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Abstract. We prove the following sufficient condition for stochastic complete-
ness of symmetric jump processes on metric measure spaces: if the volume of the
metric balls grows at most exponentially with radius and if the distance function
is adapted in a certain sense to the jump kernel then the process is stochastically
complete. We use this theorem to prove the following criterion for stochastic com-
pleteness of a continuous time random walk on a graph with a counting measure:
if the volume growth with respect to the graph distance is at most cubic then the
random walk is stochastically complete, where the cubic volume growth is sharp.
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1. Introduction

It was R. Azencott [3] who discovered in 1974 that Brownian motion on a geodesi-
cally complete manifold can be stochastically incomplete, that is, can have finite
lifetime with positive probability. The latter means that Brownian motion runs
away at such a high speed that it reaches the infinity in finite time (and then ceases
to exist). This behavior is difficult to imagine from the standpoint of the Euclidean
geometry of Rn because the usual perception of Brownian motion is that it is a lazy
erratic movement that hardly escapes to the infinity at all, not to say in finite time.
However, the picture changes drastically already in hyperbolic geometry: Brown-
ian motion on the hyperbolic space Hn escapes to ∞ at a linear rate practically
along geodesic rays, although still having infinite lifetime. In the aforementioned
paper Azencott has observed that on Cartan-Hadamard manifolds Brownian mo-
tion can escape to ∞ at arbitrarily high speed (in particular, can be stochastically
incomplete) provided the sectional curvature grows to −∞ fast enough.

We say that a manifold M is stochastically complete if so is Brownian motion on
M . How to decide whether a given geodesically complete non-compact manifold M
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is stochastically complete or not? This question has received significant attention in
both probabilistic and geometric literature. One of the first results in this direction
is due to S.-T.Yau [36], who proved the stochastic completeness of M under the
hypothesis that the Ricci curvature of M is bounded from below. Surprisingly
enough, a simple and powerful sufficient condition for the stochastic completeness
can be established in terms of the volume growth function. Let d be the geodesic
distance on M and B(x, r) be geodesic balls, that is,

(1.1) B(x, r) = {y ∈M : d(x, y) ≤ r} .

Set V (x, r) = µ(B(x, r)) where µ is the Riemannian volume.

Theorem 1.1. ([8], [16], [20], [22]) If, for some x0 ∈M and some constant C,

(1.2) V (x0, r) ≤ exp(Cr2)

for all large enough r, then M is stochastically complete.

Furthermore, it was proved in [16] that if
∫ ∞ rdr

log V (x0, r)
=∞

then M is stochastically complete (see also [15], [17], [19]).
Why can the conditions for stochastic completeness be stated in terms of geodesic

distance? Of course, both Brownian motion and the geodesic distance are defined
using the Riemannian metric, so they are related. However, as one can see from
the proofs, one can replace in the above theorem the geodesic distance by any other
distance function (or even by an exhaustion function) d on M provided it satisfies
the condition

(1.3) |∇d(x, ·)| ≤ 1,

where ∇ is the Riemannian gradient understood in a weak sense. As it was proved
in [30], [31], Theorem 1.1 remains true on arbitrary metric measure spaces with a
strongly local Dirichlet form provided the metric d satisfies (1.3), where now |∇·|2

denotes the energy density of the Dirichlet form.
The purpose of the present work is twofold. We first prove a sufficient condition

in terms of the volume growth for the stochastic completeness of jump processes
defined via their Dirichlet forms. Then we apply the abstract theorem to investigate
the stochastic completeness of nearest neighborhood random walks on graphs in
terms of the volume growth relative to the graph distance.

Let (X, d) be a metric space such that all metric balls

B (x, r) = {y ∈ X : d(x, y) ≤ r}

are compact. In particular, (X, d) is locally compact and separable. Let µ be a
Radon measure with full support on X. Let J(x, dy) be a kernel that associates
for any x ∈ X a Radon measure on the Borel σ-algebra B (X \ {x}), that depends
on x in a measurable way. Assume that J satisfies in addition the following two
conditions:

(a) J is symmetric with respect to measure µ in the following sense:

(1.4)

∫

X

∫

X\{x}
f(x)g(y)J(x, dy)µ(dx) =

∫

X

∫

X\{x}
g(x)f(y)J(x, dy)µ(dx),
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for all non-negative Borel functions f, g on X;
(b) there is a positive constant M such that

(1.5) sup
x∈X

∫

X\{x}
(1 ∧ d(x, y)2)J(x, dy) ≤M.

An example of such kernel is given by J (x, dy) = j (x, y) dµ (y) where j (x, y) is a
non-negative Borel function on X ×X \ diag that is symmetric in x, y and satisfies
(1.5).

Consider the following bilinear functional

(1.6) E(f, g) =
1

2

∫

X

∫

X\{x}
(f(x)− f(y))(g(x)− g(y))J(x, dy)µ(dx)

defined for Borel functions f and g whenever the integral makes sense. The condition
(1.5) implies that E (f, g) is finite on all Lipschitz functions on X with compact
support. Taking an appropriate closure of this domain, one obtains a natural domain
F ⊂ L2 (X,µ) of E where the form E is closed. In fact, (E ,F) is a regular Dirichlet
form (cf. [12, Example 1.2.4]).

By [12], any regular Dirichlet form determines a Hunt process {Xt}t≥0 on X, and
for the Dirichlet form (1.6) this process is a jump process with the jump kernel
J (x, dy). We are interested in conditions ensuring the stochastic completeness of
Xt, that is, the infinite life time of the process.

Many examples of jump processes are provided by the Lévy-Khintchine theorem
with the Lévy measure corresponding to J (x, dy). In this case (1.5) is the integra-
bility condition appearing in the definition of a Lévy process (see [4, 29]). However,
for the purpose of investigation of stochastic completeness the condition (1.5) plays
the same role as (1.3) does for diffusion.

Definition 1.2. We say that a distance function d is adapted to a kernel J(x, dy)
(or J is adapted to d) if (1.5) is satisfied.

For example, the Euclidean distance in Rn is adapted to any Lévy measure. An
explicit example of a Lévy measure on Rn is

J(x, dy) =
cn,α

|x− y|n+αm(dy),

where α ∈ (0, 2) and m is the Lebesgue measure. The Hunt process corresponding
to (E ,F) is the rotationally invariant α-stable process. It is a Lévy process whose
infinitesimal generator is the fractional Laplacian ∆α/2.

To state our first main result, define closed metric balls B(x, r) in X by (1.1)
where d now is the given metric in X, and set V (x, r) = µ(B(x, r)).

Theorem 1.3. Assume that J satisfies (1.4) and (1.5). Assume also that, for some
x0 ∈ X,

(1.7) lim inf
r→∞

log V (x0, r)

r log r
<

1

2
.

Then the Dirichlet form (E ,F) is stochastically complete.
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For example, (1.7) is satisfied if there is a sequence of values of r that goes to ∞
and a constant b > 0 such that

(1.8) V (x0, r) ≤ exp (br) ,

or if, for some c ∈
(
0, 1

2

)
,

V (x0, r) ≤ exp (cr log r) .

We do not claim that the value 1
2

in (1.7) is sharp.
In the proof we split the jump kernel J(x, dy) into the sum of two parts:

(1.9) J ′(x, dy) = J(x, dy)1{d(x,y)≤1} and J ′′(x, dy) = J(x, dy)1{d(x,y)>1}

and show first the stochastic completeness of the Dirichlet form (E ′,F ′) associated
with J ′. For that we adapt the method of B.Davies used in [8] for the proof of
Theorem 1.1. The bounded range of J ′ allows to treat the Dirichlet form (E ′,F ′) as
almost local. The condition (1.5) plays in the proof the same role as the condition
(1.3) in the local case. However, the lack of locality brings up in the estimates
various additional terms that have to be compensated by a stronger hypothesis
of the volume growth (1.7), instead of the quadratic exponential growth (1.2) in
Theorem 1.1. The tail J ′′ can regarded as a small perturbation since we show that
(E ,F) is stochastically complete if and only if (E ′,F ′) is so.

It is not clear if the discrepancy between the powers of r in (1.2) and (1.8) is
essential or technical. We believe that the condition (1.7) in Theorem 1.3 is close to
the optimal one, but we still lack counterexamples.

In a similar setting Masamune and Uemura [26] proved the stochastic complete-
ness under a stronger hypothesis than (1.7): for any ε > 0

e−εd(x0,x) ∈ L1(X,µ),

that in particular implies V (x0, r) = exp(o(r)) as r → ∞. As we will see below, it
is critical for some applications to allow a large constant b in (1.8).

Now we turn to random walks on graphs. Let (X,E) be a locally finite, infinite,
connected graph, where X is the set of vertices and E is the set of edges. We assume
that the graph is undirected. Let µ be the counting measure on X. Define the jump
kernel by J(x, dy) = 1{x∼y}dµ (y) , where x ∼ y means that x, y are neighbors, that
is, (x, y) ∈ E. This kernel determines a continuous time random walk on X with
the generator

∆f(x) =
∑

y∼x

(f(x)− f(y)).

The operator ∆ is called unnormalized or physical Laplace operator on (X,E), to
distinguish from the normalized or combinatorial Laplace operator

∆̂f(x) =
1

deg(x)

∑

y∼x

(f(x)− f(y)),

where deg(x) is the number of neighbors of x. The normalized Laplacian ∆̂ corre-
sponds to the same jump kernel, when µ is the degree measure (i.e. µ (x) = deg (x)).

It is easy to prove that ∆̂ is a bounded operator in L2(X, deg), which then implies
that the associated random walk is always stochastically complete (see [9]).
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On the contrary, the random walk associated with the unnormalized Laplace
operator can be stochastically incomplete. Wojciechowski [34, 35] and Weber [33]
first independently studied the stochastic incompleteness of the random walk using
different approaches. Their results are extended to a more general framework by
Keller and Lenz [23]. See also [25, 21] for further results.

We say that the graph (X,E) is stochastically complete if the continuous time
random walk on X with generator ∆ is stochastically complete.

Denote by ρ(x, y) the graph distance on X, that is the minimal number of edges
in an edge chain connecting x and y. Denote by Bρ(x, r) closed metric balls with
respect to this distance ρ and let Vρ(x, r) = |Bρ(x, r)| where |·| := µ(·) denotes the
counting measure, i.e. the number of vertices in the given set.

Our second main result is the following theorem.

Theorem 1.4. If there is a point x0 ∈ X and a constant c > 0 such that

(1.10) Vρ(x0, r) ≤ cr3

for all large enough r, then the graph (X,E) is stochastically complete.

Note that the cubic rate of volume growth here is sharp. Indeed, Wojciechowski
[35] has shown that, for any ε > 0 there is a stochastically incomplete graph that
satisfies Vρ(x0, r) ≤ cr3+ε. For any non-negative integer r, set

(1.11) Sρ(r) = {x ∈ X : ρ(x0, x) = r} .

In the example of Wojciechowski every vertex on Sρ(r) is connected to all vertices
on Sρ(r − 1) and Sρ(r) (see Fig. 1).

Figure 1. Anti-tree of Wojciechowski

For this type of graphs, called anti-trees, the stochastic incompleteness is equiva-
lent to the following condition ([35]):

(1.12)
∞∑

r=1

Vρ(x0, r)

|Sρ(r + 1)| |Sρ(r)|
<∞.

If |Sρ(r)| ' r2+ε then Vρ(x0, r) ' r3+ε and the condition (1.12) is satisfied so that
the graph is stochastically incomplete (the relation f ' g means that the ratio of
functions f and g is bounded from above and below by positive constants).

The proof of Theorem 1.4 is based on the following ideas. In general, the graph
distance ρ is not adapted. Indeed, the integral in (1.5) is equal to deg(x) so that
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(1.5) holds if and only if the graph has uniformly bounded degree1. In general, we
can construct an adapted distance d as follows. For all x ∼ y set

(1.13) σ(x, y) =
1

√
deg(x)

∧
1

√
deg(y)

and regard σ (x, y) as the length for the edge x ∼ y. Then for all x, y ∈ X define
d(x, y) as the smallest total length of all edges in an edge chain connecting x and y.
It is easy to verify that d satisfies (1.5). The idea is to prove that (1.10) for ρ-balls
implies that the d-balls have at most exponential volume growth. The stochastic
completeness will follow then by Theorem 1.3.

To see why the cubic volume growth for the graph distance is related to the ex-
ponential volume growth for the adapted distance, let us consider a more restrictive
hypothesis

(1.14) |Sρ(r)| ≤ Cr2 for r ≥ 1.

Note that (1.14) is a stronger hypothesis than (1.10). Any point x ∈ Sρ(r) admits
the estimate of the degree as follows (see Fig. 2):

(1.15) deg(x) ≤ |Sρ(r − 1)|+ |Sρ(r)|+ |Sρ(r + 1)| ≤ C1r
2.

x
x0

Sρ(r)
Sρ(r+1)

Sρ(r-1)

Figure 2. A vertex x ∈ Sρ(r) can be connected only to the vertices
on Sρ(r − 1), Sρ(r), and Sρ(r + 1)

Therefore, if x, y are two neighboring vertices in Bρ (x0, r), then by (1.13) and
(1.15)

(1.16) σ(x, y) =
1

√
deg(x)

∧
1

√
deg(y)

≥
c1

r
,

with some constant c1 > 0.

1In this case we have also V (x, r) ≤ exp(Cr) so that the graph is stochastically complete by
Theorem 1.3. However, the stochastic completeness of graphs with bounded degrees can be proved
much simpler – see [35] and [21].



STOCHASTIC COMPLETENESS 7

Fix a vertex x ∈ Sρ(R) and let {xi}
N
i=0 be a path connecting x0 to x with the

minimal σ-length (see Fig. 3). Since ρ(x0, xi) ≤ i it follows from (1.16) that
σ(xi−1, xi) ≥ c1

i
and, hence for some c2 > 0,

d(x0, x) =
N∑

i=1

σ(xi−1, xi) ≥ c1

R∑

i=1

1

i
≥ c2 logR.

xi

x0

Sρ(i)

Sρ(R)

x=xN

xi-1

x1

Figure 3. For any path {xi}
N
i=0 connecting x0 and x ∈ Sρ(R), we

have N ≥ R and σ(xi−1, xi) ≥ c1
i

.

Denoting by Bd the d-balls, we obtain

Bd(x0, c2 logR) ⊂ Bρ(x0, R)

and by using (1.10) we obtain

Vd(x0, r) ≤ Vρ(x0, e
r/c2) ≤ exp (c3r)

for some c3 > 0 and all large enough r, which proves that balls have volume of at
most exponential growth.

In the general case, when only the hypothesis (1.10) is assumed, the condition
(1.14) does not have to be satisfied for all r ≥ 1. However, one can show that (1.14)
is true for sufficiently many values of r, which is enough to conclude the proof of
Theorem 1.4 (see Section 4 for the details).

The paper is organized as follows. In Section 2 we introduce a general setting and
study the stability of stochastic completeness under perturbation. As a consequence,
we can reduce the study of stochastic completeness to the case when the jump kernel
is truncated. In Section 3 we prove the stochastic completeness for the truncated
jump kernel under the volume growth hypothesis (1.7), which finishes the proof
of our main Theorem 1.3. Section 4 is devoted to applications of Theorem 1.3 to
graphs. In particular, we give a proof of Theorem 1.4 based on the aforementioned
ideas. In Section 5 we discuss some further examples and applications.

2. Perturbation of Dirichlet forms and stability of stochastic
completeness

Let (X, d), µ and J be as in Introduction. Let us describe the construction of the
Dirichlet form (E ,F) more precisely (see also [26]). The hypothesis (1.5) implies
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that, for any x ∈ X and ε > 0,

J (x,B (x, ε)c) ≤ ε−2M.

Set

X ′ := X ×X \ diag .

Then one can use the identity
∫

X′
f (x, y) J (dx, dy) =

∫

X

(∫

X\{x}
f (x, y) J (x, dy)

)

µ (dx)

to define a Radon measure J (dx, dy) on X ′. The σ-additivity of J follows from the
monotone convergence theorem. If K is a compact subset of X × X \ diag then
denote by K ′ its projection onto X and by Kx its section at x ∈ X. Since K lies
outside some ε-neighborhood of the diagonal, we obtain

J (K) =

∫

K′
J (x,Kx)µ (dx) ≤

∫

K′
ε−2Mµ (dx) ≤ ε−2Mµ (K ′) <∞,

which implies that J is a Radon measure.
By (1.4) measure J (dx, dy) is symmetric in x, y. We can rewrite (1.6) as

(2.17) E(f, g) =
1

2

∫

X′
(f(x)− f(y))(g(x)− g(y))J(dx, dy).

Define the maximal domain of E by

Fmax =
{
f ∈ L2 : E(f, f) <∞

}
,

where L2 = L2(X,µ). By the polarization identity, E(f, g) is finite for all f, g ∈ Fmax.
Moreover, Fmax is a Hilbert space with the following norm:

‖f‖2
Fmax

= E1(f, f) := ‖f‖2
L2 + E(f, f).

Denote by Lip0(X) the class of Lipschitz functions on X with compact support.
It follows from (1.5) that Lip0(X) ⊂ Fmax. Indeed, for any f ∈ Lip0(X) we have

|f(x)− f(y)| ≤ C (1 ∧ d(x, y))

where C = max
(
‖f‖Lip , 2 sup |f |

)
and ‖f‖Lip is the Lipschitz constant of f . De-

noting K = supp f , we obtain using (1.5)

E(f, f) =
1

2

∫

X′
(f(x)− f(y))2J(dx, dy)

≤
∫

K×X\diag

(f(x)− f(y))2J(dx, dy)

≤ C

∫

K

∫

X\{x}
(1 ∧ d(x, y)2)J (x, dy)µ (dx)

≤ CMµ(K) <∞,

which proves that f ∈ Fmax.
Define the space F as the closure of Lip0(X) in (Fmax, ‖·‖Fmax

). Under the above
hypothesis, (E ,F) is a regular Dirichlet form in L2(X,µ) (see [26, 7]). We refer to F
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as the minimal domain of E . As any Dirichlet form, (E ,F) has the generator: a non-
negative definite self-adjoint operator ∆ in L2 with the property that dom (∆) ⊂ F
and

(∆f, g) = E(f, g) for all f ∈ dom(∆) and g ∈ F .

The generator determines the heat semigroup Pt = e−t∆, t ≥ 0. Apart from being
a bounded self-adjoint operator in L2, the operator Pt has the following Markovian
properties:

f ≥ 0⇒ Ptf ≥ 0 and f ≤ 1⇒ Ptf ≤ 1.

It follows that the operator Pt extends to a contraction operator on all spaces Lp,
in particular, on L∞.

By [12], for any regular Dirichlet form there exists a Hunt process {Xt}t≥0 such
that, for all bounded Borel functions f on X,

(2.18) Exf(Xt) = Ptf(x)

for all t > 0 and almost all x ∈ X, where Ex is expectation associated with the
law of Xt started at x. For the Dirichlet form (E ,F), the process Xt is a pure jump
process with the jump kernel J(x, dy).

Using the identity (2.18), one can show that the lifetime of Xt is almost surely
∞ if and only if Pt1 = 1 for all t > 0. This observation motivates the following
definition.

Definition 2.1. The semigroup Pt is called stochastically complete if Pt1 = 1 for
all t > 0. Otherwise it is called stochastically incomplete.

For simplicity of terminology, we also say that the Dirichlet form (E ,F) (or its
generator ∆) is stochastically complete if so is the associated heat semigroup Pt.

Suppose we are given three jump kernels J , J ′, and J ′′ satisfying the hypotheses
(1.4), (1.5) and the relation

J = J ′ + J ′′.

Assume that J ′′ satisfies a stronger hypothesis: there is a positive constant M such
that

(2.19) sup
x∈X

∫

X

J ′′(x, dy) ≤M.

Let E , E ′ and E ′′ be the quadratic forms of J, J ′, J ′′ respectively, defined through
(1.6). As before, let F be the minimal domain of E . Denote by F ′ the minimal
domain of E ′.

The main result of this section is the following result about the stability of sto-
chastic completeness.

Theorem 2.2. Assume that J, J ′ and J ′′ satisfy (1.4) (1.5) and (2.19). Then (E ,F)
is stochastically complete if and only if so is (E ′,F ′).

Hence, J ′′ can be regarded as a small perturbation of J ′. The proof of Theorem
2.2 requires some preparation.

Lemma 2.3. Under the hypotheses of Theorem 2.2, we have F = F ′.
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Proof. First we notice that, for any Borel function f ∈ L2(X,µ),

E ′′ (f, f) =
1

2

∫

X′
(f(x)− f(y))2J ′′(dx, dy)

≤
∫

X′
(f(x)2 + f(y)2)J ′′(dx, dy)

= 2

∫

X′
f(x)2J ′′(dx, dy)

≤ 2M ‖f‖2
2(2.20)

where we have used (2.19) and the symmetry of J ′′(dx, dy). Using E(f) = E ′(f) +
E ′′(f) and (2.20) we obtain

E ′1(f) ≤ E1(f) = E ′(f)+E ′′ (f)+‖f‖2
2 ≤ (2M+1)

(
E ′ (f) + ‖f‖2

2

)
= (2M + 1) E ′1 (f) .

Hence, the norms
√
E1 and

√
E ′1 are equivalent, and the closures of Lip0(X) with

respect to them are the same, i.e. F = F ′. �

It will be convenient to use the following criterion for stochastic completeness,
which is a part of Theorem 1.6.6 in [12].

Proposition 2.4. A Dirichlet form (E ,F) is stochastically complete if and only if
there exists a sequence {un}∞n=1 ⊂ F such that

(1) 0 ≤ un(x) ≤ 1,
(2) un(x)→ 1 µ-a.e. as n→∞,
(3) E(un, v)→ 0 for any v ∈ F ∩ L1(X,µ).

In order to be able to use this criterion, we need the following two elementary
lemmas.

Lemma 2.5. If A ∈ B(X) and µ(A) = 0, then
∫

(A×X)∪(X×A)

J ′′(dx, dy) = 0.

Proof. Applying Fubini’s theorem, the symmetry of J ′′ and (2.19), we obtain
∫

X×A
J ′′(dx, dy) =

∫

A×X
J ′′(dx, dy) =

∫

A

∫

X

J ′′ (x, dy)µ (dx) ≤Mµ(A) = 0.

�

Lemma 2.6. Let {un} be a sequence of measurable functions on X such that

0 ≤ un(x) ≤ 1, and un(x)→ 1 µ-a.e. as n→∞.

Then for any v ∈ L1(X,µ) we have

lim
n→∞

E ′′ (un, v) = 0.

Proof. Since un(x) → 1 µ-a.e., we have un (x) → 1 for any x ∈ X \ A for some
Borel set A with µ(A) = 0. It follows that

lim
n→∞

v(x)(un(x)− un(y)) = 0 for all x, y ∈ X \ A.
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Since the complement of (X \ A)× (X \ A) in X×X is (A×X)∪ (X × A) and the
latter set a J ′′ (dx, dx)-null set by Lemma 2.5, it follows that

v(x)(un(x)− un(y))→ 0 J ′′ (dx, dy) -a.e.

Noticing that |v(x) (un(x)− un(y))| ≤ |v(x)| and |v (x)| is J ′′(dx, dy)-integrable
since ∫

X×X
|v(x)| J ′′(dx, dy) =

∫

X

∫

X

|v(x)| J ′′(x, dy)µ (dx) ≤M ‖v‖1 ,

by Lebesgue’s dominated convergence theorem, we obtain that

lim
n→∞

∫

X×X
v(x)(un(x)− un(y))J ′′(dx, dy) = 0.

By symmetry, we have

lim
n→∞

∫

X×X
v(y)(un(x)− un(y))J ′′(dx, dy) = 0,

whence E ′′ (un, v)→ 0 follows. �

Now we can complete the proof of our main result in this section.

Proof of Theorem 2.2. First we prove that the stochastic completeness of (E ′,F ′)
implies that of (E ,F). By Lemma 2.3 we have F ′ = F . Applying Proposition 2.4
to (E ′,F) we obtain that there is a sequence {un} ⊂ Fsuch that

(1) 0 ≤ un(x) ≤ 1,
(2) un(x)→ 1, µ-a.e.,
(3) E ′(un, v)→ 0 for any v ∈ F ∩ L1(X,µ).

By Lemma 2.6 we have, for any v(x) ∈ F ∩ L1(X,µ),

E(un, v)− E ′(un, v) = E ′′(un, v)→ 0 as n→∞.

Hence, E (un, v)→ 0, which implies by Proposition 2.4 that (E ,F) is stochastically
complete. The other implication is proved similarly. �

3. Stochastic completeness under the volume growth

In this section we prove Theorem 1.3. Given a jump kernel J satisfying (1.4) and
(1.5), define J ′ and J ′′ as in (1.9), that is

J ′(x, dy) = J(x, dy)1B(x,1) and J ′′(x, dy) = J(x, dy)1B(x,1)c .

Obviously, both J ′ and J ′′ satisfy (1.4) and (1.5). Moreover, we have
∫

X

J ′′ (x, dy) =

∫

B(x,1)c
J (x, dy) =

∫

B(x,1)c

(
1 ∧ d (x, y)2)

J (x, dy) ≤M

so that J ′′ satisfies (2.19). By Theorem 2.2, it suffices to prove that (E ′,F ′) is
stochastically complete.

The idea of truncation of jump kernel has been fruitfully used by a number of
authors to answer various questions related to the jump processes. For example,
Chen and Kumagai [6], [7] used it to obtain heat kernel estimates for certain jump
kernel. In the present setting the truncation of jump process was used by Masamune
and Uemura [26], who also proved the stability of the stochastic completeness with
respect to truncation. Our proof of Theorem 2.2 is different from the one in [26].
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In the rest of this section, we rename J ′ to J so that the measure J (x, ·) is
supported in B (x, 1). In particular, by (1.5) we have

(3.21) sup
x∈X

∫

X\{x}
d2 (x, y) J (x, dy) ≤M.

Before we finish the proof of Theorem 1.3, we state some elementary facts. Denote
by 〈·, ·〉 the inner product in L2(X,µ).

Lemma 3.1. Let g be a non-negative bounded measurable function on X. If
∫
X
fgdµ =

0 for any f ∈ Lip0(X), then g = 0 µ-a.e.

Proof. Assume that there exists ε > 0 such that

µ({x ∈ X : g(x) > ε}) > 0.

Since µ is a Radon measure, there exists a compact subset K of {x ∈ X : g(x) > ε}
such that µ(K) > 0. Consider the function f(x) = (1 − d(x,K))+ that belongs to
Lip0(X). Since f ≥ 0 and f |K = 1, we obtain

∫
X
fgdµ ≥ εµ (K) > 0, which is a

contradiction. �

The following lemma will be used as our basic criterion for stochastic complete-
ness.

Lemma 3.2. Let {gn} be an increasing sequence of non-negative functions from
L2 ∩ L∞(X,µ) such that

lim
n→∞

gn = 1 µ-a.e.

If, for some t > 0 and for any f ∈ Lip0(X),

(3.22) lim
n→∞
〈f − Ptf, gn〉 = 0

then Pt1 = 1 µ-a.e..

Proof. Using the symmetry of Pt and (3.22), we obtain, for any f ∈ Lip0(X),

(3.23) 〈f, gn − Ptgn〉 = 〈f − Ptf, gn〉 → 0

as n→∞. By definition of Pt1,

Pt1 = lim
n→∞

Ptgn

whence

lim
n→∞

(gn − Ptgn) = 1− Pt1,

where all limits are understood µ-a.e.. Noticing that

|f(gn − Ptgn)| ≤ |f |

we obtain by Lebesgue’s dominated convergence theorem and (3.23) that
∫

X

f (1− Pt1) dµ = lim
n→∞

∫

X

f(gn − Ptgn)dµ = 0.

By Lemma 3.1 we conclude that 1− Pt1 = 0 µ-a.e., which was to be proved. �
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As before, let ∆ denote the (positive definite) generator of (E ,F) and D(∆) –
its domain. Let {Eλ}λ≥0 be the spectral resolution of ∆ (cf. [24], [19]). By the
functional calculus we have for any f ∈ L2 (X,µ)

(3.24) Ptf = exp (−t∆) f =

∫ ∞

0

exp(−tλ)dEλf.

Lemma 3.3. For any f ∈ L2(X,µ) and for any t > 0, Ptf ∈ D(∆) and

(3.25)
d

dt
(Ptf) = −∆(Ptf) =

∫ ∞

0

λ exp(−tλ)dEλf,

where d
dt

is the strong derivative in L2(X,µ).

Proof. See [19, Section 4.3]. �

Lemma 3.4. Let f, g ∈ L2(X,µ) and ψ ∈ L∞(X,µ). Then each of the following
two functions

(3.26) t 7→ 〈Ptf, g〉, t 7→ 〈ψPtf, ψPtg〉,

is continuous in t ≥ 0 and continuously differentiable in t > 0.

Proof. Indeed, it follows from (3.24) that Ptf is strongly continuous in t ≥ 0 as
a path in L2, and from (3.25) that d

dt
(Ptf) is strongly continuous in t > 0. Since

multiplication by ψ is a bounded operator in L2, we obtain the same properties for
ψPtf . Consequently, the functions in (3.26) are continuous in t ≥ 0 and continuously
differentiable in t > 0. �

We denote by Lipb the space of bounded Lipschitz functions on (X, d) and by Fb
the space of bounded functions from F(X,µ).

Lemma 3.5. If u ∈ F and ψ ∈ Lipb(X), then ψu ∈ F .

Proof. This proof is taken from [26, Lemma 2.1]. If u ∈ Lip0 then uψ ∈ Lip0 whence
ψu ∈ F follows. An arbitrary function u ∈ F can be approximated by a sequence
of functions {un} from Lip0 that converges to u in E1. Then ψun → ψu in E1 which
follows from the following inequality that is true for all u ∈ F and ψ ∈ Lip0:

E (ψu) ≤ sup |ψ|2 E (u) +M ‖ψ‖2
Lip ‖u‖

2
L2 .

Indeed, using the definition of E , the symmetry of J and (3.21), we obtain

E (ψu) =
1

2

∫

X′
(ψ (x) u (x)− ψ (y) u (y))2

J (dx, dy)

=
1

2

∫

X′
(ψ (x) (u (x)− u (y)) + (ψ (x)− ψ (y)) u (y))2

J (dx, dy)

≤
∫

X′
ψ2 (x) (u (x)− u (y))2

J (dx, dy)

+

∫

X

∫

X\{y}
(ψ (x)− ψ (y))2

u (y)2
J (dx, y)µ (dy)

≤ sup |ψ|2 E (u) + ‖ψ‖2
Lip

∫

X

u (y)2
µ (dy)

∫

X\{y}
d2 (x, y) J (dx, y)

≤ sup |ψ|2 E (u) +M ‖ψ‖2
Lip ‖u‖

2
L2 .
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�

Lemma 3.6. For all u, v ∈ Fb and w ∈ Lipb(X), we have

E (u, vw) =
1

2

∫

X′
v(x)(u(x)− u(y))(w(x)− w(y))J (dx, dy)(3.27)

+
1

2

∫

X′
w(x)(u(x)− u(y))(v(x)− v(y))J (dx, dy) .(3.28)

The identity (3.27)-(3.28) can be considered as a version of the Leibniz formula
for the non-local form (E ,F).

Proof. The proof is taken from [26, Proposition 2.2] and [27]. By Lemma 3.5 vw ∈ F
so that E (u, vw) makes sense. The integral (3.28) converges because w is bounded
while u, v ∈ F . The integral (3.27) converges because the integrand is bounded by

|v (x)| |u (x)− u (y)| ‖w‖Lip d (x, y)

and, by the Cauchy-Schwarz inequality and (3.21),
∫

X′
|v (x)| |u (x)− u (y)| d (x, y) J (dx, dy)

≤ E (u)1/2

(∫

X′
v (x)2

d2 (x, y) J (dx, dy)

)1/2

= E (u)1/2

(∫

X

v (x)2
µ (dx)

∫

X\{x}
d2 (x, y) J (x, dy)

)1/2

≤ E (u)1/2 ‖v‖L2 M
1/2.

Next, observe that the following the pointwise identity is true:

(ux − uy) (vxwx − vywy)− vx(ux − uy)(wx − wy)− wx(ux − uy)(vx − vy)(3.29)

= − (ux − uy) (vxwx − vywy) + vy(ux − uy)(wx − wy) + wy(ux − uy)(vx − vy),

where we write for brevity u (x) = ux etc. Therefore, the function (3.29) is a skew-
symmetric function of x, y, and integration of this function against the symmetric
measure J (dx, dy) yields 0, whence the identity (3.27)-(3.28) follows. �

The following statement provides a key estimate, that is motivated by B.Davies’s
approach in the local setting (cf. [8]).

Proposition 3.7. Let ψ be a positive function on X such that logψ is a bounded
non-negative Lipschitz function with the Lipschitz constant a. Let f ∈ Lip0 (X) be
such that ψ ≡ 1 on supp f . Set ut = Ptf . Then the following inequality holds for
all t > 0:

(3.30)

∫ t

0

∫

X′
(us(x)− us(y))2ψ(x)2J (dx, dy) ds ≤ 4eMa2e2at ‖f‖2

2 .

Proof. Note that ψ and ψ2 are bounded Lipschitz functions. By Lemma 3.3 we have

(3.31)
d

ds
‖usψ‖

2 =
d

ds
〈usψ, usψ〉 = −2〈ψ∆us, ψus〉 = −2〈∆us, ψ

2us〉 = −2E(us, ψ
2us).



STOCHASTIC COMPLETENESS 15

On the other hand, we have by Lemma 3.6

− 2E(us, ψ
2us) = −

∫

X′
us(x)(us(x)− us(y))(ψ(x)2 − ψ(y)2)J (dx, dy)

−
∫

X′
ψ(x)2(us(x)− us(y))2J (dx, dy)

≤
1

4

∫

X′
(us(x)− us(y))2(ψ(x) + ψ(y))2J (dx, dy)(3.32)

+

∫

X′
us(x)2(ψ(x)− ψ(y))2J (dx, dy)(3.33)

−
∫

X′
(us(x)− us(y))2ψ(x)2J (dx, dy)(3.34)

where we have used the inequality

(3.35) AB ≤
1

4
A2 +B2

with

A = (us(x)− us(y))(ψ(x) + ψ(y)), B = us (x) (ψ (x)− ψ (y)) .

Using

(ψ(x) + ψ(y))2 ≤ 2(ψ(x)2 + ψ(y)2)

and the symmetry of J (dx, dy), we estimate the integral (3.32) as follows:

1

4

∫

X′
(us(x)− us(y))2(ψ(x) + ψ(y))2J (dx, dy)

≤
1

2

∫

X′
(us(x)− us(y))2(ψ(x)2 + ψ(y)2)J (dx, dy)

=

∫

X′
(us(x)− us(y))2ψ(x)2J (dx, dy) ,(3.36)

which cancels out with (3.34).
In order to handle the remaining integral (3.33), observe first that, by the Lipschitz

condition of log ψ,

e−ad(x,y) ≤
ψ (y)

ψ (x)
≤ ead(x,y),

for all x, y ∈ X. It follows that
(3.37)

|ψ (x)− ψ (y)| =

∣
∣
∣
∣
ψ (y)

ψ (x)
− 1

∣
∣
∣
∣ψ (x) ≤

(
ead(x,y) − 1

)
ψ (x) ≤ ad (x, y) ead(x,y)ψ (x) .

Recall that integration against measure J (dx, dy) can be restricted to d (x, y) ≤ 1.
Hence, in this range we obtain from (3.37)

|ψ(x)− ψ(y)| ≤ aead(x, y)ψ(x).
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Using this inequality and (3.21), we obtain
∫

X′
us(x)2(ψ(x)− ψ(y))2J (dx, dy)

≤ a2e2a

∫

X

∫

X\{x}
us(x)2ψ(x)2d(x, y)2J (x, dy)µ (dx)

≤ Ma2e2a

∫

X

us(x)2ψ(x)2µ(dx)

= C ‖usψ‖
2
2 ,(3.38)

where

C = Ma2e2a.

It follows from (3.31) and (3.33) that

d

ds
‖usψ‖

2
2 ≤ C ‖usψ‖

2
2 .

By Gronwall’s lemma, we obtain

‖utψ‖
2
2 ≤ exp(Ct) ‖fψ‖2

2 .

Since ψ = 1 on supp f , we have fψ ≡ f , which implies

(3.39) ‖utψ‖
2
2 ≤ exp(Ct) ‖f‖2

2 .

Now we repeat the estimate (3.32)-(3.34) using instead of (3.35) the inequality

AB ≤
1

8
A2 + 2B2,

which together with (3.31) yields

d

ds
‖usψ‖

2
2 ≤

1

8

∫

X′
(us(x)− us(y))2(ψ(x) + ψ(y))2J (dx, dy)

+2

∫

X′
us(x)2(ψ(x)− ψ(y))2J (dx, dy)

−
∫

X′
(us(x)− us(y))2ψ(x)2J (dx, dy) .

Substituting the estimates (3.36) and (3.38), we obtain

d

ds
‖usψ‖

2
2 ≤ 2C ‖usψ‖

2
2 −

1

2

∫

X′
(us(x)− us(y))2ψ(x)2J (dx, dy) .

Combining with (3.39) yields

d

ds
‖usψ‖

2
2 +

1

2

∫

X′
(us(x)− us(y))2ψ(x)2J (dx, dy) ≤ 2CeCs ‖f‖2

2 .

Finally, integrating the both sides from 0 to t, we obtain

‖utψ‖
2
2 − ‖f‖

2
2 +

1

2

∫ t

0

∫

X′
(us(x)− us(y))2ψ(x)2J (dx, dy) ds ≤ 2(eCt − 1) ‖f‖2

2 ,

whence (3.30) follows. �
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After all these preparations, we are in position to finish the proof of Theorem 1.3.
As above, we assume that J (x, dy) is supported in B (x, 1).

Proof of Theorem 1.3. Fix a point x0, set r (x) = d (x, x0) and consider the family
of functions {gn}n>0defined as follows:

gn(x) = ((n+ 2)− r(x))+ ∧ 1 =






1, r (x) ≤ n+ 1,
n+ 2− r (x) , n+ 1 ≤ r (x) ≤ n+ 2,
0, r (x) ≥ n+ 2,

It is easy to see that 0 ≤ gn ∈ Lip0(X) and gn (x) ↑ 1 as n → ∞. Also, for any
n > 0 define a function

ψn(x) = exp
(
a
((
r (x)− n

2

)
+
∧ n

2

))
=






1, r (x) ≤ n
2
,

ea(r(x)−
n
2 ), n

2
≤ r (x) ≤ n,

e
1
2
an, r (x) ≥ n,

where a > 0 is a free parameter. Note that ψn ≡ 1 on B
(
x0,

n
2

)
and logψn is a

non-negative bounded Lipschitz function with the Lipschitz constant a (see Fig. 4).
That is, ψn satisfies the hypotheses of Proposition 3.7 and, hence, the latter can be
applied with any function f ∈ Lip0

(
B
(
x0,

n
2

))
.

 

B(1/2n) B(n) 

e  an
 

B(n+2) 

1 

B(n+1) 

1/2 

Figure 4. Functions gn (dotted line) and ψn (bold line). Here
B (r) ≡ B (x0, r) .

By Lemma 3.2, we only need prove that

(3.40) lim
n→∞
〈ut − f, gn〉 = 0
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for all f ∈ Lip0(X) and t > 0, where ut = Ptf . Fix f and t and write

〈ut−f, gn〉 = 〈ut, gn〉−〈f, gn〉 =

∫ t

0

d

ds
〈us, gn〉ds = −

∫ t

0

〈∆us, gn〉ds = −
∫ t

0

E(us, gn)ds.

By the Cauchy-Schwarz inequality we obtain

〈ut − f, gn〉
2 =

(∫ t

0

E(us, gn)ds

)2

=
1

4

{∫ t

0

∫

X′
(us(x)− us(y))(gn(x)− gn(y))J (dx, dy) ds

}2

≤
1

4

∫ t

0

∫

X′
(us(x)− us(y))2ψn(x)2J (dx, dy) ds(3.41)

×
∫ t

0

∫

X′
(gn(x)− gn(y))2ψn(x)−2J (dx, dy) ds.(3.42)

The integral (3.41) can be estimated by Proposition 3.7, provided n is large enough
so that supp f ⊂ B

(
x0,

n
2

)
. To estimate the integral (3.42), restrict the domain

of integration to d(x, y) ≤ 1 and observe that if x /∈ B(x0, n + 3) \ B(x0, n) and
d (x, y) ≤ 1 then gn(x) = gn(y) = 0. Using also that ‖gn‖Lip ≤ 1 and (3.21), we
obtain

∫

X′
(gn(x)− gn(y))2ψn(x)−2J (dx, dy) ds

=

∫

B(x0,n+3)\B(x0,n)

ψn(x)−2

∫

X\{x}
(gn(x)− gn(y))2J (dx, dy)

≤
∫

B(x0,n+3)\B(x0,n)

ψn(x)−2

∫

X\{x}
d (x, y)2

J (dx, dy)

≤ M

∫

B(x0,n+3)\B(x0,n)

ψn(x)−2µ(dx)

≤ Me−anV (x0, n+ 3) ,(3.43)

where in the last line we have used that ψn(x)2 = ean on B(x0, n)c. Substituting
(3.43) into (3.42) and estimating the integral (3.41) by Proposition 3.7, we obtain

(3.44) 〈ut − f, gn〉
2 ≤Mt exp(−an+ log V (x0, n+ 3) +Mte2aa2) ‖f‖2

2 .

By hypothesis (1.7), there is a sequence of values of n that goes to ∞ and such that

log V (x0, n+ 3) ≤ bn log n,

where b < 1
2
. Choose c so that b < c < 1

2
and set in (3.44) a = c log n, which yields

(3.45) 〈ut − f, gn〉
2 ≤Mt exp(−cn log n+ bn log n+Mtc2n2c log2 n) ‖f‖2

2 .

Since 2c < 1 and c > b, we see that the term −cn log n dominates and the right
hand side of (3.45) goes to 0 as n→∞, whence (3.40) follows. �
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4. Stochastic completeness of random walks on graphs

Theorem 1.3 can be applied to study stochastic completeness for a family of
weighted graphs. We generally follow the setting of Keller and Lenz [23] despite
that we are more restrictive here to avoid topological considerations. Let (X,E) be
a locally finite, connected, infinite undirected graph without loops and multi-edges.
Here X is the set of vertices and E is the set of edges which can be viewed as a subset
of X × X. All graphs under discussion will be of this type without specification.
For (x, y) ∈ E, we write x ∼ y for short. We call a sequence of points x0, · · · , xn a
chain connecting x and y if x0 = x, xn = y and xi ∼ xi+1 for all i = 0, 1, ..., n − 1.
The number n is called the length of this chain. A natural graph metric ρ can be
defined on X as the minimal length of chains connecting two distinct points. Let
µ(x) be a positive function on X such that for any x ∈ X,

µ(x) > C

for some constant C > 0. Then µ can be viewed as a Radon measure on (X, ρ)
with full support, and (X, ρ, µ) forms a locally compact metric measure space. Let
w(x, y) be a function on X ×X that satisfies:

(1) w(x, y) ≥ 0;
(2) w(x, y) = w(y, x);
(3) w(x, y) > 0⇔ (x, y) ∈ E.

Note that since we only consider graphs without loops, w vanishes on the diagonal
of X×X. The triple (X,w, µ) will be called a weighted graph. We call the quantity

deg(x) :=
1

µ(x)

∑

y∈X

w(x, y)

the weighted degree of x ∈ X to be distinct from the usual degree of locally finite
graphs.

A quadratic form Q can be defined on the space of finitely supported functions
C0(X) = Lip0(X) as:

Q(u) =
1

2

∑

x,y∈X

w(x, y)(u(x)− u(y))2.

To fit into our general setting, observe that jump kernel is given by J(x, dy) =
w(x,y)
µ(x)µ(y)

dµ (y). The form Q is closable and its closure is a regular Dirichlet form

which we also denote by Q. It corresponds to a nonnegative self adjoint operator ∆
on L2(X,µ) which is a restriction of the following formal Laplacian:

∆̃f(x) =
1

µ(x)

∑

y

w(x, y)(f(x)− f(y)).

The operator ∆ generates a heat semigroup Pt = exp(−t∆) which can be extended
to L∞(X,µ). For more details, see [23].

As we already mentioned, the graph metric ρ is generally adapted to J(x, dy)
since ∫

X

1 ∧ ρ(x, y)2J(x, dy) =
∑

y,y∼x

w(x, y)

µ(x)
ρ(x, y)2 = deg(x),
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that is not necessarily bounded. It is then natural to introduce a new metric d which
is adapted to the jump kernel J(x, dy). The idea is that we can get more reasonable
volume growth criteria with respect to this new metric d and then translate back to
volume growth with respect to graph metric ρ.

Definition 4.1. Define a function σ (x, y) for all x ∼ y by

(4.46) σ(x, y) = min

{
1

√
deg(x)

,
1

√
deg(y)

, 1

}

.

It naturally induces a metric d on X as follows: for all distinct points x, y,
(4.47)

d(x, y) := inf{
n−1∑

i=0

σ(xi, xi+1) : x0, x1, · · · , xn is a chain connecting x and y.}

Remark 4.2. This definition is inspired by a general notion of intrinsic metric
introduced by Frank, Lenz and Wingert [11] where they focus on applications to
spectral properties. Folz [10] also came up with similar ideas independently in the
context of heat kernel estimates.

Since (X,E) is locally finite, for any x ∈ X we have that ,

Bd(x,
1

2
min
y∼x

σ(x, y)) = {x},

and so (X, d) has discrete topology. Therefore Lip0(X) = C0(X) remains true.
In particular, (X, d) is locally compact together with the Radon measure µ on it.

Again, J(x, dy) = w(x,y)
µ(x)µ(y)

dµ (y) forms a jump kernel on (X, d, µ) for which (1.5)

holds: ∫

X

1 ∧ d(x, y)2J(x, dy) ≤
∑

y

w(x, y)

µ(x)
σ(x, y)2 ≤ 1.

Corollary 4.3. Let (X,w, µ) be a weighted graph satisfying the hypothesis stated
at the beginning of this section. Define an adapted metric d on X according to
Definition 4.1. Denote a closed ball with center x ∈ X and radius r > 0 in the
adapted metric by Bd(x, r). If for some fixed point x0 ∈ X there exist a constant
b > 0 such that

(4.48) µ(Bd(x0, r)) ≤ exp (br) ,

for all r large enough, then the corresponding heat semigroup Pt is stochastically
complete.

Proof. In order to apply Theorem 1.3 we only need to check that Bd(x, r) is compact
for every r > 0 and x ∈ X. Since µ(x) > C > 0 for any x ∈ X, we have that

|Bd(x, r)| ≤
µ (Bd(x0, r + d(x, x0)))

C
<∞.

�

In the physical Laplacian case, the weighted degree deg(x) coincides with the
usual degree as the number of neighboring vertices of x. The function deg(x) makes
connection between the graph metric ρ and the adapted metric d. Then Corollary
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4.3 can be applied to give volume growth criteria for stochastic completeness with
respect to the graph metric ρ. We can now prove Theorem 1.4 based on the ideas
discussed in the introduction.

Proof of Theorem 1.4. For any non-negative integer r set

Sρ (r) = {x ∈ X : ρ (x, x0) = r} .

Observe that

V (x0, n) =
n∑

r=0

µ (Sρ (r)) .

Put ε = 1
5

and α = 200c where c is the constant in (1.10). It follows from (1.10)
that, for any n ≥ 1,

∣
∣{r ∈ [n− 1, 2n+ 1] : µ(Sρ(r)) > αn2}

∣
∣ ≤

c(2n+ 1)3

αn2
≤ εn.

It follows that

|{r ∈ [n+ 1, 2n] : max
i=−2,−1,0,1

µ(Sρ(r + i)) > αn2}| ≤ 4εn

and, hence,

(4.49) |{r ∈ [n+ 1, 2n] : max
i=−2,−1,0,1

µ(Sρ(r + i)) ≤ αn2}| ≥ (1− 4ε)n.

For any point x ∈ Sρ(r) we have

(4.50) deg x ≤ µ (Sρ(r − 1)) + µ (Sρ(r)) + µ (Sρ(r + 1)) .

So it follows from (4.49) that

(4.51) |{r ∈ [n+ 1, 2n] : max
x∈Sρ(r−1)∪Sρ(r)

deg x ≤ 3αn2}| ≥ (1− 4ε)n

(see Fig. 5).

 

r 

n 

ρ 

x0 

2n 

Figure 5. Between n + 1 and 2n there are enough values of r such
that deg (x) ≤ 3αn2 for all x ∈ Sρ (r − 1) ∪ Sρ (r) .
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It follows that, for r as in (4.51), any pair of x ∼ y with x ∈ Sρ(r − 1), y ∈ Sρ(r)
necessarily satisfies

(4.52) σ(x, y) ≥
1

√
3αn

.

For any chain connecting a vertex x ∈ Sρ (n) with a vertex y ∈ Sρ (2n) and for any
r ∈ [n + 1, 2n] there is an edge xr ∼ yr from this chain such xr ∈ Sρ(r − 1) and
yr ∈ Sρ(r) (see Fig. 6).

 
 
 
 
 
 
 
 
 
 
 
 
 
  

r-1 

n 

ρ 

x0 

2n 

xr 

yr 

r 

x 

y 

Figure 6. An edge xr ∼ yr of a chain between x and y

The length L of this chain is bounded below by
∑2n

r=n+1 σ (xr, yr). Restricting
the summation to those r that satisfy (4.51) and noticing that for any such r,
σ (xr, yr) ≥ 1√

3αn
, we obtain

L ≥
1

√
3αn

(1− 4ε)n =
1− 4ε
√

3α
=: δ.

Now we can estimate d (x0, x) for any vertex x /∈ Bρ (x0, R), where R > 4. Choose
a positive integer k so that

2k ≤ R < 2k+1.

Any chain connecting x0 and x contains a subsequence {xi}
k
i=1 of vertices such that

xi ∈ Sρ (x0, 2
i). By the previous argument, the length of the chain between xi−1 and

xi is bounded below by a constant δ, for any i = 0, 1, ..., k − 1. It follows that the
length of the whole chain is bounded below by δk, whence

d (x0, x) ≥ δk ≥ δ (log2 R− 1) .

Setting r = δ (log2 R− 1) we obtain

Bd(x0, r) ⊂ Bρ(x0, R).

whence
µ (Bd(x0, r)) ≤ µ (Bρ(x0, R)) ≤ cR3 ≤ C exp (br) ,

for some constants C and b. Hence, the volume growth with respect to the adapted
distance d is at most exponential, and we conclude by Corollary 4.3, that the heat
semigroup corresponding to the physical Laplacian of (X,E) is stochastically com-
plete. �
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Remark 4.4. Theorem 1.4 remains true for general weights (X,w, µ) on a graph
(X,E) that satisfy the condition

(4.53) w(x, y) ≤ Cµ(x)µ(y) for all x, y ∈ X,

for some constant C > 0. Condition (4.53) can be viewed as the fact that the jump

kernel J(x, dy) has bounded density w(x,y)
µ(x)µ(y)

. Note that in this case the control of

weighted degree (4.50) remains valid in the sense that

deg x =
1

µ(x)

∑

y∈X

w(x, y)

≤ C
1

µ(x)

∑

y,y∼x

µ(x)µ(y)

≤ C [µ(Sρ(r − 1)) + µ(Sρ(r)) + µ(Sρ(r + 1))] .

Other parts of the proof extend smoothly to this more general setting.

In the same way one obtains the following consequence of Theorem 1.3.

Proposition 4.5. Assume that, for some reference point x0 ∈ X, α ∈ [0, 1),
c0, c1, N > 0, one of the following two couples of conditions is satisfied for all large
enough r:

(a) deg(x) ≤ c2
0r

2α for x ∈ Sρ(r) and Vρ(x0, r) ≤ exp(c1r
1−α) .

(b) deg(x) ≤ c2
0r

2 for x ∈ Sρ(r) and Vρ(x0, r) ≤ c1r
N .

Then the graph (X,E) is stochastically complete.

Proof. We only sketch the proof that (a) implies stochastic completeness (the proof
of (b) is similar). Indeed, for all x ∈ Sρ(r) and y ∈ Sρ(r − 1) with x ∼ y we obtain

σ(x, y) ≥
c0

rα

and, similar to the proof of Theorem 1.4,

d(x, x0) ≥ c0

r∑

i=1

1

iα
≥ c′0r

1−α.

for x ∈ V \ Bρ(x0, r). Therefore, the condition Vρ(x0, r) ≤ exp(c1r
1−α) implies

Vd(x0, R) ≤ exp(c2R) for all R large enough whence the stochastic completeness
follows. �

Remark 4.6. In the first couple of conditions of Proposition 4.5, if 0 ≤ α ≤ 1
2
,

the stochastic completeness for the physical Laplacian on graphs is known without
restrictions on volume growth. This is a direct consequence of Theorem 4.2 in [35],
see also Theorem 5.4 in [21].

5. Further examples and applications

Assume that (X, d) is locally compact with infinite diameter and µ is a Radon
measure with full support. On such spaces, it suffices to check the hypothesis (1.5)
for the stochastic completeness of the heat semigroup Pt corresponding to a jump
kernel J(x, dy). In this section, for simplicity, we only consider the jump kernels
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that have densities with respect to the measure dµ(y). As before, we denote the
density of J(x, dy) by J(x, y) which is symmetric and vanishes on the diagonal.

As was already mentioned above, the Euclidean spaces with Lebesgue measure sat-
isfy (1.7) and the Lévy measures are adapted to the Euclidean distance. Masamune
and Uemura [26] extensively discussed stochastic completeness of stable like jump
process on manifolds that have polynomial volume growth and give some examples.
Here we present more examples in the setting of metric measure spaces, motivated
by classical Lévy measures.

Example 5.1. Let the metric measure space (X, d, µ) be α-regular, that is, V (x, r) '
rα. For any real parameter β, define the jump kernel J(x, dy) by its density

(5.54) J(x, y) =
1

d(x, y)α+β
.

It is easy to verify that the jump kernel J(x, dy) satisfies (1.5) if and only if 0 <
β < 2.

Proof. Indeed, splitting the integral (1.5) into the sum of similar integrals over
B (x, 1) and B (x, 1)c, we obtain
∫

B(x,1)

d2 (x, y)
1

d (x, y)α+β
dµ (y) =

∞∑

k=0

∫

B(x,2−k)\B(x,2−(k+1))

1

d (x, y)α+β−2
dµ (y)

≤
∞∑

k=0

(
2k+1

)α+β−2
µ
(
B
(
x, 2−k

))

'
∞∑

k=0

(
2k
)β−2

,

and
∫

B(x,1)c

1

d (x, y)α+β
dµ (y) =

∞∑

k=0

∫

B(x,2k+1)\B(x,2k)

1

d (x, y)α+β
dµ (y)

≤
∞∑

k=0

(
2−k
)α+β

µ
(
B
(
x, 2k+1

))

'
∞∑

k=0

(
2−k
)β
,

whence the claim follows. Hence, under the assumption 0 < β < 2 Theorem 1.3
yields the stochastic completeness. In this case the above estimates yield

(5.55)

∫

X

(
1 ∧ d (x, y)2)

J (x, y) dµ(y) ≤ c

(
1

2− β
+

1

β

)

,

where c is uniformly bounded for all values of β ∈ (0, 2). �

There are examples of fractals spaces where the jump kernel density as in (5.54)
with β > 2 defines a regular Dirichlet form (see [6]). In this case the distance function
is not adapted and we cannot use Theorem 1.3 to claim stochastic completeness.
A major difficulty in this setting is that Lipschitz functions are no longer in the
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domain of the Dirichlet form and none of the existing methods works. The stochastic
completeness in the case β > 2 remains open.

Example 5.2. Let the metric measure space (X, d, µ) be α-regular. Consider now
a more general jump kernel given by

(5.56) J (x, y) =

∫ 2

0

ϕ (β, x, y) dβ

d (x, y)α+β
,

where ϕ (β, x, y) is a non-negative measurable function of β, x, y that is symmetric
in x, y. Assuming in addition that

∫ 2

0

supx,y ϕ (β, x, y)

β (2− β)
dβ ≤ const

and using (5.55), we obtain that the jump kernel with density (5.56) satisfies (1.5).
Hence, the corresponding Dirichlet form is stochastically complete.

Remark 5.3. Chen and Kumagai [7] proved by a different method the stochastic
completeness for the jump kernel J(x, dy) as in (5.56) assuming that ϕ (β, x, y) is
uniformly bounded and identically vanishes for β < ε and β > 2− ε for some ε > 0.

Example 5.4. Let the metric measure space (X, d, µ) be α-regular. Consider jump
kernels given by

J(x, y) '
1

d(x, y)α
1{d(x,y)<1} +

1

d(x, y)α+β
1{d(x,y)≥1},

J ′(x, y) '
1

d(x, y)α
1{d(x,y)<1} +

e−c0d(x,y)

d(x, y)β
1{d(x,y)≥1}.

where c0 and β are positive constants. An easy calculation similar to the one in
Example 5.1 can show that (1.5) holds for J(x, dy) and J ′(x, dy).

Example 5.5. Let the metric space (X, d) be α-regular. Consider jump kernels
given by

J(x, y) '
1

d(x, y)α+2
(

log 2
d(x,y)

)1+β
1{d(x,y)<1}

for β > 0. Similar to the calculation in Example 5.1, using dyadic decomposition,
we can see that (1.5) is fulfilled.

Remark 5.6. Example 5.4 and Example 5.5 are motivated by recent interests on
subordinate Brownian motions beyond the range of α-stable processes. Example 5.4
is taken from the estimates of jump kernels of geometric stable processes in [32]. A
subordinate Brownian motion whose jump kernel has the behavior at short distance
as in Example 5.5 is studied by Mimica [28].

A major advantage of our Theorem 1.3 is that it allows us to consider jump
processes on manifolds with bounded geometry, such as hyperbolic spaces. More
generally, we have the following example.

Example 5.7. Let (X, d, µ) be a metric measure space that satisfies:

V (x, r) ≤

{
c1e

κr, r ≥ 1,
c2r

α, 0 < r ≤ 1,
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where c1, c2, α and κ are positive constants independent of x and r. Consider a jump
kernel J(x, dy) = J(x, y)dµ(y) with J(x, y) satisfying:

J (x, y) ≤






C1
e−λd(x,y)

d (x, y)β1
, d (x, y) ≥ 1,

C2

d (x, y)β2
, 0 < d (x, y) < 1,

for some positive constants C1, C2.
Let us show that the jump kernel J(x, dy) is adapted to d if β1 > 1, 0 < β2 <

α+ 2. Splitting the integral (1.5) into the sum of similar integrals over B (x, 1) and
B (x, 1)c, we obtain

∫

B(x,1)

d (x, y)2
J(x, y)dµ (y) ≤

∞∑

k=0

∫

B(x,2−k)\B(x,2−(k+1))

C2d (x, y)2

d(x, y)β2
dµ (y)

≤ 4C2

∞∑

k=0

(
2k+1

)β2−2
µ
(
B
(
x, 2−k

))

≤ C
′

2

∞∑

k=0

(
2k
)β2−α−2

,

and
∫

B(x,1)c
J(x, y)dµ (y) ≤

∞∑

k=1

∫

B(x,k+1)\B(x,k)

C1
e−κd(x,y)

d(x, y)β1
dµ (y)

≤
∞∑

k=1

C1
e−κk

kβ1
µ (B (x, k + 1))

≤ C
′

1

∞∑

k=1

e−κkeκ(k+1)

kβ1
,

whence the claim follows.

Now we briefly explain the motivation of Example 5.7. The heat kernel ps(x, y)
corresponding to the (positive definite) Laplacian ∆ on H3 is (see for example, [18]
page 115)

ps(x, y) =
1

(4πs)3/2

r

sinh r
exp

(

−
r2

4s
− s

)

.

Then the heat kernel for ∆
1
2 is

qt(x, y) =

∫ ∞

0

ps(x, y)ηt(s)ds

where

ηt(s) =
t

2
√
π
s−3/2 exp(−

t2

4s
)

is the transition density of the 1
2
-stable subordinator [4, 29]. We want to calculate

the jump kernel j0(x, y)dµ(y) corresponding to ∆
1
2 . Recall an integral representation
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for Macdonald functions ([14, page 917, 8.432.6]):

Kν(z) =
1

2

(z
2

)ν ∫ ∞

0

t−ν−1e−t−
z2

4t dt.

Direct integration can then show that

qt(x, y) = C0
rt

r2 + t2
K2(
√
r2 + t2)

sinh r

for a constant C0. The limit

lim
t→0

pt(x, y)

t
= C0

K2(r)

r sinh r

exists and hence the density of the corresponding jump kernel is ([5])

j0(x, y) = lim
t→0

pt(x, y)

t
= C0

K2(r)

r sinh r
.

A jump kernel j(x, y)dµ (y) with j(x, y) ' j0(x, y) is then a natural candidate for
stable like jump kernel on the hyperbolic space H3. Fix x ∈ H3, recall that the area
function S(r) = 4π(sinh r)2 of H3 in the polar coordinates centered at x. Recall also
the following asymptotic of K2(r) and sinh r[2]:

K2(r) ∼
√

π
2r

exp(−r), sinh r ∼ 1
2

exp r as r → +∞
K2(r) ∼ 2

r2 , sinh r ∼ r as r → 0+

where ∼ means “asymptotically equivalent”. It follows that the hypothesis of Ex-
ample 5.7 are satisfied with

κ = 2, α = 3, β1 =
3

2
, β2 = 3.

Hence, Example 5.7 and Theorem 1.3 yield the stochastic completeness of the cor-
responding heat semigroup.

More general calculations of heat kernels of stable like processes on symmetric
spaces via subordination are done by Graczyk and Stos [13]. For the general theory
of Lévy process on Lie groups and symmetric spaces, we refer to the survey of
Applebaum [1] and the references there.
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