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Abstract

We give an overview of heat kernels on ultra-metric spaces based on the results of [9] and
[11]. In particular, we present estimates of the heat kernel of the Vladimirov operator in Qn

p .
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1 Background

1.1 Heat kernels and Dirichlet forms in Rn

The classical Laplace operator Δ =
∑n

i=1
∂2

∂x2
i

in Rn is associated with the Dirichlet integral

∫

Rn

|∇f |2 dx (1.1)

via the Green formula

(f,−Δf)L2 = −
∫

Rn

fΔf dx = −
∫

Rn

|∇f |2 dx.

More precisely, the Dirichlet form (1.1) in the domain f ∈ W 1,2(Rn) has the generator L = −Δ
that is a non-negative definite self-adjoint operator in L2(Rn) with the domain W 2,2(Rn).

The associated heat equation
∂tu − Δu = 0

has a fundamental solution

pt(x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

,

that is also the transition density function of a diffusion process – Brownian motion in Rn.
For any β ∈ (0, 2), the operator (−Δ)β/2 determines in a similar way the following non-local

Dirichlet form

cn,β

∫∫

Rn×Rn

(f(x) − f(y))2

|x − y|n+β
dxdy (1.2)

with the domain B
β/2
2,2 (Rn). The associated heat equation

∂tu + (−Δ)β/2 u = 0

has a non-negative fundamental solution p
(β)
t (x, y), that also serves as the transition density

function of a symmetric stable Levy process of index β (a Markov process of jump type).
It is known that, in the case β = 1,

p
(1)
t (x, y) =

cnt
(
t2 + |x − y|2

)n+1
2

, (1.3)

(that is the Cauchy distribution), while for any β ∈ (0, 2) there is an estimate

p
(β)
t (x, y) '

t
(
t1/β + |x − y|

)n+β
=

1
tn/β

(

1 +
|x − y|
t1/β

)−(n+β)

. (1.4)

The sign ' means that the ratio of two sides is bounded between two positive constants.
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1.2 Dirichlet forms of jump type in metric measure spaces

Let (X, d) be a locally compact separable metric space and μ be a Radon measure on X with
full support. Consider in L2(X,μ) the following quadratic form

E(f, f) =
1
2

∫∫

X×X
(f(x) − f(y))2 J(x, y)dμ(x)dμ(y), (1.5)

where J(x, y) is a non-negative symmetric function on X × X that is called a jump kernel.
Assume that E extends to a regular Dirichlet form with a domain F ⊂ L2(X,μ), that is, F is
a dense subspace of L2, F is complete with respect to the norm ‖f‖2

L2 + E(f, f), and F ∩ C0 is
dense both in F and C0, where C0 is endowed with the sup-norm. The generator of the Dirichlet
form (1.5) is the operator

Lf(x) =
∫

X
(f(x) − f(y)) J(x, y)dμ(y),

that is a non-positive definite self-adjoint operator in L2(X,μ). It determines the heat

semigroup {e−tL}t≥0 in L2(X,μ) and a certain Hunt

process ({Xt}t≥0, {Px}x∈X) that satisfies the identity

Px(Xt ∈ A) = e−tL1A(x),

for any Borel set A ⊂ X.

The heat kernel pt(x, y) of (E ,F) is the integral density of the heat semigroup e−tL, if the
former exists. In this case pt(x, y) is also the transition density function of the Hunt process.

For the theory of Dirichlet forms we refer the reader to [15].

2 Ultra-metric spaces

2.1 Definition and main properties

Let (X, d) be a metric space. The metric d is called ultra-metric if it satisfies the ultra-metric
inequality

d(x, y) ≤ max{d(x, z), d(z, y)}, (2.1)

that is obviously stronger than the usual triangle inequality. In this case (X, d) is called an
ultra-metric space.

A well-known example of an ultra-metric distance is given by a p-adic norm. Given a prime
p, the p-adic norm on Q is defined as follows: if x = pn a

b , where a, b, n ∈ Z and a, b are not
divisible by p, then

‖x‖p := p−n.

If x = 0 then ‖x‖p := 0. The p-adic norm on Q satisfies the ultra-metric inequality. Indeed, if
y = pm c

d and m ≤ n then

x + y = pm

(
pn−ma

b
+

c

d

)

.

Since the denominator bd is not divisible by p, it follows that

‖x + y‖p ≤ p−m = max
{
‖x‖p , ‖y‖p

}
.

Hence, Q with the metric ‖x − y‖p is an ultra-metric space, and so is its completion Qp – the
field of p-adic numbers.
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The next example of an ultra-metric space is the product

Qn
p =

n times
︷ ︸︸ ︷
Qp × . . . ×Qp

where the ultra-metric is given by the vector p-norm

‖(x1, . . . , xn)‖p := max
i=1,...,n

‖xi‖p .

Various constructions of Markov processes on Qp and on more general locally compact
Abelian groups carrying an ultra-metric, were developed by Steven Evans [14], Albeverio and
Karwowski [1], [2], Kochubei [22], Del Muto and Figà-Talamanca [25], Zúňiga-Galindo [31],
Rodŕıges-Vega and Zúňiga-Galindo [26], and many others, mostly by means of Fourier trans-
form on such groups.

Analysis on Qp was developed by Taibleson [27] , Vladimirov [28], Vladimirov and Volovich
[29], also using Fourier transform. A common achievement of the above works is that they
have introduced a class of pseudo-differential operators on Qp and on Qn

p , in particular, a p-adic
Laplacian.

Vladimirov, Volovich and Zelenov [30] studied the corresponding p-adic Schrödinger equa-
tion. Among other results, they explicitly computed (as series expansions) certain heat kernels
as well as the Green function of the p-adic Laplacian.

In this paper we present a construction from [10] and [11] of a natural class of random
walks on any ultra-metric space (X, d) that satisfies in addition the following conditions: it is
separable, proper (that is, all balls are compact), and non-compact.

This construction is very easy, takes full advantage of ultra-metric property and uses no
Fourier Analysis. In the case of Qp this class of processes coincides with the one constructed
by Albeverio and Karwowski, and their generators coincide with the operators of Taibleson and
Vladimirov.

Let us first discuss some properties of ultra-metric balls

Br(x) = {y ∈ X : d(x, y) ≤ r} ,

where x ∈ X and r > 0. The ultra-metric property (2.1) implies that any two metric balls of
the same radius are either disjoint or identical.

Indeed, let two balls Br(x) and Br(y) have a non-empty intersection:

∃z ∈ Br(x) ∩ Br(y).

Then d(x, z) ≤ r and d(y, z) ≤ r whence it follows d(x, y) ≤ r.

Consider an arbitrary point z ∈ Br(x).

We have
d(x, z) ≤ r and d(x, y) ≤ r

whence
d(y, z) ≤ r and z ∈ Br(y).

Hence, Br(x) ⊂ Br(y) and, similarly,

Br(y) ⊂ Br(x) whence Br(x) = Br(y).

Consequently, a collection of all distinct balls of the same radius r forms a partition of X, which
is a key property for our construction.

Let us prove some other properties of ultra-metric spaces.

4



• Every point inside a ball is its center.

Indeed, if y ∈ Br(x) then the balls Br(y)

and Br(x) have a non-empty intersection

whence Br(x) = Br(y).

Consequently, the distance from any point

y from Br(x) to the complement Br(x)c is

larger than r.

• Every ball is open and closed as a set.

Indeed, any ball Br(x) is closed by definition, but it is also open because any y ∈ Br(x) has
a neighborhood Br(y) ⊂ Br(x).

Consequently, the topological boundary ∂Br(x) is empty.

• Any ultrametric space X is totally disconnected, that is, any non-empty connected subset
S of X is an one-point set.

Indeed, if S contains two distinct points,

say x and y, set r = 1
2d(x, y), and notices

that set S is covered by disjoint open sets

Br(x) and Br(x)c both having non-empty

intersection with S.

Hence, S is disconnected. Consequently,

X cannot carry any non-trivial diffusion

process.

• Any two balls Br1(x) and Br2(y) of arbitrary radii r1, r2 > 0 are either disjoint or one of
them contains the other.

Indeed, let r1 ≥ r2. If the balls Br1(x) and Br2(y) are not disjoint then also the balls Br1(x)
and Br1(y) are not disjoint, whence

Br1(x) = Br1(y) ⊃ Br2(y).

• Any triangle {x, y, z} ⊂ X is isosceles; moreover, the largest two sides of the triangle are
equal.

Indeed, if d(y, z) is smallest among all

three distances then we obtain

d(x, y) ≤ max (d(x, z), d(y, z)) = d(x, z)

and similarly d(x, z) ≤ d(x, y), whence

d(x, y) = d(x, z).

• For any x ∈ X, a set M = {d(x, y) : y ∈ X \ {x}} has no accumulation point in (0, +∞);
in particular, M is countable.

Let r ∈ (0,∞) be an accumulation point of M , i.e. ∃ {rn} ⊂ M \ {r} such that rn → r.
Choose yn ∈ X such that d(x, yn) = rn.
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By compactness of balls, we can assume that

{yn} converges, say yn → y. Then d(x, y) = r.

Since d(y, yn) → 0, it follows that r = rn,

which contradicts to the choice of {rn}.

For example, in Qp we have M = {p−m}m∈Z .

2.2 Averaging operators

Let μ be a Radon measure with full support on an ultra-metric space X. Then μ (Br(x)) is
finite and positive for all x ∈ X and r > 0. Let us assume that μ (X) = ∞.

Define a family {Qr}r>0 of averaging operators acting on functions f ∈ L∞(X):

Qrf(x) =
1

μ (Br(x))

∫

Br(x)
f dμ . (2.2)

Clearly, Qr is a Markov operator.

Let σ(r) be a cumulative probability
distribution function on (0,∞) that
is strictly monotone increasing, left-
continuous, and

σ (0+) = 0, σ (∞−) = 1.

The following convex combination of Qr is also a Markov operator:

Pf =
∫ ∞

0
Qrf dσ(r) , (2.3)

where the right hand side contains a Stieltjes integration.
Operator P determines a discrete time Markov chain {Xn}n∈N on X with the following

transition rule: Xn+1 is μ-uniformly distributed in Br(Xn) where the radius r > 0 is chosen
at random according to the distribution σ. We refer to P as an isotropic Markov operator
associated with (d, μ, σ).

Example. Consider X = Qp with the p-adic distance d(x, y) = ‖x − y‖p.
Every x ∈ Qp has the following presentation in the p-adic numeral system:

x = . . . ak . . . a2a1a0.a−1a−2 . . . a−N =
∞∑

k=−N

akp
k,

where N ∈ N and each ak is a p-adic digit: ak ∈ {0, 1, . . . , p − 1}. Then ‖x‖p = p−l provided
al 6= 0 and ak = 0 for all k < l.

Consider a ball Br(x) of radius r = p−m, where m ∈ Z. For any

y = . . . bk . . . b2 b1 b0.b−1 b−2 . . . b−N ∈ Br(x)

we have ‖x − y‖p ≤ p−m, that is, the first non-zero ak − bk occurs for k ≥ m; that is, bk = ak

for k < m and bk are arbitrary for k ≥ m, so that

y = . . . bm+2 bm+1 bmam−1am−2am−3 . . .
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Since bm can take p values, any ball Br(x) of radius r = p−m consists of p disjoint balls of radii
p−(m+1) that are determined by the value of bm.

Let μ be the Haar measure on Qp with the normalization condition

μ (B1(x)) = 1.

Then we obtain that
μ
(
Bp−m(x)

)
= p−m.

If p−m ≤ r < p−(m−1) then Br(x) = Bp−m(x) which implies

μ (Br(x)) = p−m ' r.

The Markov chain {Xn} with the transition operator P has the following transition rule
from Xn to Xn+1. One chooses at random r > 0 and, hence, m as above, then changes all the
digits ak of Xn with k ≥ m to bk, where all bk are uniformly and independently distributed in
{0, 1, . . . , p − 1}:

Xn = . . . am+2am+1amam−1am−2am−3 . . .

Xn+1 = . . . bm+2 bm+1 bmam−1am−2am−3 . . .

The averaging operator Qr on an ultra-metric space X has some unique features arising from
ultra-metric properties. We have

Qrf(x) =
1

μ (Br(x))

∫

X
1Br(x)fdμ =

∫

X
qr(x, y)f(y)dμ(y),

where the kernel

qr(x, y) =
1

μ (Br(x))
1Br(x)(y) =

1
μ (Br(y))

1Br(y)(x)

is symmetric in x, y because Br(y) = Br(x) for any y ∈ Br(x).
As a Markov operator with symmetric kernel, Qr extends to a bounded self-adjoint operator

in L2 (X,μ) .

Claim. Qr is an orthoprojector in L2 (X,μ) and spec Qr ⊂ [0, 1] .

Proof. For any ball B of radius r > 0, any point x ∈ B is a center of B. The value Qrf(x) is
the average of f in B and, hence, is the same for all x ∈ B; that is, Qrf = const on B. A second
application of Qr to Qrf does not change this constant, whence we obtain Q2

r = Qr. Therefore,
Qr is an orthoprojector. It follows that spec Qr ⊂ [0, 1] .

Note that general symmetric Markov operators have spectrum in [−1, 1] and the negative
part of the spectrum may be non-empty. For example, the stochastic symmetric matrix

(
1
3

2
3

2
3

1
3

)

has eigenvalues 1 and −1
3 .

The averaging operator Qr in Rn is also Markov and symmetric, but it has a non-empty
negative part of the L2-spectrum (and, hence, is not an orthoprojector). For example, the
averaging operator in R

Q1f(x) =
1
2

∫ x+1

x−1
f (t) dt

has the Fourier transform

Q̂1f (ξ) =
sin 2πξ

2πξ
f̂ (ξ)

so that its L2-spectrum consists of all values sin 2πξ
2πξ (ξ ∈ R) and, hence, it has a negative part.

In fact, min spec Q1 ≈ −0.217.
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2.3 Isotropic heat semigroup

It follows from (2.3) that P is a self-adjoint operator and spec P ∈ [0, 1]. In particular, the powers
P t are well-defined for all real t ≥ 0 and are bounded self-adjoint operators in L2(X,μ).The
family

{
P t
}

t≥0
is obviously a semigroup that we refer to as the isotropic heat semigroup.

Proposition 2.1 The operator P t is for any t > 0 an integral operator, that is,

P tf(x) =
∫

X
pt(x, y)f(y)dμ(y),

for all f ∈ L2, where the heat kernel pt(x, y) is a continuous function given by

pt(x, y) =
∫ ∞

d(x,y)

dσt(r)
μ(Br(x))

. (2.4)

Proof. It follows from (2.3) by integration-by-parts that

P = −
∫ ∞

0
σ(r)dQr. (2.5)

Since {Qr} are orthoprojectors, it follows that (2.5) is a spectral decomposition of P , up to a
change of variables λ = σ(r) in the integral. Hence, we obtain that, for any t > 0,

P t = −
∫ ∞

0
σt(r)dQr,

which implies by integration-by-parts that

P t =
∫ ∞

0
Qr dσt(r).

Since Qr has the kernel

qr(x, y) =
1

μ (Br(x))
1Br(x)(y),

it follows that P t has the kernel

pt(x, y) =
∫ ∞

0
qr(x, y) dσt(r) =

∫ ∞

0

1
μ (Br(x))

1Br(x)(y)dσt(r)

=
∫ ∞

d(x,y)

dσt(r)
μ (Br(x))

,

which was to be proved.
As it is well known, any symmetric strongly continuous Markov semigroup in L2 (X) is

associated with a Dirichlet form. In particular, the Dirichlet form (E ,F) associated with the
isotropic semigroup

{
P t
}

t≥0
is given by

E(f, f) = lim
t→0

1
t
(f − P tf, f)L2

= lim
t→0

1
2t

∫

X

∫

X
(f(x) − f(y))2 pt(x, y)dμ(x)dμ(y), (2.6)

where the limit always exists in [0, +∞], and the domain F consists of functions f ∈ L2 (X)
where the limit is finite.
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Proposition 2.2 The Dirichlet form (E ,F) associated with
{
P t
}

is a jump type Dirichlet form

E(f, f) =
1
2

∫

X

∫

X
(f(x) − f(y))2 J(x, y)dμ(x)dμ(y) (2.7)

with the jump kernel

J(x, y) =
∫ ∞

d(x,y)

1
μ (Br(x))

d ln σ(r) . (2.8)

Besides, (E ,F) is regular.

We refer to this Dirichlet form (E ,F) as an isotropic Dirichlet form.

Proof. Indeed, comparing (2.6) and (2.7), as well as using (2.4), we obtain

J(x, y) = lim
t→0

1
t
pt(x, y) (2.9)

= lim
t→0

1
t

∫ ∞

d(x,y)

tσt−1(r)dσ(r)
μ (Br(x))

=
∫ ∞

d(x,y)

σ−1dσ(r)
μ (Br(x))

.

The regularity of (E ,F) follows from the fact that, for any ball B, the indicator function 1B is
continuous in X (because ∂B = ∅) and 1B ∈ F . Indeed, let B = Bρ(z). For f = 1B we have by
(2.7) and (2.8)

E(f, f) =
∫

Bρ(z)

∫

Bc
ρ(z)

J(x, y)dμ(x)dμ(y)

=
∫∫∫

{x∈Bρ(z),y∈Bc
ρ(z),r≥d(x,y)}

1
μ (Br(x))

d ln σ(r)dμ(x)dμ(y)

=
∫ ∞

ρ

∫

y∈Br(x)\Bρ(z)

(∫

x∈Bρ(z)

dμ(x)
μ (Br(z))

)

dμ(y)d ln σ(r)

=
∫ ∞

ρ

∫

y∈Br(z)\Bρ(z)

μ (Bρ(z))
μ (Br(z))

dμ(y)d ln σ(r)

=
∫ ∞

ρ
μ (Br(z) \ Bρ(z))

μ (Bρ(z))
μ (Br(z))

d ln σ(r)

≤ μ (Bρ(z)) ln
1

σ(ρ)
< ∞.

2.4 Laplacian and Green function

Let L be the generator of (E ,F) that is a positive definite self-adjoint operator in L2 (X). We
refer to L as an isotropic Laplacian.

Since the heat semigroup of (E ,F) is given by
{
e−tL

}
t≥0

, it follows that e−tL = P t and,
hence,

L = − ln P =
∫ ∞

0
ln σ(r)dQr. (2.10)

Denote by C the space of functions f ∈ L2 (X) satisfying the following condition: there exists
r > 0 (depending on f) such that f ≡ const on any ball of radius r.
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Theorem 2.3 The space C is dense in L2 (X), is contained in the domain dom(L) of the Lapla-
cian L, and, for any f ∈ C, we have

Lf(x) =
∫

X
(f(x) − f(y)) J(x, y)dμ(y). (2.11)

The spectrum of L is given by

specL =

{

ln
1

σ (r)
: r ∈ Λ

}

∪ {0} , (2.12)

where Λ = {d(x, y) : x, y ∈ X, x 6= y} . Furthermore, L has a complete system of eigenfunctions
of the form

f = 1
μ(B′)1B′ − 1

μ(B)1B

where B is any ball in X and B′ is any maximal ball such that B′ ( B. The eigenvalue of f is
λ = ln 1

σ(r) where r is the largest radius of B.

The identity (2.11) follows from (2.10) by integration by parts, where one should watch the
singularity of ln σ (r) near r = 0. By (2.10), the spectrum of L is determined by the values of
ln σ (r) at those r where dQr does not vanish, which occurs exactly at r ∈ Λ.

Observe that, for any x ∈ B, there exists the maximal ball B′ containing x and such that
B′ ( B: in fact, B′ = Br′(x) where r′ is the largest value in (0, r) of d (x, ∙).

The Green function g(x, y) on X × X is defined by

g(x, y) =
∫ ∞

0
pt(x, y)dt.

It is known that if g finite (which means g(x, y) < ∞ for all x 6= y) then g determines an operator
that is in some sense inverse to L: the minimal non-negative solution to Lu = f (where f ≥ 0)
is given by

u(x) =
∫

M
g(x, y)f(y)dμ(y).

Also, it is known that the associated Markov process {Xt}t≥0 is transient of and only if g is
finite.

Proposition 2.4 We have

g(x, y) = −
∫ ∞

d(x,y)

1
μ(Br(x))

d
1

ln σ(r)
. (2.13)

Proof. Using (2.4), we obtain

g(x, y) =
∫ ∞

0

∫ ∞

d(x,y)

tσt−1 (r)
μ(Br(x))

dσ(r)dt

=
∫ ∞

d(x,y)

(∫ ∞

0
tσt (r) dt

)
d ln σ(r)
μ(Br(x))

.

Since for any a > 0 ∫ ∞

0
te−atdt =

1
a2

,

it follows that ∫ ∞

0
tσt (r) dt =

1

(ln σ (r))2
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and

g(x, y) =
∫ ∞

d(x,y)

d ln σ(r)

μ(Br(x)) (ln σ (r))2

= −
∫ ∞

d(x,y)

1
μ(Br(x))

d
1

ln σ(r)
,

which completes the proof.

Example. Assume that the ultra-space (X, d, μ) is α-regular, that is, for all x ∈ X and r > 0,

μ (Br(x)) ' rα,

for some α > 0 (in fact, α has to be the Hausdorff dimension of (X, d)).

Choose function σ as follows:

σ (r) = exp

(

−
( c

r

)β
)

where c, β > 0.

The distribution of σ is called a Fréchet distribution. By (2.4) we obtain

pt(x, y) =
∫ ∞

d(x,y)

tσt(r) d ln σ (r)
μ (Br(x))

' t

∫ ∞

d(x,y)
exp

(

−
tcβ

rβ

)

r−α−β−1dr

' t−α/β

∫ ∞

d(x,y)/t1/β

exp

(

−
cβ

sβ

)

s−α−β−1ds

'
1

tα/β

(

1 +
d(x, y)
t1/β

)−(α+β)

,

so that
pt(x, y) '

t
(
t1/β + d(x, y)

)α+β
. (2.14)

Applying (2.9), we obtain the following estimate of the jump kernel:

J(x, y) = lim
t→0

pt(x, y)
t

' d(x, y)−(α+β).

For the Green function, we have by (2.13)

g(x, y) = −
∫ ∞

d(x,y)

d 1
ln σ(r)

μ(Br(x))
'
∫ ∞

d(x,y)

drβ

rα
=

{
∞, α ≤ β

d(x, y)−(α−β), α > β.

Recall for comparison that the symmetric stable process in Rn of the index β ∈ (0, 2) (generated
by (−Δ)β/2) has the heat kernel

pt(x, y) '
t

(
t1/β + ‖x − y‖

)n+β
,

while
J(x, y) = cn,β ‖x − y‖−(n+β)

and (in the case n > β)
g(x, y) = c′n,β ‖x − y‖−(n−β) .
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3 Analysis in Qn
p

3.1 Isotropic heat semigroup in Qp

Set X = Qp with the p-adic distance d(x, y) = ‖x − y‖p and with the Haar measure μ normalized
so that μ (B1(x)) = 1. We already know that

μ (Br(x)) = pn if pn ≤ r < pn+1, (3.1)

where n ∈ Z. Fix some β > 0 and set

σ(r) = exp

(

−
(p

r

)β
)

. (3.2)

Knowing exactly μ (Br(x)) enables us to make a precise computation of J(x, y) as follows. By
(2.8) we have

J(x, y) =
∫ ∞

d(x,y)

1
μ (Br(x))

d ln σ(r) = pβ

∫ ∞

‖x−y‖p

βr−β−1 dr

μ (Br(x))
.

Let ‖x − y‖p = pk for some k ∈ Z. Using (3.1), we obtain

∫ ∞

pk

β r−β−1 dr

μ (Br(x))
=
∑

n≥k

∫ pn+1

pn

β r−β−1 dr

μ (Br(x))

=
∑

n≥k

∫ pn+1

pn

−dr−β

pn
=
∑

n≥k

1
pn

(
1

pnβ
−

1
p(n+1)β

)

=
(
1 − p−β

)∑

n≥k

1
pn(1+β)

=
(
1 − p−β

) p−k(1+β)

1 − p−(1+β)

=
1 − p−β

1 − p−(1+β)

1

‖x − y‖1+β
p

.

Hence, we obtain the identity

J(x, y) =
pβ − 1

1 − p−(1+β)

1

‖x − y‖1+β
p

. (3.3)

It is remarkable that the jump kernel (3.3) arises also from the following completely different
consideration. As a locally compact abelian group, Qp has the dual group, that is again Qp,
which allows to define Fourier transform. The Fourier transform f 7→ f̂ of a function f on Qp

is defined by

f̂(ξ) =
∫

Qp

e2πi{xξ}f(x)dμ(x),

where ξ ∈ Qp and {xξ} is the fractional part of the p-adic number xθ, that is, {xξ} ∈ Q. It is
known that f 7→ f̂ is a linear isomorphism of the space C0 of locally constant functions on Qp

with compact support.
Using the Fourier transform, Taibleson [27] defined the following class of fractional derivatives

Dβ on functions on Qp.

Definition. For any β > 0, the operator Dβ is defined on functions f ∈ C0(Qp) by

D̂βf(ξ) = ‖ξ‖β
p f̂(ξ), ξ ∈ Qp. (3.4)

12



Vladimirov and Volovich [29] showed that Dβ can be written as singular integral operator

Dβf(x) =
pβ − 1

1 − p−(1+β)

∫

Qp

f(x) − f(y)

‖x − y‖1+β
p

dμ(y). (3.5)

Comparison with (3.3) shows that Dβ coincides with the isotropic Laplacian L with the distribu-
tion function (3.2). More precisely, we have Dβ = L in C0 so that Dβ is essentially self-adjoint
in L2(Qp).

Corollary 3.1 The operator Dβ generates a heat semigroup in L2(Qp) that admits a continuous
heat kernel pt(x, y) satisfying the estimate

pt(x, y) '
t

(t1/β + ‖x − y‖p)
1+β

. (3.6)

The Green function of Dβ is finite if and only if β < 1, and in this case it is given by

g(x, y) =
1 − p−β

1 − p−(1−β)
‖x − y‖−(1−β)

p . (3.7)

Proof. Since Dβ = L, we can apply all the previous results. The heat kernel estimate (3.6)
follows from (2.14) because Qp is α-regular with α = 1. The identity (3.7) for the Green function
follows by exact integration in (2.13) similarly to the computation of J(x, y).

Let us emphasize the following. Without the theory of isotropic heat semigroup, the question
of estimating the heat kernel of Dβ was very difficult and it remained open for a number of
years. In fact, the full estimate (3.6) was obtained for the first time in [11] by using the isotropic
Laplacian.

In contrast to that, the identity (3.7) for the Green function was derived by Vladimirov and
Volovich [29] directly from (3.4).

3.2 Isotropic heat semigroup in Qn
p

Let {(Xi, di)}n
i=1 be a finite sequence of ultra-metric spaces. Define their ultra-metric product

(X, d) by X = X1 × . . . × Xn and

d(x, y) = max
1≤i≤n

di(xi, yi).

where x = (x1, . . . , xn) ∈ X and y = (y1, . . . yn) ∈ Y . Then (X, d) is again an ultra-metric space,
and balls in X are products of balls in Xi:

Br(x) =
n∏

i=1
B(i)

r (xi) .

If there is a Radon measure μi on each (Xi, di), then we consider on (X, d) the product measure
μ =

⊗
μi.

Given a probability distribution σ on (0,∞) as above, we obtain an isotropic semigroup P t

on the product space X.
For example, consider Qn

p that is the ultra-metric product of n copies of Qp, with the p-adic
metric

d(x, y) = ‖x − y‖p = max
1≤i≤n

‖xi − yi‖p .
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The product of the normalized Haar measures μ on Qp is the normalized Haar measure μn

on Qn
p .

Hence, if p−m ≤ r < p−(m−1) where m ∈ Z then, for any x ∈ Qn
p ,

μn (Br(x)) =
n∏

i=1
μ
(
B(i)

r (xi)
)

= p−nm ' rn.

Fix any β > 0 and consider again the distribution function

σ(r) = exp

(

−
(p

r

)β
)

.

As in the one-dimensional case, computing J(x, y) from (2.8) and using the exact values of
μ (Br(x)), one obtains

J(x, y) =
pβ − 1

1 − p−(n+β)
‖x − y‖−(n+β)

p . (3.8)

Similarly, (2.13) yields, in the case n > β, that

g(x, y) =
1 − p−β

1 − p−(n−β)
‖x − y‖−(n−β)

p ,

and (2.4) implies

pt(x, y) '
t

(t1/β + ‖x − y‖p)
n+β

=
1

tn/β

(

1 +
‖x − y‖p

t1/β

)−(n+β)

.

Hence, the jump kernel, Green function and the heat kernel for the isotropic Markov process in
Qn

p match the same quantities for the symmetric stable process of index β in Rn (apart from
the values of constants and the range of β because β ∈ (0, 2) in Rn and β ∈ (0,∞) in Qn

p ).
On the other hand, the Taibleson operator Dβ can be defined also in Qn

p by means of the
Fourier transform in Qn

p . The latter is defined by

f̂ (ξ) =
∫

Qn
p

e2πi〈x,ξ〉f(x)dμ(x),

where ξ ∈ Qn
p and 〈x, ξ〉 =

∑n
k=1 {xkξk} .

Definition. For any β > 0 the operator Dβ is defined on functions f ∈ C0(Qn
p ) by

D̂βf(ξ) = ‖ξ‖β
p f̂(ξ), ξ ∈ Qn

p .

As in the case n = 1, one can show that Dβ coincides on C0(Qn
p ) with the isotropic Laplacian

L associated with the distribution function σ(r) = exp(− (p/r)β), which implies the following
result.

Corollary 3.2 The operator Dβ is essentially self-adjoint, it generates a heat semigroup in
L2(Qn

p ) that admits a continuous heat kernel pt(x, y) satisfying the estimate

pt(x, y) '
1

tn/β

(

1 +
‖x − y‖p

t1/β

)−(n+β)

. (3.9)

The Green function of Dβ is finite if and only if β < n, and in this case it satisfies the identity

g(x, y) = cn,p ‖x − y‖−(n−β)
p .
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3.3 Vladimirov operator

Let {(Xi, di, μi)}
n
i=1 be a sequence of ultra-metric measure spaces such that Xi is αi-regular,

where α1, ..., αn is a prescribed sequence of positive reals. For example, we can take Xi = Qp

and
di(x, y) = ‖x − y‖1/αi

p .

Since Qp with ‖x − y‖p is 1-regular, it follows that (Xi, di) is αi-regular.
Fix β > 0 and consider on each Xi the isotropic Dirichlet form (Ei,Fi) associated with

σ (r) = exp(−(c/r)β), so that its jump kernel Ji satisfies

Ji(x, y) ' di(x, y)−(αi+β)

and its heat kernel p
(i)
t satisfies

p
(i)
t (x, y) '

1
tαi/β

(

1 +
di(x, y)

t1/β

)−(αi+β)

. (3.10)

Consider now the product space X = X1 × . . . × Xn with the ultra-metric

d(x, y) = max
1≤i≤n

di(xi, yi)

and the product measure μ = μ1 × . . . × μn. Then X is α-regular with

α = α1 + . . . + αn.

Let Li be the generator of Ei. We apply Li to functions f = f (x1, ..., xn) on X by considering
f as a function of xi only (like partial derivatives in Rn). Consider the operator

L = L1 + . . . + Ln (3.11)

acting on functions on X.

Proposition 3.3 The operator L is essentially self-adjoint, it generates a heat semigroup
{
e−tL

}
t≥0

in L2 (X), and its heat kernel satisfies the estimate

pt(x, y) '
1

tα/β

n∏

i=1

(

1 +
di (xi, yi)

t1/β

)−(αi+β)

. (3.12)

Proof. Since the operators Li commute, we have

e−tL = e−tL1e−tL2 . . . e−tLn .

This implies that e−tL has the heat kernel

pt(x, y) =
n∏

i=1
p
(i)
t (xi, yi) .

Substituting the estimates (3.10) for p
(i)
t , we obtain (3.12).

Let now all the spaces Xi be Qp with the p-adic metric di(x, y) = ‖x − y‖p. In particular,
we have αi = 1 for all i.

Fix some β > 0 and consider the fractional derivative Dβ
i acting in Xi. On the product space

Qn
p = X1 × ... × Xn we have the operator

Vβ =
n∑

i=1

D
β
i
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that is called the Vladimirov operator.
The operator Vβ was introduced by Vladimirov and Volovich [29] where it was considered

as a free Hamiltonian in p-adic Quantum Mechanics.
Since Dβ

i coincides with the isotropic Laplacian Li on Xi = Qp, we obtain from Proposition
3.3 the following.

Corollary 3.4 The operator Vβ is essentially self-adjoint in L2, and the heat semigroup exp
(
−tVβ

)

has the heat kernel pt(x, y) that satisfies for all t > 0 and x, y ∈ Qn
p the estimate

pt(x, y) '
1

tn/β

n∏

i=1

(

1 +
‖xi − yi‖p

t1/β

)−(1+β)

. (3.13)

Corollary 3.5 If (n − 1)/2 < β < n then the Green function of Vβ exists and satisfies the
estimate

g(x, y) ' ‖x − y‖−(n−β)
p . (3.14)

The estimates (3.13) and (3.14) were first obtained in [11]. The estimate (3.14) was known
before only for a very special case n = 3, β = 2 and when all the components xi − yi are the
same.

Comparing (3.13) with (3.9), we see that the heat kernels for the Vladimirov operator Vβ

and the Taibleson operator Dβ behave essentially differently if n > 1.

4 Heat kernels on metric spaces and walk dimension

Let (X, d) be a a separable, proper metric space (not necessarily ultra-metric) and μ be a Radon
measure on X with full support. Let (E ,F) be a regular Dirichlet form in L2 (X,μ) and {Pt}t≥0

is the associated heat semigroup.
One of the most discussed problems is obtaining estimates of the corresponding heat kernel

pt(x, y) (as well as its existence).

4.1 Examples of heat kernels

There are very few situations when the heat kernel can be computed exactly and explicitly. In
Rn with the Lebesgue measure, the classical Dirichlet form

E(f, f) =
∫

Rn

|∇f |2 dx,

has the generator L = −Δ and the Gauss-Weierstrass heat kernel

pt(x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

,

that is the normal distribution at any time t.
For the symmetric stable process of index 1, generated by

√
−Δ, the heat kernel is the

Cauchy distribution with the parameter t, that is,

pt(x, y) =
cnt

(
t2 + |x − y|2

)n+1
2

,

with some cn > 0.
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In Rn with measure dμ = e|x|
2
dx, the Dirichlet form

E(f, f) =
∫

Rn

|∇f |2 dμ

has the generator L = −Δ − 2x ∙ ∇ and the Mehler heat kernel

pt(x, y) =
1

(2π sinh 2t)n/2
exp

(
2x ∙ y e−2t − |x|2 − |y|2

1 − e−4t
− nt

)

.

In the hyperbolic space H3, the Laplace-Beltrami operator has the heat kernel

pt(x, y) =
1

(4πt)n/2

r

sinh r
exp

(

−
r2

4t
− t

)

where r = d(x, y).

For many application quantitate properties of the heat kernels are important, so it becomes
essential to have at least good estimates. Let us recall some results about heat kernel bounds
assuming that the space (X, d, μ) is α-regular, that is,

μ (Br(x)) ' rα,

where necessarily α = dimH X.

4.2 Heat kernel estimates on Riemannian manifolds

Let first X be a Riemannian manifold with the geodesic distance d and Riemannian measure μ.
For the heat kernel of the local Dirichlet form

E(f, f) =
∫

X
|∇f |2 dμ

the following is known: it satisfies the two-sides Gaussian estimates

pt(x, y) �
c1

tα/2
exp

(

−c2
d2(x, y)

t

)

(where c1, c2 > 0) if and only if the following Poincaré inequality holds: for any ball B = Br (x0)
and any f ∈ C1 (B), ∫

εB

(
f − f

)2
dμ ≤ Cr2

∫

B
|∇f |2 dμ, (4.1)

where f = −
∫
εB fdμ and the constants C and ε ∈ (0, 1] are the same for all balls and functions.

For example, (4.1) holds in Rn and, moreover, on all manifolds of non-negative Ricci curva-
ture.

However, (4.1) fails on the following

manifold:

It is a connected sum of two copies

of Rn, and the reason for failure of

(4.1) is a “bottleneck” between two

sheets.
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4.3 Heat kernel estimates for diffusions on fractals

Development of Analysis on fractal spaces has brought into life sub-Gaussian estimates of heat
kernels of local Dirichlet forms. This is the estimate of the form

pt(x, y) �
c1

tα/β∗ exp



−c2

(
dβ∗

(x, y)
t

) 1
β∗−1



 , (4.2)

where β∗ is a new parameter that is called the walk dimension of the corresponding diffusion
process.

For example, the walk dimension of a diffusion process on a manifold, satisfying the Gaussian
estimate, is clearly β∗ = 2. One can show that (4.2) implies β∗ ≥ 2 (see [17]).

It was proved in a series of works [3], [5], [6], [7], [8], [24], [19], [20], [21] [23] etc., that on
a large class of fractals including unbounded Sierpinski gasket and carpet, there is a diffusion
process whose heat kernel satisfies the sub-Gaussian estimate (4.2) with β∗ > 2. In fact, as
M.Barlow [4] showed, any β∗ ≥ 2 can be realized in (4.2) on some fractal space.

Sierpinski gasket (SG)

α = log 3
log 2 , β∗= log 5

log 3≈ 2.32
Sierpinski carpet (SC)

α = log 8
log 3 , β∗≈ 2.10

Vicsek snowflake (VS)

α = log 5
log 3 , β∗= log 15

log 3 ≈ 2.46

4.4 Walk dimension

Let us discuss a possibility of the heat kernel estimates (4.2) on a general metric measure space
X. If (4.2) is true for some diffusion on X then X has to be α-regular and μ has to be comparable
to the Hausdorff measure Hα of dimension α (see [17]). In particular, α = dimH X so that α is
an invariant of the metric space (X, d).

To describe the nature of β∗, consider for any β > 0 the following quadratic form in L2 (X,μ):

Eβ(f, f) =
1
2

∫∫

X×X

(f(x) − f(y))2

d(x, y)α+β
dμ(x)dμ(y).

By a result of [17], the walk dimension β∗ admits the following characterization:

β∗=sup
{
β > 0 : ∃Fβ ⊂ L2(X,μ) s.t. (Eβ ,Fβ) is a regular Dirichlet form in L2(X,μ)

}
. (4.3)

Consequently, β∗ is also an invariant of the metric structure (X, d) alone!
The identity (4.3) holds under the hypothesis that a diffusion on X satisfies the sub-Gaussian

estimate. However, the right hand side makes sense on an arbitrary α-regular metric space, so
we can take now (4.3) as a new definition of the walk dimension β∗. It is valid for any α-regular
metric space independently of the presence of Dirichlet forms or heat kernels.

It is easy to see that with increase of β the set of functions f with Eβ(f, f) < ∞ shrinks and
may become non-dense in L2. It is easy to show if β < 2 then Eβ(f, f) < ∞ for all f ∈ Lip 0(X),
which implies that β∗ ≥ 2.
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If X is a Riemannian manifold then one can deduce from (4.3) that β∗ = 2. On fractals, as
we know, typically β∗ > 2.

Let us ask what is the walk dimension β∗ of an ultra-metric space. As we know, on an α-
regular ultra-metric space, the isotropic Dirichlet form E with the distribution function σ (r) =
exp(−(c/r)β) with arbitrary β > 0 has the jump kernel

J(x, y) ' d(x, y)−(α+β).

Since this jump kernel is comparable with the jump kernel of Eα,β , we have

Eα,β(f, f) ' E(f, f).

Since E is a regular Dirichlet form (Proposition 2.2), it follows that Eα,β is also a regular Dirichlet
form for any β > 0, which implies β∗ = ∞!

Hence, in the family of all α-regular metric spaces, manifolds and ultra-metric spaces are
extremal cases: for the manifolds (including Rn) we have β∗ = 2, while for the ultra-metric
spaces β∗ = ∞.

On the diagram below, we represent graphically a classification of regular metric spaces
according to the value of the walk dimension β∗. The Euclidean spaces Rn and p-adic spaces Qn

p

lie at the opposite boundaries of this scale, while the entire interior is filled with fractal spaces.

Parameter α is responsible for integration on X as it determines measure μ = Hα, while β∗

is responsible for differentiation on X as in many cases it determines the generator L of a local
Dirichlet form on X that is a natural Laplacian on X.

4.5 Test functions

The two extremal classes of metric spaces - manifolds and ultra-metric spaces, have something
in common: they both possess a priori rich classes of test functions with controlled energy:
on manifolds these are usual bump or tent functions, while on ultra-metric spaces these are
indicators of balls.

A bump function in Rn Indicator of ball in ultra-metric space
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The presence of such test functions is very essential for the proofs of heat kernel estimates as
all known techniques for obtaining off-diagonal upper bounds make use of such test functions.

In the setting of general metric spaces, one has to make an additional assumption about
existence of “good” test functions.

4.6 Heat kernel estimates for jump processes

To conclude the discussion about general metric spaces, let us mention the following result of
[18]: if the heat kernel of a conservative Dirichlet form (E ,F) satisfies the estimate of the form

pt(x, y) �
c1

tα/β
Φ

(

c2
d(x, y)
t1/β

)

for some positive α and β then either E is strongly local or

Φ (s) ' (1 + s)−(α+β) .

Since on ultra-metric spaces strongly local Dirichlet forms do not exist, we obtain that the only
possible estimate of the above type is a stable-like estimate

pt(x, y) '
1

tα/β

(

1 +
d(x, y)
t1/β

)−(α+β)

. (4.4)

Our next purpose is to characterize those ultra-metric space and Dirichlet forms (not necessarily
isotropic) when this estimate holds.

The following necessary conditions for (4.4) are known:
• the α-regularity: for any metric ball Br(x), we have

μ (Br(x)) ' rα (V )

(consequently, α = dimH X and μ ' Hα).
• the jump kernel estimate: for all x, y ∈ X,

J(x, y) ' d(x, y)−(α+β). (J)

Z.-Q.Chen and T.Kumagai proved in [13] that, on general metric spaces (with a certain mild
restriction on the metric), if 0 < β < 2 then

(V )+(J) ⇔ (4.4).

However, if the walk dimension β∗ of the space in question is larger than 2, then the value
of β in (J) can be > 2. In this case, on top of (V ) and (J) we need one more condition that
ensures the existence of “good” test functions.

Such a condition was established independently by
• Z.-Q. Chen, T. Kumagai, Jian Wang [12]: condition CSJ (cutoff Sobolev inequality for

jumps);
• AG, Jiaxin Hu, Eryan Hu [16]: condition Gcap (generalized capacity condition).
A common result of these works:

(V ) + (J) + (Gcap) ⇔ (4.4).

We will show that, in the setting of ultra-metric spaces, the third condition is not needed.
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5 Heat kernels on α-regular ultra-metric spaces

Let (X, d) be a separable, proper ultra-metric space and let μ be an α-regular Radon measure
on X. Suppose now that (E ,F) is a general (not isotropic) regular Dirichlet form of jump type
on L2(X,μ). We give here a characterization of the jump kernel that ensures the heat kernel
stable-like estimate (4.4). Even in Qn

p this question is highly non-trivial. The results of this
Section were proved in [9].

5.1 Main results

Theorem 5.1 Let J be a symmetric non-negative function on X × X such that

J(x, y) ' d(x, y)−(α+β) (J)

for some β > 0. Then the quadratic form

E(f, f) =
1
2

∫∫

X×X
(f(x) − f(y))2 J(x, y)dμ(x)dμ(y)

determines a regular Dirichlet form in L2 (X,μ). Its heat kernel pt(x, y) exists, is continuous in
(t, x, y), Hölder continuous in (x, y) and satisfies the stable-like estimate

pt(x, y) '
1

tα/β

(

1 +
d(x, y)
t1/β

)−(α+β)

(5.1)

for all x, y ∈ X and t > 0. Consequently,

(V )+(J) ⇔ (5.1).

Next, let us relax pointwise upper and lower estimates of J(x, y) in (J). We slightly change
a setup and assume that we are given a symmetric Radon measure j on X × X of the form
dj = J(x, dy)dμ(x). Both j and J are referred to as jump measures.

Definition. We say that J satisfies the β-Poincaré inequality if, for any ball B = Br (x0) and
any function f ∈ L2 (B),

∫

εB

∣
∣f − f

∣
∣2 dμ ≤ Crβ

∫∫

B×B
(f(x) − f(y))2 J(x, dy)dμ(x) (PI)

where f = −
∫
εB fdμ and C and ε ∈ (0, 1] are constants.

Definition. We say that J satisfies the β-tail condition if, for any ball Br(x),
∫

Br(x)c

J(x, dy) ≤ Cr−β . (TJ)

If dj = J(x, y)dμ(x)dμ(y) and X is α-regular then the following implications hold:

J(x, y) ≥ cd(x, y)−(α+β) ⇒ (PI)
J(x, y) ≤ cd(x, y)−(α+β) ⇒ (TJ)

Theorem 5.2 (Main Theorem) Let (X, d, μ) be α-regular ultra-metric space and let J(x, dy)
be a jump measure on X × X that satisfies (TJ). Then the quadratic form

E(f, f) =
1
2

∫∫

X×X
(f(x) − f(y))2 J(x, dy)dμ(x)
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extends to a regular Dirichlet form (E ,F) in L2 (X,μ). If in addition J satisfies (PI) then the
heat kernel pt(x, y) of (E ,F) exists, is continuous in (t, x, y), Hölder continuous in (x, y) and
satisfies for all x, y ∈ X and t > 0 the following “weak upper estimate”

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)
t1/β

)−β

, (WUE)

and the “near-diagonal lower estimate”

pt(x, y) ≥
c

tα/β
provided d(x, y) ≤ δt1/β . (NLE)

Moreover, under the standing assumption (TJ), we have

(PI) ⇔ (WUE) + (NLE). (5.2)

Equivalence (5.2) is analogous to the aforementioned result that, on α-regular manifolds, the
Poincaré inequality for the Dirichlet integral is equivalent to the two-sided Gaussian estimates
of the heat kernel. An analogue of the condition (TJ) is in this case the locality of the Dirichlet
form.

Note that the exponent −β in (WUE) does not match the exponent − (α + β) in the optimal
heat kernel bound (5.1). There are examples showing that, under (TJ) and (PI), one cannot
guarantee any estimate of the form

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)
t1/β

)−γ

with γ > β.
In the same way, the lower bound (NLE) cannot be improved to any estimate of the form

pt(x, y) ≥
c

tα/β

(

1 +
d(x, y)
t1/β

)−γ

with any, even very large, γ.

5.2 Example: jump measure on products

Here we give an example showing that the estimates (WUE) and (NLE) of Theorem 5.2 cannot
be improved assuming only (TJ) and (PI).

As in Section 3.3, Let {(Xi, di, μi)}
n
i=1 be a sequence of ultra-metric measure spaces such

that Xi is αi-regular, where α1, ..., αn is a prescribed sequence of positive reals. Fix some β > 0
and consider the operator L defined by (3.11) so that its heat kernel pt(x, y) satisfies (3.12).

Let us verify that pt(x, y) satisfies both (WUE) and (NLE). Indeed, for any pair x, y,
choosing i so that d(x, y) = d (xi, yi), we obtain from (3.12)

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)
t1/β

)−(αi+β)

≤
C

tα/β

(

1 +
d(x, y)
t1/β

)−β

.

If d(x, y) ≤ t1/β then also di (xi, yi) ≤ t1/β for all i whence

pt(x, y) ≥
c

tα/β
.
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The Dirichlet form (E ,F) generated by L has the form

E(f, f) = (Lf, f)L2(X) =
n∑

i=1

(Lif, f)L2(X)

=
n∑

i=1

∫

X1

...
i
g ...

∫

Xn

(∫

Xi

(Lif) fdμ(xi)

)

dμ1(x1)...
i
g ...dμn(xn)

=
n∑

i=1

∫

X1

...
i
g ...

∫

Xn

Ei(f, f) dμ1(x1)...
i
g ...dμn(xn)

where
i
g means omission of the i-th term and

Ei(f, f) =
∫

Xi

[f(x1, ..., yi, ..., xn) − f(x1, ..., xi, ..., xn)]2 Ji(xi, yi)dμi(xi)dμi(yi).

It follows that (E ,F) is a jump type Dirichlet form with the following jump measure (not jump
kernel!)

J(x, dy) =
n∑

i=1

δx1(dy1) . . . δxi−1(dyi−1) Ji(xi, yi)dμi(yi)δxi+1(dyi+1) . . . δxn(dyn),

where δxk
(dyk) is a unit measure on Xk sitting at xk.

It is easy to check that J satisfies (TJ):

∫

Br(x)c

J (x, dy) =
n∑

i=1

∫

B
(i)
r (xi)

c
Ji (xi, yi) dμi (yi) ≤ Cr−β .

Since the heat kernel on X satisfies (WUE) and (NLE), we conclude by Theorem 5.2, that the
Poincaré inequality (PI) is also satisfied on X.

Consider the range of x, y, t such that

d1 (x1, y1) > t1/β and di (xi, yi) ≤ t1/β for i = 2, . . . , n.

Then (3.12) yields

pt(x, y) '
1

tα/β

(

1 +
d1 (x1, y1)

t1/β

)−(α1+β)

=
1

tα/β

(

1 +
d(x, y)
t1/β

)−(α1+β)

.

Since α1 can be chosen arbitrarily small, we see that (WUE) is optimal.
Similarly, consider the range of x, y such that

di (xi, yi) ' dj (xj , yj) for all i, j.

Then d(x, y) ' di (xi, yi) and

pt(x, y) '
1

tα/β

n∏

i=1

(

1 +
di (xi, yi)

t1/β

)−(αi+β)

'
1

tα/β

(

1 +
d(x, y)
t1/β

)−(α+nβ)

.
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Since n can be chosen arbitrarily large, while α and β are fixed, we see that one cannot ensure
any lower bound of the form

pt(x, y) ≥
c

tα/β

(

1 +
d(x, y)
t1/β

)−N

.

In this sense, (NLE) is optimal.

5.3 Semi-bounded jump kernels

Let (X, d, μ) be α-regular ultra-metric space and (E ,F) be a regular Dirichlet form with a jump
kernel J(x, y). Consider two conditions:

J(x, y) ≤ Cd(x, y)−(α+β) (J≤)

and
J(x, y) ≥ cd(x, y)−(α+β). (J≥)

Theorem 5.3 If (J≤) and (PI) are satisfied then the heat kernel satisfies for all x, y ∈ X and
t > 0 the optimal upper bound

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)
t1/β

)−(α+β)

(UE)

and the near-diagonal lower bound

pt(x, y) ≥
c

tα/β
provided d(x, y) ≤ δt1/β . (NLE)

In fact, we have
(J≤) + (PI) ⇔ (UE) + (NLE).

Theorem 5.4 If (J≥) and (TJ) are satisfied then the heat kernel satisfies for all x, y ∈ X and
t > 0 the optimal lower bound

pt(x, y) ≥
c

tα/β

(

1 +
d(x, y)
t1/β

)−(α+β)

(LE)

and the weak upper bound

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)
t1/β

)−β

. (WUE)

Moreover, under the standing assumption (TJ), we have

(J≥) ⇔ (WUE) + (LE).

Clearly, Theorems 5.3 and 5.4 imply that

(J≤) + (J≥) ⇔ (UE) + (LE),

which is equivalent to Theorem 5.1.
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5.4 Example: degenerated jump kernel

Here we construct an example of a jump kernel J(x, y) on X = Qp that satisfies (J≤) and (PI)
but not (J≥). In fact, J vanishes on large subsets.

Let J be a symmetric kernel on X×X and let Φ be an increasing positive function on (0,∞).
We say that J satisfies Φ-Poincaré inequality if, for any ball B ⊂ X of radius r and for any
f ∈ L2 (B),

∫

B×B
(f(x) − f(y))2 dμ(x)dμ(y) ≤ Φ(r)

∫

B×B
(f(x) − f(y))2 J(x, y)dμ(x)dμ(y).

Lemma 5.5 The above inequality is equivalent to
∫

B

(
f − f

)2
dμ ≤

Φ(r)
2μ(B)

∫

B×B
(f(x) − f(y))2 J(x, y)dμ(x)dμ(y), (5.3)

where f = −
∫
B fdμ.

Note that if μ (B) ' rα and Φ (r) = rα+β then (5.3) coincides with the β-Poincaré inequality.

Proof. We have
∫

B

∫

B
(f(x) − f(y))2 dμ(x)dμ(y) =

∫

B

∫

B

(
f(x)2 − 2f(x)f(y) + f(y)2

)
dμ(x)dμ(y)

= 2μ (B)
∫

B
f2dμ − 2

(∫

B
fdμ

)2

= 2μ (B)

(∫

B
f2dμ − f

2
μ (B)

)

and ∫

B

(
f − f

)2
dμ =

∫

B
f2dμ − 2f

∫

B
fdμ + f

2
μ (B) =

∫

B
f2dμ − f

2
μ (B) .

Hence, we obtain
∫

B×B
(f(x) − f(y))2 dμ(x)dμ(y) = 2μ (B)

∫

B

(
f − f

)2
dμ,

whence the claim follows.
Set Φ (r) = rα+β with α = 1. We need to construct on Qp a jump kernel that satisfies

constΦ-Poincaré inequality, vanishes on large subsets and such that

J(x, y) ≤
1

Φ (d(x, y))
.

For simplicity, we construct J not on Qp but on a discrete subset of Qp.
Let M ⊂ Qp be the set of p-adic fractions .x1x2..., that is, M is the set of sequences

x = {xi}
∞
i=1, where xi ∈ Fp and xi = 0 for large enough i. The set M has the additive group

structure as follows:
x + y = {xi + yi}

∞
i=1 ,

where the sum xi + yi is understood in Fp.
Recall that ‖x‖p = pn if xn 6= 0 and xi = 0 for all i > n. The distance function on M is

d(x, y) = ‖x − y‖p , and balls are defined by

Br(x) = {y ∈ M : d(x, y) ≤ r} .
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Define a function S on M by

S(x) =
∞∑

i=1

xi ∈ Fp,

and consider the following subset N of M × M :

N = {(x, y) ∈ M × M : S(x) = 0 and S(y) = 1 or S(x) = 1 and S(y) = 0} .

Proposition 5.6 Let p ≥ 3. For the jump kernel

J(x, y) =
1Nc(x, y)
Φ (d(x, y))

,

the following inequality holds for any ball B of radius r and any function f on B:
∑

(x,y)∈B×B

(f(x) − f(y))2 ≤ 5Φ(r)
∑

(x,y)∈B×B

(f(x) − f(y))2 J(x, y) (5.4)

Proof. We have

∑

(x,y)∈(B×B)∩Nc

(f(x) − f(y))2 ≤
∑

(x,y)∈(B×B)∩Nc

(f(x) − f(y))2
Φ(r)

Φ (d(x, y))

= Φ (r)
∑

(x,y)∈B×B

(f(x) − f(y))2 J(x, y)

We will prove that
∑

(x,y)∈(B×B)∩N

(f(x) − f(y))2 ≤ 4
∑

(x,y)∈(B×B)∩Nc

(f(x) − f(y))2 , (5.5)

which will then imply (5.4).
For simplicity, let p = 3. Observe first the following: any two points x, y ∈ M form with the

point
z = − (x + y)

an equilateral triangle. Indeed, we have z − x = −2x− y = x− y (since −2 = 1mod 3), whence
‖z − x‖3 = ‖x − y‖3 and in the same way ‖z − y‖3 = ‖x − y‖3 .

Consequently, if x, y ∈ B then also z ∈ B since x is a center of B.
The second observation is that if (x, y) ∈ N then both (x, z) and (y, z) belong to N c. Indeed,

by the definition of z we have
S(z) = − (S(x) + S(y)) .

Since (x, y) ∈ N , we have S(x) + S(y) = 1 whence S(z) = −1 = 2. Consequently, any pair (∙, z)
belongs to N c.

Combining the above observations, we conclude that

if (x, y) ∈ (B × B) ∩ N then (x, z) ∈ (B × B) ∩ N c,

and the same is true for (y, z).
Next, we have

(f(x) − f(y))2 ≤ 2 (f(x) − f(z))2 + 2 (f(y) − f(z))2
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and
∑

(x,y)∈(B×B)∩N

(f(x) − f(y))2 ≤ 2
∑

(x,y)∈(B×B)∩N

(f(x) − f(z))2

+ 2
∑

(x,y)∈(B×B)∩N

(f(y) − f(z))2 .

Observe that the mapping
(x, y) 7→ (x, z) = (x,− (x + y)) ,

is injective because the pair (x, z) allows to recover the pair (x, y) uniquely by y = − (x + z).
Therefore, ∑

(x,y)∈(B×B)∩N

(f(x) − f(z))2 ≤
∑

(x,z)∈(B×B)∩Nc

(f(x) − f(z))2 ,

The same applies to the sum of (f(y) − f(z))2, and we obtain
∑

(x,y)∈(B×B)∩N

(f(x) − f(y))2 ≤ 4
∑

(x,z)∈(B×B)∩Nc

(f(x) − f(z))2 ,

thus proving (5.5).

6 Approach to the proof

We outline most essential parts of the proofs from [9] of Theorems 5.1, 5.2, 5.3, 5.4. Let (X, d, μ)
be an α-regular ultra-metric space and (E ,F) be a jump type Dirichlet form with the jump kernel
J(x, y). We write

dj = J(x, y)dμ(x)dμ(y) = J(x, dy)dμ(x).

Assuming that J satisfies the β-tail condition
∫

Br(x)c

J(x, dy) ≤ Cr−β (TJ)

and the β-Poincaré inequality
∫

Br

∣
∣f − f

∣
∣2 dμ ≤ Crβ

∫

Br

∫

Br

(f(x) − f(y))2 J(x, dy)dμ(x), (PI)

we need to prove the weak upper estimate

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)
t1/β

)−β

(WUE)

and the near-diagonal lower estimate

pt(x, y) ≥
c

tα/β
provided d(x, y) ≤ δt1/β , (NLE)

for some δ > 0. If in addition J satisfies

J(x, y) ≤ Cd(x, y)−(α+β) (J≤)

then heat kernel should satisfy the optimal upper estimate

pt(x, y) ≤
C

tα/β

(

1 +
d(x, y)
t1/β

)−(α+β)

, (UE)
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and if in addition
J(x, y) ≥ cd(x, y)−(α+β) (J≥)

then heat kernel should satisfy the optimal lower estimate

pt(x, y) ≥
c

tα/β

(

1 +
d(x, y)
t1/β

)−(α+β)

. (LE)

There are also issues with the existence of the heat kernel and its Hölder continuity, as well as
the opposite implications.

6.1 Sequence of steps

The proof is very long and consists of many steps. We outline the structure of the proof and
some most essential moments.

Overall, the proof uses the same techniques as in general metric spaces but the presence of
an ultra-metric brings some simplifications.

For any open set Ω ⊂ X, consider the function space F (Ω) that is the closure of F ∩ C0 (Ω)
in F . Then (E ,F (Ω)) is a regular Dirichlet form in L2 (Ω) that corresponds to a Markov process
killed outside Ω.

It is important, that in ultra-metric space satisfying (TJ), for any ball B = Br(x),

1B ∈ F (B)

because 1B ∈ C0 (B) and E (1B, 1B) ≤ Cμ (B) r−β .
Denote by PΩ

t the heat semigroup of (E ,F(Ω)) and by

GΩ =
∫ ∞

0
PΩ

t dt

the Green operator. It is known that PΩ
t and GΩ are increasing in Ω.

We say that a function u ∈ F is superharmonic in Ω if E (u, ϕ) ≥ 0 for any non-negative
ϕ ∈ F (Ω). A function u is subharmonic if −u is superharmonic. Finally, u is harmonic if u is
super- and subharmonic.

Step 1. (PI) implies the Nash inequality: for any f ∈ F ∩ L1 (X) ,

‖f‖2(1+ν)
L2 ≤ CE(f, f)‖f‖2ν

L1 , (6.1)

where ν = β/α. The latter implies the existence of the heat kernel and the diagonal upper
estimate, for all t > 0 and almost all x, y ∈ X,

pt(x, y) ≤ Ct−α/β . (DUE)

One of the consequences of (DUE) is the following estimate of the meat exit time from balls:
for any ball B of radius r,

GB1 ≤ Crβ . (6.2)

In the case α > β it is simple (while the case α ≤ β requires more care):

GB1 ≤ G1B =
∫ ∞

0
Pt1B dt

≤
∫ rβ

0
Pt1 dt +

∫ ∞

rβ

∫

B
pt(x, y)dμ(y)dt
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≤ rβ + C

∫

B

(∫ ∞

rβ

t−α/βdt

)

dμ

≤ rβ + Crα
(
rβ
)1−α/β

= Crβ .

One more consequence of the Nash inequality (6.1) is the Faber-Krahn inequality: for any
measurable set E ⊂ X of finite measure and any f ∈ F such that f = 0 a.e. outside E, we have

E(f, f) ≥ cμ (E)−ν ‖f‖2
L2 . (6.3)

Indeed, by Cauchy-Schwarz inequality,

‖f‖2
L1 ≤ μ (E) ‖f‖2

L2

so by (6.1)

E(f, f) ≥ c‖f‖2(1+ν)
L2 ‖f‖−2ν

L1 ≥ c ‖f‖2
L2 μ (E)−ν .

Step 2. This is the largest and most technical part of the proof. One obtains a weak Harnack
inequality for harmonic functions of (E ,F), where the main ingredient of the proof is Lemma of
growth. We give some details below in Sections 6.2 and 6.3 (see Lemmas 6.2 and 6.6). The weak
Harnack inequality implies an oscillation inequality for harmonic functions and, consequently,
the Hölder continuity of harmonic functions.

The mean exit time estimate (6.2) implies
∥
∥GBf

∥
∥

L∞ ≤ Crβ ‖f‖L∞ , which allows to extends
oscillation inequality to solutions u of Lu = f with bounded functions f.

Considering a function u (t, ∙) = Ptϕ as solution to Lu = −∂tu and estimating ‖∂tu‖L∞ by
means of (DUE), we obtain the oscillation inequality and the Hölder continuity for Ptf and,
hence, also for the heat kernel.

Step 3. Here one obtains the lower bound for mean exit time:

GB1 ≥ crβ in B (6.4)

that is, in fact, a consequence of the Lemma of growth. The function u = GB1 is superharmonic
in B; hence, by a corollary of a Lemma of growth, it satisfies

inf
B

u ≥ c

(

−
∫

B

1
u

dμ

)−1

.

On the other hand, using φ = 1B ∈ F (B), we obtain

∫

B

1
u

dμ = (φ,
φ2

u
) = E(GBφ,

φ2

u
) = E(u,

φ2

u
).

Next one uses the following general inequality (Lemma 6.4 below):

E(u,
φ2

u
) ≤ 3E (φ, φ) .

Since by (TJ) E (φ, φ) ≤ Crα−β , we obtain

−
∫

B

1
u

dμ ≤ Cr−β ,

whence (6.4) follows.
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The estimates (6.2) and (6.4) yield

GB1 ' rβ in B.

This implies the following survival estimate :

PB
t 1 ≥ ε in B, provided t1/β ≤ δr, (S)

with some ε, δ > 0. Indeed, (S) follows from a general inequality

PB
t 1 ≥

GB1 − t

‖GB1‖L∞

.

Step 4. Here we prove (NLE). For any ball B = Br(x), assuming t1/β ≤ δr, we have, using
the semigroup identity and (S),

p2t(x, x) =
∫

X
pt(x, y)2dμ(y)

≥
∫

B
pt(x, y)2dμ(y)

≥
1

μ (B)

(∫

B
pt(x, y)dμ(y)

)2

≥

(
PB

t 1
)2

μ (B)
≥

ε2

μ (B)
' r−α.

Choosing r = δ−1r1/β , we obtain
pt(x, x) ≥ ct−α/β .

By the oscillation inequality from the second step,

|pt(x, x) − pt(x, y)| ≤ Ct−α/β

(
d(x, y)
t1/β

)θ

.

Hence, if d(x, y) ≤ δt1/β with small enough δ, then

|pt(x, x) − pt(x, y)| ≤
c

2
t−a/β ,

whence (NLE) follows.

Step 5. Here we prove (WUE). The main difficulty is in obtaining the following estimate: for
any ball B of radius r and any t > 0,

Pt1Bc ≤ C
t

rβ
. (TP )

If this is already known then we have, by setting r = d(x, y)/2,

p2t(x, y) =
∫

X
pt (x, z) pt (z, y) dμ(z)

≤

(∫

Br(x)c

+
∫

Br(y)c

)

pt (x, z) pt (z, y) dμ(z)
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≤ (sup pt) Pt1Br(x)c + (sup pt) Pt1Br(y)c

≤ Ct−α/β t

rβ
.

Since by (DUE) also pt(x, y) ≤ Ct−α/β , it follows

p2t(x, y) ≤ Ct−α/β min

(

1,
t

rβ

)

' t−α/β
(
1 +

r

t1/β

)−β
.

However, the main difficulty here lies in proving (TP ) which itself a multi-step procedure that
is based on reiterating of the survival estimate (S). Indeed, (S) implies, for t1/β ≤ δr, that

Pt1Bc ≤ 1 − Pt1B ≤ 1 − PB
t 1 ≤ 1 − ε,

which gives (TP ) provided t1/β = δr. A certain bootstrapping argument allows to extend this
to all t.

Step 6. In the case when J satisfies (J≤), one can extend the argument of Step 5 to prove
the optimal upper estimate (UE), which requires additional techniques. One uses the truncated
jump kernel

J (ρ) = min (J, ρ) ,

the heat kernel q
(ρ)
t (x, y) associated with J (ρ), and the following general estimate

pt(x, y) ≤ q
(ρ)
t (x, y) + 2t sup

{x′,y′∈X:d(x′,y′)≥ρ}
J
(
x′, y′

)
.

For the truncated heat kernel one obtains the estimate

q
(ρ)
t (x, y) ≤ Ct−α/β exp

(

−4ρ−βt − c min(
d(x, y)

ρ
,

ρ

t1/β
)

)

,

which together with (J≤) allows to obtain (UE).

Step 7. In the case when J satisfies (J≥), one uses the following general result: assuming that
conditions (S) and (NLE) are satisfied, the following estimate holds for all t > 0, x, y ∈ X:

pt(x, y) ≥
c

tα/β
min(1, {tμ (Bt1/β (y)) essinf

x′∈B
t1/β (x)

y′∈B
t1.β (y)

J(x′, y′)}). (6.5)

Hence, if r := d(x, y) ≥ δt1/β then d (x′, y′) ≤ Cr and, hence, J (x′, y′) ≥ cr−(α+β) which implies

pt(x, y) ≥
c

tα/β
min

(

1,
t1+α/β

rα+β

)

'
1

tα/β

(
1 +

r

t1/β

)−(α+β)
.

6.2 Lemma of growth

For any measurable function v on X and for any ball B on X, define the tail of v outside B by

TB(v) := sup
x∈B

∫

Bc

|v(y)|J(x, dy).

Lemma 6.1 Let B be a ball. For any u ∈ F ∩ L∞ that non-negative and subharmonic in B,
and for φ = 1B, we have

E(uφ, uφ) ≤ 2TB(u)
∫

B
udμ. (6.6)
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Proof. Since φ ∈ F (B), both uφ and uφ2 belong to F (B) . We have:

E(uφ, uφ) = E(u, uφ2) +
∫

X×X
u(x)u(y) (φ(x) − φ(y))2 dj.

By subharmonicity of u, we have E(u, uφ2) ≤ 0.
It follows that

E(uφ, uφ) ≤

(∫

B×B
+
∫

Bc×B
+
∫

B×Bc

+
∫

Bc×Bc

)

u(x)u(y) (φ(x) − φ(y))2 dj

= 2
∫

B×Bc

u(x)u(y) (φ(x) − φ(y))2 dj (by symmetrization)

≤ 2
∫

B
u(x)dμ(x) ∙ sup

x∈B

∫

Bc

|u(y)|J(x, dy),

which is equivalent to (6.6).

Lemma 6.2 (Lemma of growth) If u ∈ F ∩L∞ is superharmonic and non-negative in a ball
B of radius R and if, for some a > 0,

μ(B ∩ {u < a})
μ(B)

≤ ε0

(

1 +
RβTB(u−)

a

)−α/β

, (6.7)

then
essinf

B
u ≥

a

2
,

where ε0 is a positive constant depending on the main hypotheses.

Proof. For any s > 0, set

ms =
μ(B ∩ {u < s})

μ(B)
and m̃s = μ(B ∩ {u < s})

In the first part of the proof, we show that, for all b > a > 0,

ma ≤ CL

(
b

b − a

)2

m
1+β/α
b , (6.8)

where

L := 1 +
RβTB(u−)

b
. (6.9)
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Set v = (b − u)+ and φ = 1B . Then we have

m̃a =
∫

B∩{u<a}
φ2dμ ≤

∫

B
φ2

(
(b − u)+

b − a

)2

︸ ︷︷ ︸
≥1 on {u<a}

dμ =
1

(b − a)2

∫

B
(φv)2dμ. (6.10)

Note that φv = 0 outside the set E = B ∩ {u < b} = B ∩ {v > 0} because either φ = 0 or
v = 0.

By the Faber-Krahn inequality (6.3), we obtain
∫

B
(φv)2dμ =

∫

E
(φv)2dμ ≤ CE(φv, φv)μ (E)ν = CE(φv, φv)m̃ν

b .

Combining this inequality with (6.10), we obtain

m̃a ≤
1

(b − a)2

∫

B
(φv)2dμ ≤ C

E(φv, φv)
(b − a)2

m̃ν
b . (6.11)

Since u is superharmonic in B, the function v = (b − u)+ is subharmonic in B, and we obtain
by Lemma 6.1 and (TJ) that

E(φv, φv) ≤ 2TB(v)
∫

B
vdμ

≤ 2TB(v)
∫

B
b1{u<b}dμ

≤ 2 (TB(b) + TB (u−)) bm̃b

≤ C
(
bR−β + TB (u−)

)
bm̃b

≤ CLb2R−βm̃b.

Combining this with (6.11) yields

m̃a ≤ C
Lb2R−β

(b − a)2
m̃1+ν

b

≤ C
Lb2

(b − a)2
m1+ν

b R−β (Rα)1+β/α

= C
Lb2

(b − a)2
m1+ν

b Rα.

Dividing by Rα and using m̃a/Rα ' ma, we obtain (6.8).
In the second part of the proof, consider the following sequence

ak :=
1
2
(1 + 2−k)a, k = 0, 1, 2, ...,

so that ak ↘ 1
2a as k → ∞. Set also

mk := mak
=

μ(B ∩ {u < ak})
μ(B)

.

Applying the inequality (6.8) with a = ak and b = ak−1, we obtain, for any k ≥ 1,

mk ≤ C

(

1 +
RβTB(u−)

ak−1

)(
ak−1

ak−1 − ak

)2

mq
k−1
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where q = 1 + β/α. Since ak−1 ≥ 1
2a and

ak−1

ak−1 − ak
=

1 + 2−(k−1)

2−(k−1) − 2−k
≤ 2k+1,

it follows that
mk ≤ CL ∙ 4k ∙ mq

k−1, (6.12)

where

L = 1 +
RβTB(u−)

a
.

Iterating (6.12), we obtain

mk ≤ (CL)1+q+∙∙∙+qk−1
∙ 4k+q(k−1)+∙∙∙+qk−1

∙ mqk

0

≤
(
(CL)

1
q−1 ∙ 4

q

(q−1)2 ∙ m0

)qk

, (6.13)

where in the second line we have used that

k + q(k − 1) + ∙ ∙ ∙ + qk−1 =
qk+1 − (k + 1)q + k

(q − 1)2
≤

q

(q − 1)2
qk,

and C > 1. It follows from (6.13) and q > 1 that if

(CL)
1

q−1 ∙ 4
q

(q−1)2 ∙ m0 ≤
1
2
, (6.14)

then
lim

k→∞
mk = 0. (6.15)

Clearly, (6.14) is equivalent to

m0 ≤ 2
− 2q

(q−1)2
−1

∙ (CL)−
1

q−1 .

Since 1
q−1 = α

β , we see that this condition is equivalent to the hypothesis (6.7) with

ε0 := 2
− 2q

(q−1)2
−1

C
− 1

q−1 .

Assuming that ε0 is defined so, we see that (6.14) is satisfied and, hence, we have (6.15). It
follows that

μ(B ∩ {u ≤
a

2
}) = 0,

which implies essinfB u ≥ a/2.

Lemma 6.3 Let a non-negative function u ∈ F ∩ L∞ be superharmonic in a ball B. Then

essinf
B

u ≥
ε0

2

(

−
∫

B

1
u

dμ

)−1

,

where ε0 is the same as in Lemma 6.2.
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Proof. We will apply Lemma 6.2 with a suitable value of a. Indeed, for any a > 0, we have

μ(B ∩ {u < a}) = μ(B ∩ {
1
u

>
1
a
}) ≤ a

∫

B

1
u

dμ = aμ(B)−
∫

B

1
u

dμ.

Since u is non-negative on X, we have that RβTB(u−) = 0. Setting

a := ε0

(

−
∫

B

1
u

dμ

)−1

,

we obtain that
μ(B ∩ {u < a}) ≤ ε0μ(B).

Hence, by Lemma 6.2, we conclude that

essinf
B

u ≥
a

2
=

ε0

2

(

−
∫

B

1
u

dμ

)−1

,

which was to be proved.

6.3 Weak Harnack inequality

Lemma 6.4 Let u ∈ F ∩L∞ and assume that essinfB u > 0 for some ball B. Then, for φ = 1B,

E(u,
φ2

u
) +

1
2

∫

B

∫

B

∣
∣
∣
∣ln

u(y)
u(x)

∣
∣
∣
∣

2

dj(x, y) ≤ 3E(φ, φ) − 2
∫

B

∫

Bc

u(y)
u(x)

dj(x, y).

Lemma 6.5 Let u ∈ F ∩ L∞ be superharmonic in a ball B of radius R and let u ≥ λ > 0 in
B. Fix positive numbers a, b and consider in B the function:

v :=
(
ln

a

u

)

+
∧ b.

Then

−
∫

B
−
∫

B
(v(x) − v(y))2dμ(x)dμ(y) ≤ C

(

1 +
RβTB (u−)

λ

)

. (6.16)

Proof. Note first that

|v(x) − v(y)| ≤

∣
∣
∣
∣ln

u(y)
u(x)

∣
∣
∣
∣ .

By (PI) as in Lemma 5.5 and by Lemma 6.4, we obtain

−
∫

B
−
∫

B
(v(x) − v(y))2dμ(x)dμ(y) ≤ CRβ−α

∫

B

∫

B
(v(x) − v(y))2dj(x, y)

≤ CRβ−α

∫

B

∫

B

∣
∣
∣
∣ln

u(y)
u(x)

∣
∣
∣
∣

2

dj(x, y)

≤ CRβ−α

(

6E (φ, φ) + 4
∫

B

∫

Bc

u(y)−
u(x)

dμ(x)J(x, dy)

)

≤ CRβ−α

(

Rα−β + Rα sup
x∈B

∫

Bc

u(y)−
λ

J(x, dy)

)

≤ C

(

1 +
RβTB(u−)

λ

)

.
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Lemma 6.6 (Weak Harnack inequality) Let B be a ball of radius R and let u ∈ F ∩L∞ be
superharmonic and non-negative in B. Then, for any a > 0, such that

μ(B ∩ {u ≥ a})
μ(B)

≥
1
2

(6.17)

and
RβTB(u−) ≤ εa, (6.18)

we have
essinf

B
u ≥ εa, (6.19)

where ε > 0 is a constant that depends only on the main hypotheses.

If u ≥ 0 on X then the condition (6.18) is trivially satisfied. A (strong) Harnack inequality
for non-negative harmonic functions would say that

essinf
B

u ≥ ε esssup
B

u.

In particular, for any a < esssupB u, we would have (6.19). That is, the hypothesis (6.17) could
be relaxed in this case to μ (B ∩ {u ≥ a}) > 0. Hence, Lemma 6.6 is a weak version of the
Harnack inequality.

Proof. Let λ, b be two positive parameters to be determined later. Consider the functions
uλ := u + λ and

v :=

(

ln
a + λ

uλ

)

+

∧ b.

Note that 0 ≤ v ≤ b and in B

v = 0 ⇔
a + λ

uλ
≤ 1 ⇔ u ≥ a

v = b ⇔
a + λ

uλ
≥ eb ⇔ uλ ≤ (a + λ)e−b =: q.

We will apply Lemma 6.2 to uλ instead of u. Set

ω :=
μ(B ∩ {u ≥ a})

μ(B)
=

μ(B ∩ {v = 0})
μ(B)

(6.20)

and

m :=
μ(B ∩ {uλ ≤ q})

μ(B)
=

μ(B ∩ {v = b})
μ(B)

. (6.21)

By Lemma 6.2, if

m ≤ ε0

(

1 +
RβTB((uλ)−)

q

)−α/β

, (6.22)

then
essinf

B
uλ ≥

q

2
. (6.23)

Since u ≥ 0 in B, we have
L := RβTB(u−) ≥ RβTB

(
(uλ)−

)
.

Hence, in order to have (6.22), it suffices to ensure that

m ≤ ε0

(

1 +
L

q

)−α/β

. (6.24)
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Let us estimate m from above using the definition (6.20) and (6.21) of ω and m, as well as
Lemma 6.5.

We obtain

b2mω =
1

μ(B)2

∫

B∩{v=0}

∫

B∩{v=b}
b2dμ(x)dμ(y)

=
1

μ(B)2

∫

B∩{v=0}

∫

B∩{v=b}
(v(x) − v(y))2dμ(x)dμ(y)

≤ −
∫

B
−
∫

B
(v(x) − v(y))2dμ(x)dμ(y)

≤ C

(

1 +
RβTB((uλ)−)

λ

)

≤ C

(

1 +
L

λ

)

.

It follows that

m ≤
C

b2ω

(

1 +
L

λ

)

≤
2C

b2

(

1 +
L

λ

)

,

where we have used that ω ≥ 1/2, which is true by (6.17). Hence, the condition (6.24) will be
satisfied provided

2C

b2

(

1 +
L

λ

)

≤ ε0

(

1 +
L

q

)−α/β

,

which is equivalent to

b2 ≥
2C

ε0

(

1 +
L

λ

)(

1 +
L

q

)α/β

. (6.25)

Fix ε > 0 to be determined later, and specify the parameters λ, b as follows:

λ := εa, b := ln
1 + ε

4ε
.

Then we have
q = (a + λ)e−b = 4εa,

and the inequality (6.25) is equivalent to

(

ln
1 + ε

4ε

)2

≥
2C

ε0

(

1 +
L

εa

)(

1 +
L

4εa

)α/β

. (6.26)

Since by (6.18) we have L ≤ εa, the inequality (6.26) will follow from

(

ln
1 + ε

4ε

)2

≥
4C

ε0

(
5
4

)α/β

.

The latter can be achieved by choosing ε small enough. With this choice of ε we conclude that
(6.23) holds, which implies

essinf
B

u ≥
q

2
− λ = 2εa − εa = εa,

thus finishing the proof.
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