and similarly d(x, z) ≤ d(x, y)
whence d(x, y) = d(x, z).

• For any x ∈ X, a set M = {d(x, y) : y ∈ X} has no accumulation
point in (0, +∞); in particular, M is countable.

Let r ∈ (0,∞) be an accumulation point of M , i.e. ∃ {rn} ⊂ M\{r}
such that rn → r. Choose yn ∈ X such that d(x, yn) = rn.

By compactness of balls, we can assume that
{yn} converges, say yn → y. Then d(x, y) = r.
Since d(y, yn) → 0, it follows that r = rn,
which contradicts to the choice of {rn}.

For example, in Qp we have M = {p−m}m∈Z .
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2 Markov operators

Let μ be a Radon measure with full support on an ultra-metric space X.
Then μ (Br(x)) is finite and positive for all x ∈ X and r > 0. Let also
μ (X) = ∞.

Define a family {Qr}r>0 of averaging operators acting on f ∈ L∞(X):

Qrf(x) =
1

μ (Br(x))

∫

Br(x)

f dμ . (2)

Clearly, Qr is a Markov operator.
Let σ(r) be a cumulative probability
distribution function on (0,∞) that
is strictly monotone increasing,
left-continuous, and
σ (0+) = 0, σ (∞−) = 1.
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The following convex combination of Qr is also a Markov operator:

Pf =

∫ ∞

0

Qrf dσ(r)

It determines a discrete time Markov chain {Xn}n∈N on X with the fol-
lowing transition rule:

Xn+1 is μ-uniformly distributed in Br(Xn) where the radius r > 0 is
chosen at random according to the distribution σ.

We refer to P as an isotropic Markov operator associated with (d, μ, σ).
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Example. Consider X = Qp with the p-adic distance d(x, y) = ‖x − y‖p.

Every x ∈ Qp has a presentation in p-adic numeral system:

x = . . . ak . . . a2a1a0.a−1a−2 . . . a−N =
∞∑

k=−N

akp
k,

where N ∈ N and each ak is a p-adic digit: ak ∈ {0, 1, . . . , p − 1}. Then
‖x‖p = p−l provided al 6= 0 and ak = 0 for all k < l.

Consider a ball Br(x) of radius r = p−m, where m ∈ Z. For any

y = . . . bk . . . b2 b1 b0.b−1 b−2 . . . b−N ∈ Br (x)

we have ‖x − y‖p ≤ p−m, that is, the first non-zero ak − bk occurs for
k ≥ m; that is, bk = ak for k < m and bk are arbitrary for k ≥ m, so that

y = . . . bm+2 bm+1 bmam−1am−2am−3 . . .

Since bm can take p values, any ball Br(x) of radius r = p−m consists of
p disjoint balls of radii p−(m+1) that are determined by the value of bm.
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Let μ be the Haar measure on Qp with the normalization condition

μ (B1(x)) = 1.

Then we obtain that
μ (Bp−m(x)) = p−m.

If p−m ≤ r < p−(m−1) then Br(x) = Bp−m(x) which implies

μ (Br(x)) = p−m ' r.

The Markov chain {Xn} with the transition operator P has the following
transition rule from Xn to Xn+1. One chooses at random r > 0 and, hence,
m as above, then changes all the digits ak of Xn with k ≥ m to bk, where
all bk are uniformly and independently distributed in {0, 1, . . . , p − 1}:

Xn = . . . am+2am+1amam−1am−2am−3 . . .

Xn+1 = . . . bm+2 bm+1 bmam−1am−2am−3 . . .
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The averaging operator Qr on an ultra-metric space X has some unique
features arising from ultra-metric properties. We have

Qrf(x) =
1

μ (Br(x))

∫

X

1Br(x)fdμ =

∫

X

qr(x, y)f(y)dμ(y),

where the kernel

qr(x, y) =
1

μ (Br(x))
1Br(x)(y) =

1

μ (Br(y))
1Br(y)(x)

is symmetric in x, y because Br(y) = Br(x) for any y ∈ Br(x).

As a Markov operator with symmetric kernel, Qr extends to a bounded
self-adjoint operator in L2 (X,μ) .

Claim. Qr is an orthoprojector in L2 (X,μ) and spec Qr ⊂ [0, 1] .

Proof. For any ball B of radius r > 0, any point x ∈ B is a center of B.
The value Qrf(x) is the average of f in B and, hence, is the same for all
x ∈ B; that is, Qrf = const on B. A second application of Qr to Qrf
does not change this constant, whence we obtain Q2

r = Qr. Therefore,
Qr is an orthoprojector. It follows that spec Qr ⊂ [0, 1] .
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Note that general symmetric Markov operators have spectrum in [−1, 1]
and the negative part of the spectrum may be non-empty. For example,
the stochastic symmetric matrix

(
1
3

2
3

2
3

1
3

)

has eigenvalues 1 and −1
3
.

The averaging operator Qr in Rn is also Markov and symmetric, but it
has a non-empty negative part of the L2-spectrum (and, hence, is not an
orthoprojector). For example, the averaging operator in R

Q1f(x) =
1

2

∫ x+1

x−1

f (t) dt

has the Fourier transform

Q̂1f (ξ) =
sin 2πξ

2πξ
f̂ (ξ)

so that its L2-spectrum consists of all values sin 2πξ
2πξ

(ξ ∈ R) and, hence,
it has a negative part. In fact, min spec Q1 ≈ −0.217.
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Summary of Lecture 1

Let (X, d) be an ultra-metric space, that is, d is a metric that satisfies

d (x, y) ≤ max (d (x, z) , d (y, z)) .

Then all metric balls Br (x) = {y ∈ X : d (x, y) ≤ r} (where x ∈ X and
r > 0) are open and closed. Also, any point in a ball is its center.

Assume further that all balls are compact, while X is not. Let μ be
a Radon measure on X with full support. Consider for any r > 0 the
averaging operator

Qrf (x) =
1

μ (Br (x))

∫

Br(x)

f dμ

that is a Markov operator in L∞. Then Qr extends to L2 (X,μ) as an
orthoprojector, and Im Qr consists of all L2 functions that are constant
on any ball of radius r. Consequently, spec Qr ⊂ [0, 1] .

It follows also that the family of subspaces {Im Qr}r>0 is monotone de-
creasing in r in the sense of inclusion.
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It is easy to prove that the family of operators {Qr}r>0 is right continuous
in the strong operator topology and that

s- lim
r→0

Qr = id and s- lim
r→∞

Qr = 0

(for the last claim we need μ (X) = ∞). Hence, {Qr}r>0 is a resolution
of identity.

By a standard convention in spectral theory, a resolution of identity is
a family {Eλ}λ>0 of orthoprojectors that is monotone increasing in λ,
left-continuous and E0+ = 0, E∞− = id . We obtain such a family by
setting Eλ = Q1/λ, but it will be more convenient to work directly with
{Qr}.

Let σ be a cumulative probability distribution on (0,∞). It determines
a Markov operator P by

P :=

∫ ∞

0

Qr dσ(r) = −
∫ ∞

0

σ(r)dQr.

We obtain in the right hand side explicitly the spectral resolution of P ,
where the spectral projectors Qr are themselves Markov operators!
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Consequently, P is a self-adjoint operator in L2 and spec P ⊂ [0, 1] be-
cause 0 ≤ σ(r) ≤ 1. By the functional calculus, for any ϕ ∈ C [0, 1],

ϕ (P ) = −
∫ ∞

0

ϕ (σ (r)) dQr.

In particular, the power P t is well-defined for any t > 0 and satisfies

P t = −
∫ ∞

0

σt(r)dQr =

∫ ∞

0

Qr dσt(r) . (3)

Setting P 0 = id, we obtain a family {P t}t≥0 that is a symmetric strongly
continuous Markov semigroup in L2 (X) (note that P tP s = P t+s!).

Definition. The semigroup {P t}t≥0 is referred to as an isotropic heat
semigroup on X (that is determined by the triple (d, μ, σ)).

Let {Xt}t≥0 be continuous time Markov process with the transition semi-
group {P t} . Since the n-step transition operator of the discrete time
Markov chain {Xn} is P n, we see that the discrete time Markov chain
{Xn} embeds into the continuous time Markov process {Xt}.
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3 Heat kernel and isotropic Dirichlet form

Proposition 1 The isotropic heat semigroup P t has a density with re-
spect to μ, that is,

P tf(x) =

∫

X

pt(x, y)f(y)dμ(y),

where the heat kernel pt(x, y) is a continuous function given by

pt(x, y) =

∫ ∞

d(x,y)

dσt(r)

μ(Br(x))
. (4)

Proof. Since by (3)

P t =

∫ ∞

0

Qr dσt(r)

and Qr has the kernel

qr(x, y) =
1

μ (Br(x))
1Br(x)(y),
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it follows that P t has the kernel

pt(x, y) =

∫ ∞

0

qr(x, y) dσt(r) =

∫ ∞

0

1

μ (Br(x))
1Br(x)(y)dσt(r)

=

∫ ∞

d(x,y)

dσt(r)

μ (Br(x))
.

As it is well known, any symmetric strongly continuous Markov semi-
group in L2 (X) is associated with a Dirichlet form. In particular, the
Dirichlet form (E ,F) associated with {P t} is given by

E (f, f) = lim
t→0

1

t
(f − P tf, f)L2

= lim
t→0

1

2t

∫

X

∫

X

(f(x) − f(y))2 pt(x, y)dμ(x)dμ(y), (5)

where the limit always exists in [0, +∞], and the domain F consists of
functions f ∈ L2 (X) where the limit is finite.
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Proposition 2 The Dirichlet form (E ,F) associated with {P t} is a jump
type Dirichlet form

E(f, f) =
1

2

∫

X

∫

X

(f(x) − f(y))2 J(x, y)dμ(x)dμ(y) (6)

with the jump kernel

J(x, y) =

∫ ∞

d(x,y)

1

μ (Br(x))
d ln σ(r) . (7)

Besides, (E ,F) is regular (that is, F ∩ C0 (X) is dense both in C0 (X)
and in F).

We refer to this Dirichlet form (E ,F) as an isotropic Dirichlet form.

Proof. Indeed, comparing (5) and (6), as well as using (4), we obtain

J(x, y) = lim
t→0

1

t
pt(x, y) = lim

t→0

1

t

∫ ∞

d(x,y)

tσt−1(r)dσ(r)

μ (Br(x))
=

∫ ∞

d(x,y)

σ−1dσ(r)

μ (Br(x))
.
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The regularity of (E ,F) follows from the fact that, for any ball B, the
indicator function 1B is continuous in X (because ∂B = ∅) and 1B ∈ F .

Indeed, let B = Bρ (z). For f = 1B we have by (6) and (7)

E(f, f) =

∫

Bρ(z)

∫

Bc
ρ(z)

J(x, y)dμ(x)dμ(y)

=

∫∫∫

{x∈Bρ(z),y∈Bc
ρ(z),r≥d(x,y)}

1

μ (Br(x))
d ln σ(r)dμ(x)dμ(y)

=

∫ ∞

ρ

∫

y∈Br(x)\Bρ(z)

(∫

x∈Bρ(z)

dμ(x)

μ (Br(z))

)

dμ(y)d ln σ(r)

=

∫ ∞

ρ

∫

y∈Br(z)\Bρ(z)

μ (Bρ (z))

μ (Br(z))
dμ(y)d ln σ(r)

=

∫ ∞

ρ

μ (Br (z) \ Bρ (z))
μ (Bρ (z))

μ (Br(z))
d ln σ(r)

≤ μ (Bρ (z)) ln
1

σ(ρ)
< ∞.
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4 Laplacian and Green function

Let L be the generator of (E ,F) that is a positive definite self-adjoint
operator in L2 (X). We refer to L as an isotropic Laplacian.

Since the heat semigroup of (E ,F) is given by
{
e−tL

}
t≥0

, it follows that

e−tL = P t and, hence,

L = − ln P =

∫ ∞

0

ln σ(r)dQr. (8)

Denote by C the space of functions f ∈ L2 (X) satisfying the condition
that ∃r > 0 such that f ≡ const on any ball of radius r.

Theorem 3 The space C is dense in L2 (X), is contained in the domain
dom(L) of the Laplacian L, and, for any f ∈ C, we have

Lf (x) =

∫

X

(f(x) − f(y)) J(x, y)dμ(y). (9)
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The spectrum of L is given by

specL =

{

ln
1

σ (r)
: r ∈ Λ

}

∪ {0} , (10)

where Λ = {d(x, y) : x, y ∈ X, x 6= y} . Furthermore, L has a complete
system of eigenfunctions of the form

f = 1
μ(B′)

1B′ − 1
μ(B)

1B

where B is any ball in X and B′ is any maximal ball such that B′ ( B.
The eigenvalue of f is λ = ln 1

σ(r)
where r is the largest radius of B.

The identity (9) follows from (8) by integration by parts, where one
should watch the singularity of ln σ (r) near r = 0. By (8), the spectrum
of L is determined by the values of ln σ (r) at those r where dQr does
not vanish, which occurs exactly at r ∈ Λ.

Observe that, for any x ∈ B, there exists the maximal ball B′ containing
x and such that B′ ( B: in fact, B′ = Br′ (x) where r′ is the largest
value in (0, r) of d (x, ∙).
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The Green function g(x, y) on X × X is defined by

g(x, y) =

∫ ∞

0

pt(x, y)dt.

It is known that if g finite (which means g (x, y) < ∞ for all x 6= y) then
g is in some sense inverse to L: the minimal non-negative solution to
Lu = f (where f ≥ 0) is given by

u(x) =

∫

M

g(x, y)f(y)dμ(y).

Also, it is known that {Xt}t≥0 is transient of and only if g is finite.

Proposition 4 We have

g(x, y) = −
∫ ∞

d(x,y)

1

μ(Br(x))
d

1

ln σ(r)
. (11)
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Proof. Using (4), we obtain

g(x, y) =

∫ ∞

0

∫ ∞

d(x,y)

tσt−1 (r)

μ(Br(x))
dσ(r)dt

=

∫ ∞

d(x,y)

(∫ ∞

0

tσt (r) dt

)
d ln σ(r)

μ(Br(x))
.

Since for any a > 0 ∫ ∞

0

te−atdt =
1

a2
,

it follows that ∫ ∞

0

tσt (r) dt =
1

(ln σ (r))2

and

g(x, y) =

∫ ∞

d(x,y)

d ln σ(r)

μ(Br(x)) (ln σ (r))2 = −
∫ ∞

d(x,y)

1

μ(Br(x))
d

1

ln σ(r)
.
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Example. Assume that the space (X, d, μ) is α-regular, that is, for all
x ∈ X and r > 0,

μ (Br (x)) ' rα,

where α > 0 (in fact, α has to be the Hausdorff dimension of (X, d)).

Choose σ as follows:

σ (r) = exp
(
−
(

c
r

)β)

where c, β > 0
(Fréchet distribution)

By (4) we obtain

pt(x, y) =

∫ ∞

d(x,y)

tσt(r) d ln σ (r)

μ (Br (x))
' t

∫ ∞

d(x,y)

exp

(

−
tcβ

rβ

)

r−α−β−1dr

' t−α/β

∫ ∞

d(x,y)/t1/β

exp

(

−
cβ

sβ

)

s−α−β−1ds '
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

,

27



so that

pt(x, y) '
t

(t1/β + d(x, y))
α+β

. (12)

The jump kernel admits then the estimate

J (x, y) = lim
t→0

pt (x, y)

t
' d(x, y)−(α+β).

For the Green function, we have

g(x, y) = −
∫ ∞

d(x,y)

d 1
ln σ(r)

μ(Br(x))
'
∫ ∞

d(x,y)

drβ

rα
=

{
∞, α ≤ β
d(x, y)−(α−β), α > β.

Recall for comparison that the symmetric stable process in Rn of the
index β ∈ (0, 2) (generated by (−Δ)β/2) has the heat kernel

pt(x, y) '
t

(t1/β + ‖x − y‖)n+β
,

while

J(x, y) = cn,β ‖x − y‖−(n+β) and g(x, y) = c′n,β ‖x − y‖−(n−β) (if n > β).
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5 Isotropic semigroup in Qp

Set X = Qp with the p-adic distance d(x, y) = ‖x − y‖p and with the
Haar measure μ normalized so that μ (B1 (x)) = 1. We already know
that

μ (Br (x)) = pn if pn ≤ r < pn+1, (13)

where n ∈ Z. Fix some β > 0 and set

σ(r) = exp

(

−
(p

r

)β
)

.

Knowing μ (Br (x)) exactly enables us to make a precise computation of
J(x, y) as follows. By (7) we have

J(x, y) =

∫ ∞

d(x,y)

1

μ (Br(x))
d ln σ(r) = pβ

∫ ∞

‖x−y‖p

βr−β−1 dr

μ (Br(x))
.
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Let ‖x − y‖p = pk for some k ∈ Z. Using (13), we obtain

∫ ∞

pk

β r−β−1 dr

μ (Br(x))
=

∑

n≥k

∫ pn+1

pn

β r−β−1 dr

μ (Br(x))

=
∑

n≥k

∫ pn+1

pn

−dr−β

pn
=
∑

n≥k

1

pn

(
1

pnβ
−

1

p(n+1)β

)

=
(
1 − p−β

)∑

n≥k

1

pn(1+β)
=
(
1 − p−β

) p−k(1+β)

1 − p−(1+β)

=
1 − p−β

1 − p−(1+β)

1

‖x − y‖1+β
p

.

Hence, we obtain the identity

J(x, y) =
pβ − 1

1 − p−(1+β)

1

‖x − y‖1+β
p

. (14)

The jump kernel (14) arises from a completely different point of view.
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As a locally compact abelian group, Qp has the dual group, that is again
Qp, which allows to define Fourier transform. The Fourier transform

f 7→ f̂ of a function f on Qp is defined by

f̂(ξ) =

∫

Qp

e2πi{xξ}f(x)dμ(x),

where ξ ∈ Qp and {xξ} is the fractional part of the p-adic number xθ,

that is, {xξ} ∈ Q. It is known that f 7→ f̂ is a linear isomorphism of the
space C0 of locally constant functions on Qp with compact support.

Using the Fourier transform, Vladimirov and Volovich introduced in 1989
the following class of fractional derivatives Dβ on functions on Qp.

Definition. For any β > 0, the operator Dβ is defined on functions
f ∈ C0 by

D̂βf(ξ) = ‖ξ‖β
p f̂(ξ), ξ ∈ Qp. (15)

31



They showed that Dβ can be written as singular integral operator

Dβf(x) =
pβ − 1

1 − p−(1+β)

∫

Qp

f(x) − f(y)

‖x − y‖1+β
p

dμ(y). (16)

Comparison with (14) shows that Dβ coincides with the isotropic Lapla-

cian L that corresponds to σ(r) = exp
(
−
(

p
r

)β)
. More precisely, we have

Dβ = L in C0 so that Dβ is essentially self-adjoint in L2(Qp).

Theorem 5 The operator Dβ generates a heat semigroup in L2(Qp) that
admits a continuous heat kernel pt(x, y) satisfying the estimate

pt(x, y) '
t

(t1/β + ‖x − y‖p)
1+β

. (17)

The Green function of Dβ is finite if and only if β < 1, and in this case
it is given by

g(x, y) =
1 − p−β

1 − p−(1−β)
‖x − y‖−(1−β)

p . (18)
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Proof. Since Dβ = L, we can apply all the previous results.

The heat kernel estimate (17) follows from (12) because Qp is α-regular
with α = 1.

The identity (18) for the Green function follows by exact integration in
(11) similarly to the computation of J(x, y).

Despite the fact that the above statement is a simple consequence of the
previous results, we call it “Theorem” for the following reason: without
knowing the theory of isotropic heat semigroup, the question of estimat-
ing the heat kernel of Dβ was very difficult and it remained open for
many years. In fact, the full estimate (17) was obtained for the first time
in our work in 2014 by using the isotropic Laplacian.

In contrast to that, the identity (18) for the Green function was proved
by Vladimirov and Volovich directly from (15).
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6 Ultra-metric product spaces

Let {(Xi, di)}n
i=1 be a finite sequence of ultra-metric spaces. Define their

ultra-metric product (X, d) by X = X1 × . . . × Xn and

d(x, y) = max
1≤i≤n

di(xi, yi).

where x = (x1, . . . , xn) ∈ X and y = (y1, . . . yn) ∈ Y . Then (X, d) is
again an ultra-metric space, and balls in X are products of balls in Xi:

Br (x) =
n∏

i=1

B(i)
r (xi) .

If there is a Radon measure μi on each (Xi, di), then we consider on
(X, d) the product measure μ =

⊗
μi.

Given a probability distribution σ on (0,∞) as above, we obtain an
isotropic semigroup P t on the product space X.
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For example, consider Qn
p that is the ultra-metric product of n copies of

Qp, with the p-adic metric

d (x, y) = ‖x − y‖p = max
1≤i≤n

‖xi − yi‖p .

The product of the normalized Haar measures μ on Qp is the normalized
Haar measure μn on Qn

p .

Hence, if p−m ≤ r < p−(m−1) where m ∈ Z then, for any x ∈ Qn
p ,

μn (Br(x)) =
n∏

i=1

μ
(
B(i)

r (xi)
)

= p−nm ' rn.

Fix any β > 0 and consider the distribution function

σ(r) = exp

(

−
(p

r

)β
)

.

As in the one-dimensional case, computing J(x, y) from (7), that is,

J(x, y) =

∫ ∞

d(x,y)

1

μ (Br(x))
d ln σ(r),
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and using the exact values of μ (Br(x)), one obtains

J(x, y) =
pβ − 1

1 − p−(n+β)
‖x − y‖−(n+β)

p . (19)

Similarly, (11) yields, in the case n > β, that

g(x, y) =
1 − p−β

1 − p−(n−β)
‖x − y‖−(n−β)

p ,

and (4) implies

pt (x, y) '
t

(t1/β + ‖x − y‖p)
n+β

=
1

tn/β

(

1 +
‖x − y‖p

t1/β

)−(n+β)

.

Hence, the jump kernel, Green function and the heat kernel for the
isotropic Markov process in Qn

p match the same quantities for the sym-
metric stable process of index β in Rn (apart from the values of constants
and the range of β because β ∈ (0, 2) in Rn and β ∈ (0,∞) in Qn

p ).
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Summary of Lecture 2

Let (X, d) be a proper, separable ultra-metric space and μ be a Radon
measure on X with full support. For any distribution function σ on
(0,∞), we have constructed an isotropic heat semigroup {P t}t≥0 in L2 (X),
and obtained the following identity for its heat kernel:

pt (x, y) =

∫ ∞

d(x,y)

dσt (r)

μ (Br (x))
.

The associated Dirichlet form (E ,F) is regular and has the jump kernel

J (x, y) =

∫ ∞

d(x,y)

1

μ (Br (x))
d ln σ (t) .

Fix α, β > 0, assume that (X, d, μ) α-regular, that is,

μ (Br (x)) ' rα,

and choose σ as follows:

σ (r) = exp

(

−
(p

r

)β
)

.
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We have proved that

pt (x, y) '
1

tα/β

(

1 +
d (x, y)

t1/β

)−(α+β)

. (20)

and
J (x, y) ' d (x, y)−(α+β) . (21)

Moreover, in Qn
p the isotropic jump kernel satisfies the identity

J (x, y) = cn,βd (x, y)−(n+β)

and (20) holds with α = n.

Suppose now that (E ,F) is a general (not isotropic) regular Dirichlet
form of jump type on the ultra-metric space.

How to characterize those Dirichlet forms whose heat kernels satisfy (21)?

It is true that if the jump kernel (not isotropic) satisfies (21) then the
heat kernel satisfies (20)?

Even in Qn
p these questions are highly non-trivial.
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7 Heat kernels on more general spaces

Let (X, d) be a a separable, proper metric space and μ be a Radon
measure on X with full support. Let (E ,F) be a regular Dirichlet form
in L2 (X,μ) and {Pt}t≥0 is the associated heat semigroup.

One of the most discussed problems is obtaining estimates of the corre-
sponding heat kernel pt (x, y) (as well as its existence).

There are very few situations when the heat kernel can be computed
exactly and explicitly. In Rn with the Lebesgue measure, the classical
Dirichlet form

E (f, f) =

∫

Rn

|∇f |2 dx,

has the generator L = −Δ and the Gauss-Weierstrass heat kernel

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

,

that is the normal distribution at any time t.
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For the symmetric stable process of index 1, generated by
√
−Δ, the heat

kernel is the Cauchy distribution with the parameter t, that is,

pt(x, y) =
cnt

(
t2 + |x − y|2

)n+1
2

,

with some cn > 0.

In Rn with measure dμ = e|x|
2

dx, the Dirichlet form

E (f, f) =

∫

Rn

|∇f |2 dμ

has the generator L = −Δ − 2x ∙ ∇ and the Mehler heat kernel

pt (x, y) =
1

(2π sinh 2t)n/2
exp

(
2x ∙ y e−2t − |x|2 − |y|2

1 − e−4t
− nt

)

.

In the hyperbolic space H3, the Laplace-Beltrami operator has the heat
kernel

pt (x, y) =
1

(4πt)n/2

r

sinh r
exp

(

−
r2

4t
− t

)

where r = d (x, y) .
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For many application quantitate properties of the heat kernels are im-
portant, so it becomes essential to have at least good estimates.

Let us recall some results about heat kernel bounds assuming that the
space (X, d, μ) is α-regular, that is,

μ (Br (x)) ' rα,

where necessarily α = dimH X.

Let first X be a Riemannian manifold with the geodesic distance d and
Riemannian measure μ. For the heat kernel of the local Dirichlet form

E (f, f) =

∫

X

|∇f |2 dμ

the following is known: it satisfies the two-sides Gaussian estimates

pt (x, y) �
c1

tα/2
exp

(

−c2
d2 (x, y)

t

)

(where c1, c2 > 0) if and only if the following Poincaré inequality holds:
for any ball B = Br (x0) and any f ∈ C1 (B),

∫

εB

(
f − f

)2
dμ ≤ Cr2

∫

B

|∇f |2 dμ, (22)
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where f = −
∫

εB
fdμ and the constants C and ε ∈ (0, 1] are the same for

all balls and functions.

For example, (22) holds in Rn and, moreover, on all manifolds of non-
negative Ricci curvature.

However, it fails on the following
manifold that is a connected sum
of two copies of Rn, because it has
a “bottleneck”.
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Development of Analysis on fractal spaces has brought into life sub-
Gaussian estimates of heat kernels of local Dirichlet forms. This is the
estimate of the form

pt (x, y) �
c1

tα/β∗ exp

(

−c2

(
dβ∗

(x, y)

t

) 1
β∗−1

)

, (23)

where β∗ is a new parameter that is called the walk dimension of the
corresponding diffusion process.

For example, the walk dimension of a diffusion process on a manifold,
satisfying the Gaussian estimate, is clearly β∗ = 2.

One can show that (23) implies β∗ ≥ 2.

It was proved in 1990s by M.Barlow, R.Bass et al. that, on a large
class of fractals (like unbounded Sierpinski gasket and carpet), there is
a diffusion process whose heat kernel satisfies the sub-Gaussian estimate
(23) with β∗ > 2.
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For example, on the Sierpinski gasket α = ln 3
ln 2

and β∗ = ln 5
ln 2

≈ 2.32, on
the Sierpinski carpet α = ln 8

ln 3
and β∗ ≈ 2.09.

Let us discuss a possibility of the heat kernel estimates (23) on a general
metric measure space X. If (23) is true for some diffusion on X then X
has to be α-regular and μ has to be comparable to the Hausdorff measure
of dimension α. In particular, α = dimH X so that α is an invariant of
the metric space (X, d).
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To describe the nature of β∗, consider for any β > 0 the following
quadratic form in L2 (X,μ):

Eα,β (f, f) =

∫

X

∫

X

(f (x) − f (y))2

d (x, y)α+β
dμ (x) dμ (y) .

It was proved by AG, Jiaxin Hu and K.S. Lau in 2003 that the walk
dimension β∗ admits the following characterization:

β∗ = sup {β > 0 : Eα,β extends to a regular Dirichlet form} . (24)

Consequently, β∗ is also an invariant of the metric structure (X, d) alone!

The identity (24) holds under the hypothesis that a diffusion on X sat-
isfies the sub-Gaussian estimate. However, the right hand side makes
sense on an arbitrary α-regular metric space, so we can take now (24) as
a new definition of the walk dimension β∗. It is valid for any α-regular
metric space independently of heat kernels.

It follows from (24) that always β∗ ≥ 2 because, for any β < 2, Lipschitz
functions with compact support are in the domain of Eα,β.
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If X is a Riemannian manifold then one can deduce from (24) that β∗ = 2.
On fractals, as we know, typically β∗ > 2.

Let us ask what is the walk dimension β∗ of an ultra-metric space?

As we know, on an α-regular ultra-metric space, the isotropic Dirichlet
form E with the distribution function σ (r) = exp(−(c/r)β) with arbitrary
β > 0 has the jump kernel

J (x, y) ' d (x, y)−(α+β) .

Since this jump kernel is comparable with the jump kernel of Eα,β, we
have

Eα,β (f, f) ' E (f, f) .

Since E is a regular Dirichlet form (Proposition 2), it follows that Eα,β is
also a regular Dirichlet form for any β > 0, which implies β∗ = ∞!

Hence, in the family of all α-regular metric spaces, manifolds and ultra-
metric spaces are extremal cases: for the manifolds we have β∗ = 2, while
for the ultra-metric spaces β∗ = ∞.
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However, these two extremal classes of metric spaces have something in
common: both manifolds and ultra-metric spaces possess a priori rich
classes of test functions with controlled energy: on manifolds these are
usual bump or tent functions, while on ultra-metric spaces these are
indicators of balls, as we have seen.

The presence of such test functions is very essential for the proofs of heat
kernel estimates as all known techniques for obtaining off-diagonal upper
bounds make use of such test functions.

In the setting of general metric spaces, one has to make an additional
assumption about existence of “good” test functions.
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To conclude the discussion about general metric spaces, let us mention
the following result of AG and T.Kumagai 2008: if the heat kernel of a
conservative Dirichlet form (E ,F) satisfies the estimate of the form

pt (x, y) �
c1

tα/β
Φ

(

c2
d (x, y)

t1/β

)

for some positive α and β then either E is strongly local or

Φ (s) ' (1 + s)−(α+β) .

Since on ultra-metric spaces strongly local Dirichlet forms do not exist,
we obtain that the only possible estimate of the above type is a stable-like
estimate

pt(x, y) '
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

. (25)

Our next purpose is to characterize those ultra-metric space and Dirichlet
forms (not necessarily isotropic) when this estimate holds.
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The following necessary conditions for (25) are known:

• the α-regularity: for any metric ball Br(x), we have

μ (Br(x)) ' rα (V )

(consequently, α = dimH X and μ ' Hα).

• the jump kernel estimate: for all x, y ∈ X,

J(x, y) ' d(x, y)−(α+β). (J)

Z.-Q.Chen and T.Kumagai proved in 2003 that, on general metric spaces
(with a certain mild restriction on the metric), if 0 < β < 2 then

(V )+(J) ⇔ (25).

However, if the walk dimension β∗ of the space in question is larger than
2, then the value of β in (J) can be > 2. In this case, on top of (V ) and
(J) we need one more condition that ensures the existence of “good” test
functions.
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Such a condition was established in 2016 independently by

• Z.-Q. Chen, T. Kumagai, Jian Wang: condition CSJ (cutoff Sobolev
inequality for jumps);

• AG, Jiaxin Hu, Eryan Hu: condition Gcap (generalized capacity con-
dition).

A common result of these works:

(V ) + (J) + (Gcap) ⇔ (25).

We will show that, in the setting of ultra-metric spaces, the third condi-
tion is not needed.
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8 α-regular ultra-metric spaces

Let (X, d) be a separable, proper ultra-metric space and let μ be an
α-regular Radon measure on X. The results below were proved by
A.Bendikov, AG, Eryan Hu 2017.

Theorem 6 Let J be a symmetric non-negative function on X×X such
that

J(x, y) ' d(x, y)−(α+β) (J)

for some β > 0. Then the quadratic form

E (f, f) =

∫∫

X×X

(f(x) − f(y))2 J(x, y)dμ(x)dμ(y)

determines a regular Dirichlet form in L2 (X,μ). Its heat kernel pt(x, y)
exists, is continuous in (t, x, y), Hölder continuous in (x, y) and satisfies
the stable-like estimate

pt(x, y) '
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

(26)

for all x, y ∈ X and t > 0. Consequently, (V )+(J)⇔(26).
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Next, let us relax pointwise upper and lower estimates of J(x, y) in (J).
We slightly change a setup and assume that we are given a symmetric
Radon measure j on X × X of the form dj = J(x, dy)dμ(x). Both j and
J are referred to as jump measures.

Definition. We say that J satisfies the β-Poincaré inequality if, for any
ball B = Br (x0) and any function f ∈ L2 (B),

∫

εB

∣
∣f − f

∣
∣2 dμ ≤ Crβ

∫∫

B×B

(f(x) − f(y))2 J(x, dy)dμ(x) (PI)

where f = −
∫

εB
fdμ and C and ε ∈ (0, 1] are constants.

Definition. We say that J satisfies the β-tail condition if, for any ball
Br(x), ∫

Br(x)c

J(x, dy) ≤ Cr−β. (TJ)

If dj = J(x, y)dμ (x) dμ (y) and X is α-regular then the following impli-
cations hold:

J(x, y) ≥ cd(x, y)−(α+β) ⇒ (PI)
J(x, y) ≤ cd(x, y)−(α+β) ⇒ (TJ)
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Theorem 7 (Main Theorem) Let (X, d, μ) be α-regular ultra-metric
space and let J(x, dy) be a jump measure on X × X that satisfies (TJ).
Then the quadratic form

E (f, f) =

∫∫

X×X

(f(x) − f(y))2 J(x, dy)dμ(x)

extends to a regular Dirichlet form (E ,F) in L2 (X,μ). If in addition J
satisfies (PI) then the heat kernel pt(x, y) of (E ,F) exists, is continuous
in (t, x, y), Hölder continuous in (x, y) and satisfies for all x, y ∈ X and
t > 0 the following “weak upper estimate”

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−β

, (WUE)

and the “near-diagonal lower estimate”

pt(x, y) ≥
c

tα/β
provided d(x, y) ≤ δt1/β. (NLE)

Moreover, under the standing assumption (TJ), we have

(PI) ⇔ (WUE) + (NLE). (27)
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Equivalence (27) is analogous to the aforementioned result that, on α-
regular manifolds, the Poincaré inequality for the Dirichlet integral is
equivalent to the two-sided Gaussian estimates of the heat kernel. An
analogue of the condition (TJ) is in this case the locality of the Dirichlet
form.

Note that the exponent −β in (WUE) does not match the exponent
− (α + β) in the optimal heat kernel bound (26). There are examples
showing that, under (TJ) and (PI), one cannot guarantee any estimate
of the form

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−γ

with γ > β.

In the same way, the lower bound (NLE) cannot be improved to any
estimate of the form

pt(x, y) ≥
c

tα/β

(

1 +
d(x, y)

t1/β

)−γ

with any, even very large, γ.
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9 Example: jump measure on products

Here we give an example showing that the estimates (WUE) and (NLE)
of Theorem 7 cannot be improved assuming only (TJ) and (PI).

Let {(Xi, di, μi)}
n
i=1 be a sequence of ultra-metric measure spaces such

that Xi is αi-regular, where α1, ..., αn is a prescribed sequence of positive
reals. For example, we can take Xi = Qp and

di (x, y) = ‖x − y‖1/αi

p .

Since Qp with ‖x − y‖p is 1-regular, it follows that (Xi, di) is αi-regular.

Fix β > 0 and consider on each Xi the isotropic Dirichlet form (Ei,Fi)
associated with σ (r) = exp(−(c/r)β), so that its jump kernel Ji satisfies

Ji(x, y) ' di(x, y)−(αi+β)

and its heat kernel p
(i)
t satisfies

p
(i)
t (x, y) '

1

tαi/β

(

1 +
di(x, y)

t1/β

)−(αi+β)

. (28)

55



Consider now the product space X = X1× . . .×Xn with the ultra-metric

d(x, y) = max
1≤i≤n

di(xi, yi)

and the product measure μ = μ1 × . . . × μn. Then X is α-regular with

α = α1 + . . . + αn.

Let Li be the generator of Ei. We apply Li to functions f = f (x1, ..., xn)
on X by considering f as a function of xi only (like partial derivatives in
Rn). Consider the operator

L = L1 + . . . + Ln

acting on functions on X.

Proposition 8 The operator L is essentially self-adjoint, it generates
a heat semigroup

{
e−tL

}
t≥0

in L2 (X) and its heat kernel satisfies the
estimate

pt (x, y) '
1

tα/β

n∏

i=1

(

1 +
di (xi, yi)

t1/β

)−(αi+β)

. (29)
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Proof. Main idea: the operators Li commute, whence

e−tL = e−tL1e−tL2 . . . e−tLn .

This implies that e−tL has the heat kernel

pt (x, y) =
n∏

i=1

p
(i)
t (xi, yi) .

Substituting the estimates (28) for p
(i)
t , we obtain (29).

Let us verify that pt(x, y) satisfies both (WUE) and (NLE).

Indeed, for any pair x, y, choosing i so that d (x, y) = d (xi, yi), we obtain

pt (x, y) ≤
C

tα/β

(

1 +
d (x, y)

t1/β

)−(αi+β)

≤
C

tα/β

(

1 +
d (x, y)

t1/β

)−β

.

If d (x, y) ≤ t1/β then also di (xi, yi) ≤ t1/β for all i whence

pt (x, y) ≥
c

tα/β
.
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The Dirichlet form (E ,F) generated by L has the form

E (f, f) = (Lf, f)L2(X) =
n∑

i=1

(Lif, f)L2(X)

=
n∑

i=1

∫

X1

...
i
g ...

∫

Xn

Ei(f, f) dμ1...
i
g ...dμn

where

Ei(f, f) =

∫

Xi

[f(x1, ..., yi, ..., xn) − f(x1, ..., xi, ..., xn)]2 Ji(xi, yi)dμi(xi)dμi(yi).

It follows that (E ,F) is a jump type Dirichlet form with the following
jump measure (not jump kernel!)

J(x, dy) =
n∑

i=1

δx1(dy1) . . . δxi−1
(dyi−1) Ji(xi, yi)dμi(yi)δxi+1

(dyi+1) . . . δxn(dyn),

where δxk
(dyk) is a unit measure on Xk sitting at xk.
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It is easy to check that J satisfies (TJ):

∫

Br(x)c
J (x, dy) =

n∑

i=1

∫

B
(i)
r (xi)

c
Ji (xi, yi) dμi (yi) ≤ Cr−β.

Since the heat kernel on X satisfies (WUE) and (NLE), we conclude by
Theorem 7, that the Poincaré inequality (PI) is also satisfied on X.

Consider the range of x, y, t such that

d1 (x1, y1) > t1/β and di (xi, yi) ≤ t1/β for i = 2, . . . , n.

Then (29) yields

pt(x, y) '
1

tα/β

(

1 +
d1 (x1, y1)

t1/β

)−(α1+β)

=
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α1+β)

.

Since α1 can be chosen arbitrarily small, we see that (WUE) is optimal.
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Similarly, consider the range of x, y such that

di (xi, yi) ' dj (xj , yj) for all i, j.

Then d(x, y) ' di (xi, yi) and

pt(x, y) '
1

tα/β

n∏

i=1

(

1 +
di (xi, yi)

t1/β

)−(αi+β)

'
1

tα/β

(

1 +
d(x, y)

t1/β

)−(α+nβ)

.

Since n can be chosen arbitrarily large, while α and β are fixed, we see
that one cannot ensure any lower bound of the form

pt(x, y) ≥
c

tα/β

(

1 +
d(x, y)

t1/β

)−N

.

In this sense, (NLE) is optimal.
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10 Operators of Vladimirov and Taibleson

Let us slightly modify the above example. For any i = 1, ..., n, let Xi be
Qp with the p-adic metric di (x, y) = ‖x − y‖p. That is, in the terminol-
ogy of the previous example, all αi = 1.

Fix β > 0 and consider the fractional derivative Dβ
i acting in Xi. On the

product space Qn
p = X1 × ... × Xn we have the operator

Vβ =
n∑

i=1

Dβ
i ,

that is called Vladimirov operator.

The operator Vβ was introduced by Vladimirov and Volovich and was
considered as a free Hamiltonian in their theory of p-adic Quantum Me-
chanics.

Since Dβ
i coincides with the isotropic Laplacian Li on Xi = Qp, we obtain

from Proposition 8 the following.
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Corollary 9 The operator Vβ is essentially self-adjoint, and the heat
semigroup exp

(
−tVβ

)
has the heat kernel pt (x, y) that satisfies for all

t > 0 and x, y ∈ Qn
p the estimate

pt(x, y) '
1

tn/β

n∏

i=1

(

1 +
‖xi − yi‖p

t1/β

)−(1+β)

.

Corollary 10 If (n−1)/2 < β < n then the Green function of Vβ exists
and satisfies the estimate

g(x, y) ' ‖x − y‖−(n−β)
p . (30)

The estimate (30) was known before only for a very special case n = 3,
β = 2 and when all the components xi − yi are the same.

Another natural way of constructing a Markov operator on Qn
p is to use

the Fourier transform in Qn
p that is defined for functions f on Qn

p by

f̂ (ξ) =

∫

Qn
p

e2πi〈x,ξ〉f (x) dμ (x) ,

where ξ ∈ Qn
p and 〈x, ξ〉 =

∑n
k=1 {xkξk} .
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Definition. For any β > 0 the Taibleson operator T β is defined on

functions f ∈ C0(Qn
p ) by T̂ βf(ξ) = ‖ξ‖β

p f̂(ξ), ξ ∈ Qn
p .

Clearly, in the case n = 1 the operator T β coincides with Dβ and Vβ. In
the case n > 1, the operators T β and Vβ are different! In particular, this
can be seen from the following result.

Theorem 11 The operator T β is essentially self-adjoint, it generates a
heat semigroup in L2(Qn

p ) that admits a continuous heat kernel pt(x, y)
satisfying the estimate

pt(x, y) '
1

tn/β

(

1 +
‖x − y‖p

t1/β

)−(n+β)

.

The Green function of T β is finite if and only if β < n, and in this case
it satisfies the identity g(x, y) = cn,p ‖x − y‖−(n−β)

p .

Proof. Everything follows from the observation that T β coincides on C0

with the isotropic Laplacian L associated with the distribution function
σ(r) = exp(− (p/r)β). For the proof of T β = L, we compare eigenfunc-
tions and eigenvalues of T β and L and show that they coincide.
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11 Semi-bounded jump kernels

Let (X, d, μ) be α-regular ultra-metric space and (E ,F) be a regular
Dirichlet form with a jump kernel J(x, y). Consider two conditions:

J(x, y) ≤ Cd(x, y)−(α+β) (J≤)

and
J(x, y) ≥ cd(x, y)−(α+β). (J≥)

Theorem 12 If (J≤) and (PI) are satisfied then the heat kernel satisfies
for all x, y ∈ X and t > 0 the optimal upper bound

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

(UE)

and the near-diagonal lower bound

pt(x, y) ≥
c

tα/β
provided d(x, y) ≤ δt1/β. (NLE)

In fact, we have

(J≤) + (PI) ⇔ (UE) + (NLE).
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Theorem 13 If (J≥) and (TJ) are satisfied then the heat kernel satisfies
for all x, y ∈ X and t > 0 the optimal lower bound

pt(x, y) ≥
c

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

(LE)

and the weak upper bound

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−β

. (WUE)

Moreover, under the standing assumption (TJ), we have

(J≥) ⇔ (WUE) + (LE).

Clearly, Theorems 12 and 13 imply that

(J≤) + (J≥) ⇔ (UE) + (LE),

which is equivalent to Theorem 6.

65



12 Example: degenerated jump kernel

Here we construct an example of a jump kernel J(x, y) on X = Qp that
satisfies (J≤) and (PI) but not (J≥). In fact, J vanishes on large subsets.

Let J be a symmetric kernel on X×X and let Φ be an increasing positive
function on (0,∞). We say that J satisfies Φ-Poincaré inequality if, for
any ball B ⊂ X of radius r and for any f ∈ L2 (B),
∫

B×B

(f(x) − f(y))2 dμ(x)dμ(y) ≤ Φ (r)

∫

B×B

(f(x) − f(y))2 J(x, y)dμ(x)dμ(y).

Lemma 14 The above inequality is equivalent to
∫

B

(
f − f

)2
dμ ≤

Φ(r)

2μ(B)

∫

B×B

(f(x) − f(y))2 J(x, y)dμ(x)dμ(y), (31)

where f = −
∫

B
fdμ.

Note that if μ (B) ' rα and Φ (r) = rα+β then (31) coincides with the
β-Poincaré inequality.
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Proof. We have
∫

B

∫

B

(f(x) − f(y))2 dμ(x)dμ(y) =

∫

B

∫

B

(
f(x)2 − 2f(x)f(y) + f(y)2

)
dμ(x)dμ(y)

= 2μ (B)

∫

B

f 2dμ − 2

(∫

B

fdμ

)2

= 2μ (B)

(∫

B

f 2dμ − f
2
μ (B)

)

and
∫

B

(
f − f

)2
dμ =

∫

B

f 2dμ − 2f

∫

B

fdμ + f
2
μ (B) =

∫

B

f 2dμ − f
2
μ (B) .

Hence, we obtain

∫

B×B

(f(x) − f(y))2 dμ(x)dμ(y) = 2μ (B)

∫

B

(
f − f

)2
dμ,

whence the claim follows.
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Set Φ (r) = rα+β with α = 1. We need to construct on Qp a jump kernel
that satisfies const Φ-Poincaré inequality, vanishes on large subsets and
such that

J(x, y) ≤
1

Φ (d(x, y))
.

For simplicity, we construct J not on Qp but on a discrete subset of Qp.

Let M ⊂ Qp be the set of p-adic fractions .x1x2..., that is, M is the set
of sequences x = {xi}

∞
i=1, where xi ∈ Fp and xi = 0 for large enough i.

The set M has the additive group structure as follows:

x + y = {xi + yi}
∞
i=1 ,

where the sum xi + yi is understood in Fp.

Recall that ‖x‖p = pn if xn 6= 0 and xi = 0 for all i > n. The distance
function on M is d(x, y) = ‖x − y‖p , and balls are defined by

Br (x) = {y ∈ M : d(x, y) ≤ r} .
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Define a function S on M by

S (x) =
∞∑

i=1

xi ∈ Fp,

and consider the following subset N of M × M :

N = {(x, y) ∈ M × M : S (x) = 0 and S (y) = 1 or S (x) = 1 and S (y) = 0} .

Proposition 15 Let p ≥ 3. For the jump kernel

J(x, y) =
1Nc(x, y)

Φ (d(x, y))
,

the following inequality holds for any ball B of radius r and any function
f on B:

∑

(x,y)∈B×B

(f(x) − f(y))2 ≤ 5Φ(r)
∑

(x,y)∈B×B

(f(x) − f(y))2 J(x, y) (32)
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Proof. We have

∑

(x,y)∈(B×B)∩Nc

(f(x) − f(y))2 ≤
∑

(x,y)∈(B×B)∩Nc

(f(x) − f(y))2 Φ (r)

Φ (d(x, y))

= Φ (r)
∑

(x,y)∈B×B

(f(x) − f(y))2 J(x, y)

We will prove that
∑

(x,y)∈(B×B)∩N

(f (x) − f (y))2 ≤ 4
∑

(x,y)∈(B×B)∩Nc

(f (x) − f (y))2 , (33)

which will then imply (32).

For simplicity, let p = 3. Observe first the following: any two points
x, y ∈ M form with the point

z = − (x + y)

an equilateral triangle. Indeed, we have z − x = −2x − y = x − y
(since −2 = 1 mod 3), whence ‖z − x‖3 = ‖x − y‖3 and in the same way
‖z − y‖3 = ‖x − y‖3 .
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Consequently, if x, y ∈ B then also z ∈ B since x is a center of B.

The second observation is that if (x, y) ∈ N then both (x, z) and (y, z)
belong to N c. Indeed, by the definition of z we have

S (z) = − (S (x) + S (y)) .

Since (x, y) ∈ N , we have S (x) + S (y) = 1 whence S (z) = −1 = 2.
Consequently, any pair (∙, z) belongs to N c.

Combining the above observations, we conclude that

if (x, y) ∈ (B × B) ∩ N then (x, z) ∈ (B × B) ∩ N c,

and the same is true for (y, z).

Next, we have

(f (x) − f (y))2 ≤ 2 (f (x) − f (z))2 + 2 (f (y) − f (z))2
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and
∑

(x,y)∈(B×B)∩N

(f (x) − f (y))2 ≤ 2
∑

(x,y)∈(B×B)∩N

(f (x) − f (z))2

+2
∑

(x,y)∈(B×B)∩N

(f (y) − f (z))2 .

Observe that the mapping

(x, y) 7→ (x, z) = (x,− (x + y)) ,

is injective because the pair (x, z) allows to recover the pair (x, y) uniquely
by y = − (x + z). Therefore,

∑

(x,y)∈(B×B)∩N

(f (x) − f (z))2 ≤
∑

(x,z)∈(B×B)∩Nc

(f (x) − f (z))2 ,

The same applies to the sum of (f (y) − f (z))2, and we obtain
∑

(x,y)∈(B×B)∩N

(f (x) − f (y))2 ≤ 4
∑

(x,z)∈(B×B)∩Nc

(f (x) − f (z))2 ,

thus proving (33).
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13 Approach to the proof

We outline most essential parts of the proofs of Theorems 6, 7, 12, 13.
Let (X, d, μ) be an α-regular ultra-metric space and (E ,F) be a jump
type Dirichlet form with the jump kernel J(x, y). We write

dj = J(x, y)dμ(x)dμ (y) = J(x, dy)dμ(x).

Assuming that J satisfies the β-tail condition
∫

Br(x)c

J(x, dy) ≤ Cr−β (TJ)

and the β-Poincaré inequality
∫

Br

∣
∣f − f

∣
∣2 dμ ≤ Crβ

∫

Br

∫

Br

(f(x) − f(y))2 J(x, dy)dμ(x), (PI)

we need to prove the weak upper estimate

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−β

(WUE)
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and the near-diagonal lower estimate

pt (x, y) ≥
c

tα/β
provided d (x, y) ≤ δt1/β, (NLE)

for some δ > 0. If in addition J satisfies

J (x, y) ≤ Cd (x, y)−(α+β) (J≤)

then heat kernel should satisfy the optimal upper estimate

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

, (UE)

and if in addition
J (x, y) ≥ cd (x, y)−(α+β) (J≥)

then heat kernel should satisfy the optimal lower estimate

pt(x, y) ≥
c

tα/β

(

1 +
d(x, y)

t1/β

)−(α+β)

. (LE)

There are also issues with the existence of the heat kernel and its Hölder
contnuity, as well as the opposite implications.
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The proof is very long and consists of many steps. We outline the struc-
ture of the proof and some most essential moments.

Overall, the proof uses the same techniques as in general metric spaces
but the presense of an ultra-metric brings some simplifications.

For any open set Ω ⊂ X, consider the function space F (Ω) that is the
closure of F ∩C0 (Ω) in F . Then (E ,F (Ω)) is a regular Dirichlet form in
L2 (Ω) that corresponds to a Markov process killed outside Ω.

It is important, that in ultra-metric space satisfying (TJ), for any ball

B = Br (x), 1B ∈ F (B) because 1B ∈ C0 (B) and E (1B, 1B) ≤ Cμ (B) r−β.

Denote by PΩ
t the heat semigroup of (E ,F(Ω)) and by

GΩ =

∫ ∞

0

PΩ
t dt

the Green operator. It is known that PΩ
t and GΩ are increasing in Ω.

We say that a function u ∈ F is superharmonic in Ω if E (u, ϕ) ≥ 0
for any non-negative ϕ ∈ F (Ω). A function u is subharmonic if −u is
superharmonic. Finally, u is harmonic if u is super- and subharonic.
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Step 1. (PI) implies the Nash inequality: for any f ∈ F ∩ L1 (X) ,

‖f‖2(1+ν)

L2 ≤ CE(f, f)‖f‖2ν
L1 , (34)

where ν = β/α. The latter implies the existence of the heat kernel and
the diagonal upper estimate, for all t > 0 and almost all x, y ∈ X,

pt (x, y) ≤ Ct−α/β. (DUE)

One of the consequences of (DUE) is the following estimate of the meat
exit time from balls: for any ball B of radius r,

GB1 ≤ Crβ. (35)

In the case α > β it is simple (while the case α ≤ β requires more care):

GB1 ≤ G1B =

∫ ∞

0

Pt1B dt

≤
∫ rβ

0

Pt1 dt +

∫ ∞

rβ

∫

B

pt (x, y) dμ (y) dt

≤ rβ + C

∫

B

(∫ ∞

rβ

t−α/βdt

)

dμ ≤ rβ + Crα
(
rβ
)1−α/β

= Crβ.
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One more consequence of the Nash inequality (34) is the Faber-Krahn
inequality: for any measurable set E ⊂ X of finite measure and any
f ∈ F such that f = 0 a.e. outside E, we have

E (f, f) ≥ cμ (E)−ν ‖f‖2
L2 . (36)

Indeed, by Cauchy-Schwarz inequality,

‖f‖2
L1 ≤ μ (E) ‖f‖2

L2

so by (34)

E (f, f) ≥ c‖f‖2(1+ν)

L2 ‖f‖−2ν
L1 ≥ c ‖f‖2

L2 μ (E)−ν .

Step 2. This is the largest and most technical part of the proof. One
obtains a weak Harnack inequality for harmonic functions of (E ,F),
where the main ingrdient of the proof is Lemma of growth. We give
some details below. The weak Harnack inequality implies an oscillation
inequality for harmonic functions and, consequently, the Hölder continu-
ity of harmonic functions.
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The mean exit time estimate (35) implies
∥
∥GBf

∥
∥

L∞ ≤ Crβ ‖f‖L∞ , which
allows to extends oscillation inequality to solutions u of Lu = f with
bounded functions f.

Considering a function u (t, ∙) = Ptϕ as solution to Lu = −∂tu and esti-
mating ‖∂tu‖L∞ by means of (DUE), we obtain the oscillation inequality
and the Höder continuity for Ptf and, hence, also for the heat kernel.

Step 3. Here one obtains the lower bound for mean exit time:

GB1 ≥ crβ in B (37)

that is, in fact, a consequence of the Lemma of growth. The function
u = GB1 is superharmonic in B; hence, by a corollary of a Lemma of
growth, it satisfies

inf
B

u ≥ c

(

−
∫

B

1

u
dμ

)−1

.

On the other hand, using φ = 1B ∈ F (B), we obtain
∫

B

1

u
dμ = (φ,

φ2

u
) = E(GBφ,

φ2

u
) = E(u,

φ2

u
).
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Next one uses the following general inequality (Lemma 19 below):

E(u,
φ2

u
) ≤ 3E (φ, φ) .

Since by (TJ) E (φ, φ) ≤ Crα−β, we obtain

−
∫

B

1

u
dμ ≤ Cr−β,

whence (37) follows.

The estimates (35) and (37) yield

GB1 ' rβ in B.

This implies the following survival estimate :

PB
t 1 ≥ ε in B, provided t1/β ≤ δr, (S)

with some ε, δ > 0. Indeed, (S) follows from a general inequality

PB
t 1 ≥

GB1 − t

‖GB1‖L∞

.
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Step 4. Here we prove (NLE). For any ball B = Br (x), assuming
t1/β ≤ δr, we have, using the semigroup identity and (S),

p2t (x, x) =

∫

X

pt (x, y)2 dμ (y) ≥
∫

B

pt (x, y)2 dμ (x)

≥
1

μ (B)

(∫

B

pt (x, y) dμ (x)

)2

≥

(
PB

t 1
)2

μ (B)
≥

ε2

μ (B)
' r−α.

Choosing r = δ−1r1/β, we obtain

pt (x, x) ≥ ct−α/β.

By the oscillation inequality from the second step,

|pt (x, x) − pt (x, y)| ≤ Ct−α/β

(
d(x, y)

t1/β

)θ

.

Hencee, if d (x, y) ≤ δt1/β with small enough δ, then

|pt (x, x) − pt (x, y)| ≤
c

2
t−a/β,

whence (NLE) follows.

80



Step 5. Here we prove (WUE). The main difficulty is in obtaining the
following estimate: for any ball B of radius r and any t > 0,

Pt1Bc ≤ C
t

rβ
. (TP )

If this is already known then we have, by setting r = d (x, y) /2,

p2t (x, y) =

∫

X

pt (x, z) pt (z, y) dμ (z)

≤

(∫

Br(x)c
+

∫

Br(y)c

)

pt (x, z) pt (z, y) dμ (z)

≤ (sup pt) Pt1Br(x)c + (sup pt) Pt1Br(y)c

≤ Ct−α/β t

rβ
.

Since by (DUE) also pt (x, y) ≤ Ct−α/β, it follows

p2t (x, y) ≤ Ct−α/β min

(

1,
t

rβ

)

' t−α/β
(
1 +

r

t1/β

)−β

.
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However, the main difficulty here lies in proving (TP ) which itself a
multi-step procedure that is based on reiterating of the suvival estimate
(S). Indeed, (S) implies, for t1/β ≤ δr, that

Pt1Bc ≤ 1 − Pt1B ≤ 1 − PB
t 1 ≤ 1 − ε,

which gives (TP ) provided t1/β = δr. A certain bootstrapping argument
allows to extend this to all t.

Step 6. In the case when J satisfies (J≤), one can extend the argument
of Step 5 to prove the optimal upper estimate (UE), which requires
additional techniques. One uses the truncated jump kernel

J (ρ) = min (J, ρ) ,

the heat kernel q
(ρ)
t (x, y) associated with J (ρ), and the following general

estimate

pt (x, y) ≤ q
(ρ)
t (x, y) + 2t sup

{x′,y′∈X:d(x′,y′)≥ρ}
J (x′, y′) .
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For the truncated heat kernel one obtains the estimate

q
(ρ)
t (x, y) ≤ Ct−α/β exp

(

−4ρ−βt − c min(
d (x, y)

ρ
,

ρ

t1/β
)

)

,

which together with (J≤) allows to obtain (UE).

Step 7. In the case when J satisfies (J≥), one uses the following gen-
eral result: assuming that conditions (S) and (NLE) are satisfied, the
following estimate holds for all t > 0, x, y ∈ X:

pt(x, y) ≥
c

tα/β
min(1, {tμ (Bt1/β (y)) essinf

x′∈B
t1/β (x)

y′∈B
t1.β (y)

J(x′, y′)}). (38)

Hence, if r := d (x, y) ≥ δt1/β then d (x′, y′) ≤ Cr and, hence, J (x′, y′) ≥
cr−(α+β) which implies

pt (x, y) ≥
c

tα/β
min

(

1,
t1+α/β

rα+β

)

'
1

tα/β

(
1 +

r

t1/β

)−(α+β)

.
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14 Lemma of growth

For any measurable function v on X and for any ball B on X, define the
tail of v outside B by

TB(v) := sup
x∈B

∫

Bc

|v(y)|J(x, dy).

Lemma 16 Let B be a ball. For any u ∈ F ∩L∞ that non-negative and
subharmonic in B, and for φ = 1B, we have

E(uφ, uφ) ≤ 2TB(u)

∫

B

udμ. (39)

Proof. Since φ ∈ F (B), both uφ and uφ2 belong to F (B) . We have:

E(uφ, uφ) = E(u, uφ2) +

∫

X×X

u(x)u(y) (φ(x) − φ(y))2 dj.

By subharmonicity of u, we have E(u, uφ2) ≤ 0.
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It follows that

E(uφ, uφ) ≤

(∫

B×B

+

∫

Bc×B

+

∫

B×Bc

+

∫

Bc×Bc

)

u(x)u(y) (φ(x) − φ(y))2 dj

= 2

∫

B×Bc

u(x)u(y) (φ(x) − φ(y))2 dj (by symmetrization)

≤ 2

∫

B

u(x)dμ(x) ∙ sup
x∈B

∫

Bc

|u(y)|J(x, dy),

which is equivalent to (39).
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Lemma 17 (Lemma of growth) If u ∈ F ∩L∞ is superharmonic and
non-negative in a ball B of radius R and if, for some a > 0,

μ(B ∩ {u < a})
μ(B)

≤ ε0

(

1 +
RβTB(u−)

a

)−α/β

, (40)

then
essinf

B
u ≥

a

2
,

where ε0 is a positive constant depending on the main hypotheses.
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Proof. For any s > 0, set

ms =
μ(B ∩ {u < s})

μ(B)
and m̃s = μ(B ∩ {u < s})

In the first part of the proof, we show that, for all b > a > 0,

ma ≤ CL

(
b

b − a

)2

m
1+β/α
b , (41)

where

L := 1 +
RβTB(u−)

b
. (42)

Set v = (b − u)+ and φ = 1B. Then we have

m̃a =

∫

B∩{u<a}
φ2dμ ≤

∫

B

φ2

(
(b − u)+

b − a

)2

︸ ︷︷ ︸
≥1 on {u<a}

dμ =
1

(b − a)2

∫

B

(φv)2dμ.

(43)
Note that φv = 0 outside the set E = B ∩ {u < b} = B ∩ {v > 0}
because either φ = 0 or v = 0.
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By the Faber-Krahn inequality (36), we obtain
∫

B

(φv)2dμ =

∫

E

(φv)2dμ ≤ CE(φv, φv)μ (E)ν = CE(φv, φv)m̃ν
b .

Combining this inequality with (43), we obtain

m̃a ≤
1

(b − a)2

∫

B

(φv)2dμ ≤ C
E(φv, φv)

(b − a)2
m̃ν

b . (44)

Since u is superharmonic in B, the function v = (b − u)+ is subharmonic
in B, and we obtain by Lemma 16 and (TJ) that

E(φv, φv) ≤ 2TB(v)

∫

B

vdμ ≤ 2TB(v)

∫

B

b1{u<b}dμ

≤ 2 (TB(b) + TB (u−)) bm̃b ≤ C
(
bR−β + TB (u−)

)
bm̃b ≤ CLb2R−βm̃b.

Combining this with (44) yields

m̃a ≤ C
Lb2R−β

(b − a)2 m̃1+ν
b ≤ C

Lb2

(b − a)2m1+ν
b R−β (Rα)1+β/α = C

Lb2

(b − a)2m1+ν
b Rα.

Dividing by Rα and using m̃a/R
α ' ma, we obtain (41).
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In the second part of the proof, consider the following sequence

ak :=
1

2
(1 + 2−k)a, k = 0, 1, 2, ...,

so that ak ↘ 1
2
a as k → ∞. Set also

mk := mak
=

μ(B ∩ {u < ak})
μ(B)

.

Applying the inequality (41) with a = ak and b = ak−1, we obtain, for
any k ≥ 1,

mk ≤ C

(

1 +
RβTB(u−)

ak−1

)(
ak−1

ak−1 − ak

)2

mq
k−1

where q = 1 + β/α. Since ak−1 ≥ 1
2
a and

ak−1

ak−1 − ak

=
1 + 2−(k−1)

2−(k−1) − 2−k
≤ 2k+1,

it follows that
mk ≤ CL ∙ 4k ∙ mq

k−1, (45)
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where

L = 1 +
RβTB(u−)

a
.

Iterating (45), we obtain

mk ≤ (CL)1+q+∙∙∙+qk−1

∙ 4k+q(k−1)+∙∙∙+qk−1

∙ mqk

0

≤
(
(CL)

1
q−1 ∙ 4

q

(q−1)2 ∙ m0

)qk

, (46)

where in the second line we have used that

k + q(k − 1) + ∙ ∙ ∙ + qk−1 =
qk+1 − (k + 1)q + k

(q − 1)2
≤

q

(q − 1)2
qk,

and C > 1. It follows from (46) and q > 1 that if

(CL)
1

q−1 ∙ 4
q

(q−1)2 ∙ m0 ≤
1

2
, (47)

then
lim
k→∞

mk = 0. (48)
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Clearly, (47) is equivalent to

m0 ≤ 2
− 2q

(q−1)2
−1

∙ (CL)−
1

q−1 .

Since 1
q−1

= α
β
, we see that this condition is equivalent to the hypothesis

(40) with

ε0 := 2
− 2q

(q−1)2
−1

C− 1
q−1 .

Assuming that ε0 is defined so, we see that (47) is satisfied and, hence,
we have (48). It follows that

μ(B ∩ {u ≤
a

2
}) = 0,

which implies essinfB u ≥ a/2.

Lemma 18 Let a non-negative function u ∈ F ∩ L∞ be superharmonic
in a ball B. Then

essinf
B

u ≥
ε0

2

(

−
∫

B

1

u
dμ

)−1

,

where ε0 is the same as in Lemma 17.
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Proof. We will apply Lemma 17 with a suitable value of a. Indeed, for
any a > 0, we have

μ(B ∩ {u < a}) = μ(B ∩ {
1

u
>

1

a
}) ≤ a

∫

B

1

u
dμ = aμ(B)−

∫

B

1

u
dμ.

Since u is non-negative on X, we have that RβTB(u−) = 0. Setting

a := ε0

(

−
∫

B

1

u
dμ

)−1

,

we obtain that
μ(B ∩ {u < a}) ≤ ε0μ(B).

Hence, by Lemma 17, we conclude that

essinf
B

u ≥
a

2
=

ε0

2

(

−
∫

B

1

u
dμ

)−1

,

which was to be proved.
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15 Weak Harnack inequality

Lemma 19 Let u ∈ F ∩ L∞ and assume that essinfB u > 0 for some
ball B. Then, for φ = 1B,

E(u,
φ2

u
) +

1

2

∫

B

∫

B

∣
∣
∣
∣ln

u(y)

u(x)

∣
∣
∣
∣

2

dj(x, y) ≤ 3E(φ, φ)− 2

∫

B

∫

Bc

u (y)

u(x)
dj(x, y).

Lemma 20 Let u ∈ F ∩ L∞ be superharmonic in a ball B of radius R
and let u ≥ λ > 0 in B. Fix positive numbers a, b and consider in B the
function:

v :=
(
ln

a

u

)

+
∧ b.

Then

−
∫

B

−
∫

B

(v(x) − v(y))2dμ(x)dμ(y) ≤ C

(

1 +
RβTB (u−)

λ

)

. (49)
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Proof. Note first that

|v(x) − v(y)| ≤

∣
∣
∣
∣ln

u(y)

u(x)

∣
∣
∣
∣ .

By (PI) as in Lemma 14 and by Lemma 19, we obtain

−
∫

B

−
∫

B

(v(x) − v(y))2dμ(x)dμ(y)

≤ CRβ−α

∫

B

∫

B

(v(x) − v(y))2dj(x, y)

≤ CRβ−α

∫

B

∫

B

∣
∣
∣
∣ln

u(y)

u(x)

∣
∣
∣
∣

2

dj(x, y)

≤ CRβ−α

(

6E (φ, φ) + 4

∫

B

∫

Bc

u(y)−
u(x)

dμ (x) J(x, dy)

)

≤ CRβ−α

(

Rα−β + Rα sup
x∈B

∫

Bc

u(y)−
λ

J(x, dy)

)

= C

(

1 +
RβTB(u−)

λ

)

.
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Lemma 21 (Weak Harnack inequality) Let B be a ball of radius R
and let u ∈ F ∩ L∞ be superharmonic and non-negative in B. Then, for
any a > 0, such that

μ(B ∩ {u ≥ a})
μ(B)

≥
1

2
(50)

and
RβTB(u−) ≤ εa, (51)

we have
essinf

B
u ≥ εa, (52)

where ε > 0 is a constant that depends only on the main hypotheses.

If u ≥ 0 on X then the condition (51) is trivially satisfied. A (strong)
Harnack inequality for non-negative harmonic functions would say that

essinf
B

u ≥ ε esssup
B

u.

In particular, for any a < esssupB u, we would have (52). That is, the
hypothesis (50) could be relaxed in this case to μ (B ∩ {u ≥ a}) > 0.
Hence, Lemma 21 is a weak version of the Harnack inequality.
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Proof. Let λ, b be two positive parameters to be determined later. Con-
sider the functions uλ := u + λ and

v :=

(

ln
a + λ

uλ

)

+

∧ b.

Note that 0 ≤ v ≤ b and in B

v = 0 ⇔
a + λ

uλ

≤ 1 ⇔ u ≥ a

v = b ⇔
a + λ

uλ

≥ eb ⇔ uλ ≤ (a + λ)e−b =: q.

We will apply Lemma 17 to uλ instead of u. Set

ω :=
μ(B ∩ {u ≥ a})

μ(B)
=

μ(B ∩ {v = 0})
μ(B)

(53)

and

m :=
μ(B ∩ {uλ ≤ q})

μ(B)
=

μ(B ∩ {v = b})
μ(B)

. (54)
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By Lemma 17, if

m ≤ ε0

(

1 +
RβTB((uλ)−)

q

)−α/β

, (55)

then
essinf

B
uλ ≥

q

2
. (56)

Since u ≥ 0 in B, we have

L := RβTB(u−) ≥ RβTB

(
(uλ)−

)
.

Hence, in order to have (55), it suffices to ensure that

m ≤ ε0

(

1 +
L

q

)−α/β

. (57)

Let us estimate m from above using the definition (53) and (54) of ω and
m, as well as Lemma 20.
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We obtain

b2mω =
1

μ(B)2

∫

B∩{v=0}

∫

B∩{v=b}
b2dμ(x)dμ(y)

=
1

μ(B)2

∫

B∩{v=0}

∫

B∩{v=b}
(v(x) − v(y))2dμ(x)dμ(y)

≤ −
∫

B

−
∫

B

(v(x) − v(y))2dμ(x)dμ(y)

≤ C

(

1 +
RβTB((uλ)−)

λ

)

≤ C

(

1 +
L

λ

)

.

It follows that

m ≤
C

b2ω

(

1 +
L

λ

)

≤
2C

b2

(

1 +
L

λ

)

,

where we have used that ω ≥ 1/2, which is true by (50). Hence, the
condition (57) will be satisfied provided

2C

b2

(

1 +
L

λ

)

≤ ε0

(

1 +
L

q

)−α/β

,
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which is equivalent to

b2 ≥
2C

ε0

(

1 +
L

λ

)(

1 +
L

q

)α/β

. (58)

Fix ε > 0 to be determined later, and specify the parameters λ, b as
follows:

λ := εa, b := ln
1 + ε

4ε
.

Then we have
q = (a + λ)e−b = 4εa,

and the inequality (58) is equivalent to

(

ln
1 + ε

4ε

)2

≥
2C

ε0

(

1 +
L

εa

)(

1 +
L

4εa

)α/β

. (59)

Since by (51) we have L ≤ εa, the inequality (59) will follow from

(

ln
1 + ε

4ε

)2

≥
4C

ε0

(
5

4

)α/β

.
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The latter can be achieved by choosing ε small enough. With this choice
of ε we conclude that (56) holds, which implies

essinf
B

u ≥
q

2
− λ = 2εa − εa = εa,

thus finishing the proof.
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