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28.03.25 Lecture 1

0 Setup

Let M be a Riemannian manifold that is geodesically complete and non-compact. Let
d (x, y) denote the geodesic distance on M and μ be the Riemannian measure. Consider
geodesic balls

B (x, r) = {y ∈ M : d (x, y) < r} ,

that are necessarily precompact, and their volumes:

V (x, r) = μ (B (x, r)) .

In this survey we collect some results relating the rate growth of V (x, r) as r → ∞ to
the properties of elliptic and parabolic PDEs on M.

Recall that the Laplace-Beltrami operator Δ on M is given in the local coordinates
x1, ..., xn as follows:

Δ =
1

√
det g

∂

∂xi

(√
det ggij ∂

∂xj

)

where g = (gij) is the Riemannian metric tensor and (gij) = (gij)
−1 . Equivalently, we

have Δ = div ◦∇ where ∇ is the Riemannian gradient and div – the corresponding
divergence.

The Laplace operator Δ satisfies the Green formula: for all functions u ∈ C2 (M)
and v ∈ C1

0 (M), we have
∫

M

v Δu dμ = −
∫

M

〈∇u,∇v〉 dμ, (0.1)

where 〈, 〉 denotes the g-inner product in tangent spaces.
The heat kernel pt (x, y) of M is the minimal positive fundamental solution of the

heat equation
∂

∂t
u = Δu

on M × R+. It is known that the heat kernel exists on any manifold and is a smooth,
positive function of x, y ∈ M and t > 0 ([19]). For example, in Rn we have

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x − y|2

4t

)

. (0.2)

The heat kernel on an arbitrary manifold satisfies the following conditions: the sym-
metry pt(x, y) = pt(y, x), the total mass condition:

∫

M

pt(x, y)dμ(y) ≤ 1,

and the semigroup identity

pt+s (x, y) =

∫

M

pt (x, z) ps (z, y) dμ (z) .
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Consequently, the heat kernel can be used as a transition density for constructing a
diffusion process {Xt}t≥0 on M (see [18]). This diffusion process is called Brownian
motion on M (see Fig. 1).

Figure 1:

More precisely, the relation between the heat kernel and Brownian motion is given
by the identity

Px (Xt ∈ A) =

∫

A

pt(x, y)dμ(y)

for any Borel set A ⊂ M (see Fig. 1). Here Px denotes the probability measure in the
space Ωx of all continuous paths starting at the point x ∈ M . If M = Rn then one
obtains in this way the classical Brownian motion in Rn with the time scaled by the
factor 2.

1 Parabolicity and recurrence

A function u ∈ C2 (M) is called superharmonic if Δu ≤ 0.

Definition. A manifold M is called parabolic if any positive superharmonic function
on M is constant, and non-parabolic otherwise.

The motivation behind this definition is as follows. By the celebrated uniformization
theorem of Koebe-Poincaré, any simply connected Riemann surface M is conformally
equivalent to one of the following Riemannian manifolds:

1. S2 (in this case one says that M is of elliptic type);

2. R2 (in this case one says that M is of parabolic type);

3. H2 (in this case one says that M is of hyperbolic type).

In the elliptic case, M is compact, while in the second and third cases M is non-
compact. In order to distinguish the parabolic and hyperbolic types intrinsically, one
can ask about existence of positive superharmonic functions on M . The point is that

• the superharmonicity is preserved by conformal transformations;
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• H2 has plenty of non-trivial positive (and bounded) superharmonic functions,
while in R2 any positive superharmonic function is constant.

Hence, a Riemann surface of the parabolic type is also a parabolic manifold in
the sense of the above definition, and a Riemann surface of the hyperbolic type is a
non-parabolic1 manifold.

For any compact set K ⊂ M define its capacity by

cap(K) = inf
ϕ∈C∞

0 (M), ϕ|K≡1

∫

M

|∇ϕ|2 dμ.

The following theorem gives equivalent characterizations of the parabolicity

Theorem 1.1 ([17, Thm. 5.1]) The following properties are equivalent:

1. M is parabolic.

2. Any bounded superharmonic function on M is constant.

3. There exists no positive fundamental solution of −Δ on M .

4. For all/some x, y ∈ M we have
∫ ∞

1

pt (x, y) dt = ∞. (1.1)

5. For any compact set K ⊂ M , we have cap(K) = 0.

6. Brownian motion on M is recurrent.

The Green function of Δ is defined by

g (x, y) =

∫ ∞

0

pt (x, y) dt.

The condition (1.1) is equivalent to the fact that g (x, y) ≡ ∞. If M is non-parabolic
then g (x, y) < ∞ for all x 6= y and, moreover, g (x, y) is the minimal positive funda-
mental solution of −Δ.

A celebrated theorem of Polya (1921) says that Brownian motion in Rn is recurrent
if and only if n ≤ 2. Indeed, one can see from the explicit formula (0.2) for the heat
kernel that the condition (1.1) holds if and only if n ≤ 2.

Surprisingly enough, there exists a rather good sufficient condition for the recur-
rence of Brownian motion in terms of the volume function. Let us fix a reference point
x0 and set

V (r) = V (x0, r) .

Theorem 1.2 ([9], [31], [40]) If
∫ ∞

1

rdr

V (r)
= ∞ (1.2)

then M is parabolic.

1We use the adjective “non-parabolic” rather than “hyperbolic” because the notion of “hyperbolic
manifold” is used in Differential Geometry in a different sense.
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For example, (1.2) is satisfied provided V (r) ≤ Cr2 for large r or V (r) ≤ Cr2 log r.
In particular, this theorem recovers and explains the aforementioned theorem of Polya.

Proof. Let u ∈ C2 (M) be a positive superharmonic function on M . Choose any
Lipschitz function f on M with compact support. Multiplying the inequality −Δu ≥ 0
by f2

u
and integrating using the Green formula (0.1) and the product rule for ∇, we

obtain

0 ≤ −
∫

M

f 2

u
Δu dμ

=

∫

M

〈∇
f 2

u
,∇u〉dμ

=

∫

M

〈∇f 2,∇u〉
u

dμ +

∫

M

〈∇
1

u
,∇u〉f 2dμ

= 2

∫

M

〈∇f,∇u〉
u

f dμ −
∫

M

|∇u|2

u2
f 2dμ,

whence
∫

M

|∇u|2

u2
f 2dμ ≤ 2

∫

M

〈∇f,∇u〉
u

f dμ

≤ 2

(∫

M

|∇f |2 dμ

)1/2
(∫

M

|∇u|2

u2
f 2dμ

)1/2

.

It follows that ∫

M

|∇u|2

u2
f 2dμ ≤ 4

∫

M

|∇f |2 dμ. (1.3)

Set ρ (x) = d (x, x0) and choose f (x) in the form f (x) = ϕ (ρ (x)) where ϕ(r) is a
function of r ∈ [0, +∞) yet to be defined (see Fig. 2).

Figure 2: Function ϕ(r)

Fix a finite sequence
0 < r0 < r1 < ... < rn < ∞

and define function ϕ by the conditions that it is continuous and piecewise linear on
[0, +∞),

ϕ (r) = 1 if 0 ≤ r ≤ r0, ϕ (r) = 0 if r ≥ rn, (1.4)
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and, for any k = 1, ..., n,

ϕ′ (r) = −a
rk − rk−1

V (rk)
if rk−1 < r < rk, (1.5)

where a is a positive constant that is chosen to be compatible with (1.5).
Indeed, we have

1 = ϕ(rn) − ϕ(r0) =

∫ rn

r0

ϕ′ (r) dr =
n∑

k=1

∫ rk

rk−1

ϕ′ (r) dr = −a
n∑

k=1

(rk − rk−1)
2

V (rk)
,

whence we obtain the following value for a:

a =

(
n∑

k=1

(rk − rk−1)
2

V (rk)

)−1

.

Clearly, ϕ (r) is a Lipschitz function, which implies that f = ϕ ◦ ρ is Lipschitz on M .
Denote for simplicity Br = B (x0, r). By (1.4), supp f ⊂ Brn and, since the balls

are relatively compact, f ∈ Lip0 (M). Obviously, ∇ϕ = 0 in Br0 and outside Brn .
Since ∇f = ϕ′∇ρ and |∇ρ| ≤ 1 a.e. we have2 for any k = 1, ..., n

|∇f | ≤ a
rk − rk−1

V (rk)
in Brk

\ Brk−1
a.e., (1.6)

which implies

∫

M

|∇f |2 dμ =
n∑

k=1

∫

Brk
\Brk−1

|∇f |2 dμ

≤ a2

n∑

k=1

(rk − rk−1)
2

V (rk)2
V (rk) = a. (1.7)

On the other hand, using the monotonicity of V (r), we obtain

∫ rn

r1

rdr

V (r)
=

n−1∑

k=1

∫ rk+1

rk

rdr

V (r)

≤
n−1∑

k=1

1

V (rk)

∫ rk+1

rk

rdr

2Strictly speaking, we can apply the chain rule ∇v = ϕ′ (ρ)∇ρ and, hence, obtain (1.6) only in
the open set Brk

\ Brk−1 . Then (1.6) in Brk
\ Brk−1 follows from the fact that the boundary of any

geodesic ball has measure zero. However, the proof of this fact requires more Riemannian geometry
than we would like to use here. Without this fact, one can argue as follows. The volume function
V (r) is monotone and, hence, the set S of the points of discontinuity of V (r) is at most countable.
We can choose the sequence {rk} to avoid S, which implies that

μ (∂Brk
) = lim

ε→0
(V (rk + ε) − V (rk)) = 0.
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=
1

2

n−1∑

k=1

r2
k+1 − r2

k

V (rk)
.

Let us now specify {rk} to be a geometric sequence: rk = 2kr0, that is, rk+1 = 2rk. We
obtain

r2
k+1 − r2

k = 3r2
k = 12 (rk − rk−1)

2 ,

which implies
∫ rn

r1

rdr

V (r)
≤ 6

n−1∑

k=1

(rk − rk−1)
2

V (rk)
≤ 6a−1.

Comparing with (1.7), we conclude that

∫

M

|∇f |2 dμ ≤ 6

(∫ rn

r1

rdr

V (r)

)−1

.

Returning to (1.3) and using the fact that f = 1 on Br0 , we obtain

∫

Br0

|∇u|2

u2
dμ ≤ 24

(∫ rn

r1

rdr

V (r)

)−1

.

We can still choose r0 and n. By the hypothesis (1.2), for any r0 > 0 and ε > 0, there
exists n so big that ∫ rn

r1

rdr

V (r)
=

∫ 2nr0

2r0

rdr

V (r)
> ε−1,

which implies ∫

Br0

|∇u|2

u2
dμ ≤ 24ε.

Since r0 and ε are arbitrary, we conclude ∇u ≡ 0 and u = const, which was to be
proved.

The condition (1.2) is sharp: if f (r) is a smooth convex function on (0, +∞) such
that f ′ (r) > 0 and ∫ ∞

1

rdr

f (r)
< ∞,

then there is a non-parabolic manifold such that V (r) = f (r) for large r. On the
other hand, the condition (1.2) is not necessary for parabolicity: there exist parabolic
manifolds with arbitrarily large volume function V (r) as it follows from [17, Prop. 3.1].

Theorem 1.3 (Cheng-Yau [5]) If there exists a sequence rk → ∞ such that, for some
C > 0 and all k

V (rk) ≤ Cr2
k, (1.8)

then M is parabolic.

Proof. It suffices to show that (1.8) implies (1.2) so that Theorem 1.3 follows from
Theorem 1.2. More precisely, let us prove that if f (r) is a positive increasing function
on (0, +∞) and there exists a sequence {rk}

∞
k=1 such that rk → ∞ and

f (rk) ≤ Cr2
k for all k ≥ 1,
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then ∫ ∞

r1

rdr

f (r)
= ∞.

Without loss of generality, we can assume that rk+1

rk
→ ∞. We have

∫ ∞

r1

rdr

f (r)
=

∞∑

k=1

∫ rk+1

rk

rdr

f (r)

≥
∞∑

k=1

1

f (rk+1)

∫ rk+1

rk

rdr

≥
1

2C

∞∑

k=1

r2
k+1 − r2

k

r2
k+1

. (1.9)

We are left to observe that the series

∞∑

k=1

r2
k+1 − r2

k

r2
k+1

=
∞∑

k=1

(

1 −
r2
k

r2
k+1

)

diverges as rk

rk+1
→ 0.

03.04.25 Lecture 2

2 Stochastic completeness

A manifold M is called stochastically complete if for all x ∈ M and t > 0

∫

M

pt (x, y) dμ (y) = 1.

Here are some equivalent characterizations of the stochastic completeness.

Theorem 2.1 ([17, Thm. 6.2]) The following conditions are equivalent.

1. M is stochastically complete.

2. For some/any λ > 0, any bounded solution v to Δv − λv = 0 on M is identical
zero.

3. For some/any T ∈ (0,∞], the Cauchy problem

{
∂u
∂t

= Δu in M × (0, T )
u|t=0 = 0

(2.1)

has the only bounded solution u ≡ 0.

4. The lifetime of Brownian motion {Xt} on M is equal to ∞ almost surely.
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As above, we fix a reference point x0 ∈ M and denote for simplicity Br = B(x0, r)
and V (r) = μ(Br).The following theorem provides a volume test for stochastic com-
pleteness.

Theorem 2.2 ([10]) If for some r0 > 0

∫ ∞

r0

rdr

log V (r)
= ∞ (2.2)

then M is stochastically complete.

In particular, M is stochastically complete provided

V (r) ≤ exp
(
Cr2

)
(2.3)

or even if
V (rk) ≤ exp

(
Cr2

k

)
(2.4)

for a sequence rk → ∞. That (2.3) implies the stochastic completeness was also proved
by different methods also in [7], [32], [39].

The condition (2.2) is sharp: if f (r) is a smooth convex function such that f ′ (r) > 0
and ∫ ∞

r0

rdr

f (r)
< ∞

then there exists a stochastically incomplete manifold with V (r) = exp (f (r)) . On
there other hand, there are stochastically complete manifolds with arbitrarily large
volume function as it follows from [17, Prop. 3.2].

Theorem 2.2 follows from the following more general fact.

Theorem 2.3 ([10]) Let M be a geodesically complete manifold, and let u(t, x) be a
solution to the Cauchy problem (2.1) in M × (0, T ). Assume that, for some x0 ∈ M
and for all R large enough,

∫ T

0

∫

BR

u2(t, x) dμ(x) dt ≤ exp (f(R)) , (2.5)

where f(r) is a positive monotone increasing function on (0, +∞) such that

∫ ∞ rdr

f(r)
= ∞. (2.6)

Then u ≡ 0 in M × (0, T ).

Theorem 2.3 provides the uniqueness class (2.5) for the Cauchy problem. The
condition (2.6) holds if, for example, f (r) = Cr2, but fails for f (r) = Cr2+ε when
ε > 0.

Let us show how Theorem 2.3 implies Theorem 2.2. By Theorem 2.1, it suffices to
verify that the only bounded solution to the Cauchy problem (2.1) is u ≡ 0. Indeed, if
u is a bounded solution of (2.1), then setting

S := sup |u| < ∞
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we obtain ∫ T

0

∫

BR

u2(t, x)dμ(x) ≤ S2TV (R) = exp (f (R)) ,

where f(r) := log (S2TV (r)). It follows from the hypothesis (2.2) that the function f
satisfies (2.6). Hence, we conclude by Theorem 2.3 that u ≡ 0.

Before we embark on the proof of Theorem 2.3, let us mention the following
consequence of it for M = Rn: if u (t, x) is a solution to (2.1) in Rn × (0, T ) satisfying
the condition

|u(t, x)| ≤ C exp
(
C |x|2

)
, (2.7)

then u ≡ 0. Moreover, the same is true if u satisfies instead of (2.7) a more general
condition

|u(t, x)| ≤ C exp (f (|x|)) , (2.8)

where f (r) is a convex increasing function on (0, +∞) satisfying (2.6).
Indeed, it suffices to treat the condition (2.8). In Rn set x0 = 0. Since V (R) = cRn,

(2.8) implies that

∫ T

0

∫

BR

u2(t, x) dμ(x)dt ≤ CRn exp (f (R)) = C exp(f̃ (R)),

where f̃ (r) := f (r) + n log r. The convexity of f implies that log r ≤ Cf (r) for large

enough r. Hence, f̃ (r) ≤ Cf (r) and function f̃ also satisfies the condition (2.6). By
Theorem 2.3, we conclude u ≡ 0.

The class of functions u satisfying (2.7) is called the Tikhonov class, and the
conditions (2.8) and (2.6) define the Täcklind class. The uniqueness of the Cauchy
problem in Rn in each of these classes is a classical result.

Proof of Theorem 2.3. The main technical part of the proof is the following
claim.

Claim. Let u (t, x) solve the heat equation in M × (0, T ), and assume that u satisfies
(2.5) with a function f as in (2.6). Then, for any R > 0 and a, b ∈ (0, T ), satisfying
the condition

0 < b − a ≤
R2

8f(4R)
, (2.9)

the following inequality holds:

∫

BR

u2(b, ∙)dμ ≤
∫

B4R

u2(a, ∙)dμ +
4

R2
. (2.10)

Let us first show how this Claim allows to prove that any solution u to (2.1),
satisfying (2.5), is identical 0. Fix R > 0 and t ∈ (0, T ). For any non-negative integer
k, set

Rk = 4kR

and, for any k ≥ 1, choose (so far arbitrarily) a number τ k to satisfy the condition

0 < τ k ≤ c
R2

k

f(Rk)
, (2.11)

10



where c = 1
128

. Then define a decreasing sequence of times {tk} inductively by t0 = t
and tk = tk−1 − τ k (see Fig. 3).

Figure 3: The sequence of the balls BRk
and the time moments tk.

If tk ≥ 0 then function u satisfies all the conditions of the Claim with a = tk and
b = tk−1 because

tk−1 − tk = τ k ≤ c
R2

k

f(Rk)
=

1

128

(4Rk−1)
2

f(4Rk−1)
=

1

8

R2
k−1

f(4Rk−1)
.

Hence, we obtain from (2.10)
∫

BRk−1

u2(tk−1, ∙)dμ ≤
∫

BRk

u2(tk, ∙)dμ +
4

R2
k−1

, (2.12)

which implies by induction that

∫

BR

u2(t, ∙)dμ ≤
∫

BRk

u2(tk, ∙)dμ +
k∑

i=1

4

R2
i−1

. (2.13)

If it happens that tk = 0 for some k then, by the initial condition in (2.1),
∫

BRk

u2(tk, ∙)dμ = 0.

In this case, it follows from (2.13) that

∫

BR

u2(t, ∙)dμ ≤
∞∑

i=1

4

R2
i−1

=
C

R2
,

which implies by letting R → ∞ that u(∙, t) ≡ 0.
Hence, to finish the proof, it suffices to construct, for any R > 0 and t ∈ (0, T ),

a sequence {tk} as above that vanishes at some finite k. The condition tk = 0 is
equivalent to

t = τ 1 + τ 2 + ... + τ k . (2.14)
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The only restriction on τ k is the inequality (2.11). The hypothesis that f (r) is an
increasing function implies that

∫ ∞

R

rdr

f (r)
≤

∞∑

k=0

∫ Rk+1

Rk

rdr

f (r)
≤

∞∑

k=0

R2
k+1,

f (Rk)
,

which together with (2.6) yields
∞∑

k=1

R2
k

f(Rk)
= ∞.

Therefore, the sequence {τ k}
∞
k=1 can be chosen to satisfy simultaneously (2.11) and

∞∑

k=1

τ k = ∞.

By reducing some of τ k, we can achieve (2.14) for any finite t, which finishes the proof.
Proof of the above Claim. Let ρ(x) be a Lipschitz function on M (to be specified

below) with the Lipschitz constant 1, that is, |∇ρ| ≤ 1. Fix a real s /∈ [a, b] (also to be
specified below) and consider the following the function

ξ(t, x) :=
ρ2(x)

4(t − s)
,

that is well defined on M× [a, b]. Since |∇ρ| ≤ 1, we have, for all t 6= s,

|∇ξ (t, x)| ≤
ρ (x)

2 (t − s)
.

Since
∂ξ

∂t
= −

ρ2 (x)

4 (t − s)2 ,

we obtain
∂ξ

∂t
+ |∇ξ|2 ≤ 0. (2.15)

For a given R > 0, define a continuous function ϕ (x) on M by

ϕ (x) =






1, x ∈ B2R,
0, x /∈ B3R,
linear in d(x, x0), x ∈ B3R \ B2R

(see Fig. 4).

Figure 4: Function ϕ (x)
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Since the function d (x, x0) is Lipschitz with the Lipschitz constant 1, we obtain that
ϕ is also Lipschitz and |∇ϕ| ≤ 1/R. Since all the balls in M are relatively compact
sets, we have ϕ ∈ Lip0 (M).

Consider the function uϕ2eξ as a function of x for any fixed t ∈ [a, b]. This function
also belongs to Lip0 (M). Multiplying the heat equation

∂u

∂t
= Δu

by uϕ2eξ and integrating it over M × [a, b], we obtain

∫ b

a

∫

M

∂u

∂t
uϕ2eξdμdt =

∫ b

a

∫

M

(Δu) uϕ2eξdμdt. (2.16)

The time integral on the left hand side is equal to:

1

2

∫ b

a

∂(u2)

∂t
ϕ2eξdt =

1

2

[
u2ϕ2eξ

]b
a
−

1

2

∫ b

a

∂ξ

∂t
u2ϕ2eξdt. (2.17)

Using the Green formula to evaluate the spatial integral on the right hand side of
(2.16), we obtain

∫

M

(Δu) uϕ2eξdμ = −
∫

M

〈∇u,∇(uϕ2eξ)〉dμ.

Applying the product rule and the chain rule to compute ∇(uϕ2eξ), we obtain

−〈∇u,∇(uϕ2eξ)〉 = − |∇u|2 ϕ2eξ − 〈∇u,∇ξ〉uϕ2eξ − 2〈∇u,∇ϕ〉uϕeξ

≤ − |∇u|2 ϕ2eξ + |∇u| |∇ξ| |u|ϕ2eξ +

(
1

2
|∇u|2 ϕ2 + 2 |∇ϕ|2 u2

)

eξ

=

(

−
1

2
|∇u|2 + |∇u| |∇ξ| |u|

)

ϕ2eξ + 2 |∇ϕ|2 u2eξ.

Combining with (2.16), (2.17), and using (2.15) in the form ∂ξ
∂t

≤ − |∇ξ|1 , we obtain

[∫

M

u2ϕ2eξdμ

]b

a

=

b∫

a

∫

M

∂ξ

∂t
u2ϕ2eξ dμdt + 2

b∫

a

∫

M

(Δu) uϕ2eξdμdt

≤

b∫

a

∫

M

(
− |∇ξ|2 u2 − |∇u|2 + 2 |∇u| |∇ξ| |u|

)
ϕ2eξdμdt + 4

b∫

a

∫

M

|∇ϕ|2 u2eξdμdt

= −

b∫

a

∫

M

(|∇ξ| |u| − |∇u|)2 ϕ2eξdμdt + 4

b∫

a

∫

M

|∇ϕ|2 u2eξdμdt,

whence

∫

M

u2(b, ∙)ϕ2eξ(b,∙)dμ −
∫

M

u2(a, ∙)ϕ2eξ(a,∙)dμ ≤ 4

b∫

a

∫

M

|∇ϕ|2 u2eξdμdt. (2.18)
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Using ϕ|BR
= 1, ϕ ≤ 1B4R

and |∇ϕ| ≤ 1
R
1B4R\B2r , we obtain from (2.18)

∫

BR

u2(b, ∙)eξ(b,∙)dμ ≤
∫

B4R

u2(a, ∙)eξ(a,∙)dμ +
4

R2

b∫

a

∫

B4R\B2R

u2eξdμdt. (2.19)

Let us now specify ρ(x) and s. Set ρ(x) to be the distance function from the ball BR,
that is,

ρ(x) = (d(x, x0) − R)+

(see Fig. 5).

Figure 5: Function ρ (x).

Set s = 2b − a so that, for all t ∈ [a, b],

b − a ≤ s − t ≤ 2 (b − a) ,

whence

ξ(t, x) = −
ρ2(x)

4(s − t)
≤ −

ρ2(x)

8 (b − a)
≤ 0. (2.20)

Consequently, we can drop the factor eξ on the left hand side of (2.19) because ξ = 0 in
BR, and drop the factor eξ in the first integral on the right hand side of (2.19) because
ξ ≤ 0. Clearly, if x ∈ B4R\B2R then ρ(x) ≥ R, which together with (2.20) implies that
in B4R\B2R × [a, b]

ξ (t, x) ≤ −
R2

8 (b − a)
.

Hence, we obtain from (2.19)

∫

BR

u2(b, ∙)dμ ≤
∫

B4R

u2(a, ∙)dμ +
4

R2
exp

(

−
R2

8 (b − a)

) b∫

a

∫

B4R

u2dμdt.

By (2.5) we have
b∫

a

∫

B4R

u2dμdt ≤ exp (f(4R))

whence
∫

BR

u2(b, ∙)dμ ≤
∫

B4R

u2(a, ∙)dμ +
4

R2
exp

(

−
R2

8 (b − a)
+ f(4R)

)

.

Finally, applying the hypothesis (2.9), we obtain (2.10).
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Remark 2.4 Using of the factor eξ in the above proof is motivated by the following
observation that goes back to Aronson [1] in the case of Rn: if u(t, x) is a semigroup
solution to the heat equation, that is,

u(t, x) =

∫

M

pt(x, y)f(y)dμ(y)

with f ∈ L2(M), and ξ(t, x) is a locally Lipschitz function on M × (0,∞) such that

∂ξ

∂t
+

1

2
|∇ξ|2 ≤ 0, (2.21)

then the function

J(t) :=

∫

M

u(t, x)2eξ(t,x)dμ(x)

is monotone decreasing. For the proof first observe that it suffices to prove a similar
statement when u(t, x) is a semigroup solution in a precompact open set Ω ⊂ M, that
is,

u(t, x) =

∫

Ω

pΩ
t (x, y)f(y)dμ(y)

where pΩ
t (x, y) is the heat kernel in Ω with the Dirichlet boundary condition. Indeed,

having proved that in Ω, we can choose then an exhausting sequence of Ωk and pass
to the limit as Ωk → M .

Since in Ω the function ξ is bounded and u(t, ∙) ∈ W 1,2
0 (Ω), we can apply the Green

formula in the next computation. We have

d

dt
J(t) =

∫

Ω

∂t

(
u2eξ

)
dμ =

∫

Ω

(
2utueξ + u2ξte

ξ
)
dμ

≤ 2

∫

Ω

(

Δuueξ −
1

2
u2 |∇ξ|2 eξ

)

dμ

= −2

∫

Ω

(
〈
∇u,∇

(
ueξ
)〉

+
1

4
u2 |∇ξ|2 eξ

)

dμ

= −2

∫

Ω

(

|∇u|2 eξ + 〈∇u,∇ξ〉 ueξ +
1

4
u2 |∇ξ|2 eξ

)

dμ

= −2

∫

Ω

(

∇u +
1

2
u∇ξ

)2

eξdμ

whence dJ
dt

≤ 0 follows. See [19, Thm 12.1] for more details and justification.
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10.04.25 Lecture 3

3 Escape rate of Brownian motion

Fix a reference point x0 ∈ M and set |x| = d (x, x0). Let {Xt}t≥0 be Brownian motion
on M . An increasing positive function R(t) of t ∈ R+ is called an upper rate function
for Brownian motion if we have |Xt| < R (t) for all t large enough with probability 1,
that is,

Px0 (∃T ∀t > T |Xt| < R(t)) = 1.

Hence, for large enough t, Xt is contained in the ball B (x0, R (t)) almost surely, as on
Fig. 6.

Figure 6: An upper radius R(t)

Note that an upper rate function may exist only if M is stochastically complete.
For example, in Rn the following function

R (t) =
√

(4 + ε) t ln ln t

is an upper rate function for any ε > 0, which follows from Khinchin’s law of iterated
log that says

lim sup
t→∞

|Xt|√
4t ln ln t

= 1 a.s.

Theorem 3.1 ([22], [16]) Assume that, for all r large enough,

V (r) ≤ CrN , (3.1)

with some N,C > 0. Then the following function is an upper rate function:

R(t) =
√

2Nt log t. (3.2)

A similar result holds for simple random walks on graphs: it was proved by Hardy
and Littlewood in 1914 for Z and in [4] for arbitrary graphs.
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Under assumption (3.1), the upper rate function (3.2) is almost optimal (cf. [23]),
in particular, log t here cannot be replaced by log log t.

In this example, M is a model manifold, that is, Rn with the following spherically
symmetric metric given in the polar coordinates (r, θ):

ds2 = dr2 + h2(r)dθ2

where dθ2 is the standard metric on Sn−1 and h(r) is a smooth positive function on
(0,∞), such that h(r) = r for r ≤ 1. In this case

V (r) = ωn

∫ r

0

hn−1(s)ds.

The function h is chosen so that V (r) is as on Fig. 7:

Figure 7: Function V (r)

In particular, V (r) satisfies (3.1) with N = n but small inclusions of negative
curvature (red areas on the picture) speed up Brownian motion to make the rate
function (3.2) almost optimal. More precisely, on this manifold we have

R(t) ≥
√

ct log1− 2
n t . (3.3)

The next result is a generalization of Theorem 3.1 an for arbitrary volume function.

Theorem 3.2 ([21], [30]) Assume that M is geodesically complete and that

∫ ∞ rdr

log V (r)
= ∞. (3.4)

Define a function ϕ (t) by:

t =

∫ ϕ(t)

r0

rdr

log V (r) + log log r
. (3.5)

Then R (t) = Cϕ (Ct) is an upper rate function.
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If V (r) ≥ c log r for some c > 0 then (3.5) can be replaced by

t =

∫ ϕ(t)

r0

rdr

log V (r)
. (3.6)

In other words, the rate of divergence of the integral (3.4) determines an upper rate
function!

Example. If V (r) = CrN then we obtain from (3.6)

t '
ϕ2 (t)

log ϕ (t)

whence R (t) ' ϕ (t) '
√

t log t that matches (3.2).

Example. If V (r) = exp (rα) where 0 < α < 2 then

t ' ϕ (t)2−α

whence R (t) = Ct
1

2−α .

Example. If V (r) = exp (r2) then

t ' log ϕ (t)

whence R (t) = exp (Ct) .

Example. Let V (r) ≤ C log r. Then

t '
ϕ2 (t)

log log ϕ (t)

and we obtain an upper rate function

R (t) = C
√

t log log t.

4 Heat kernel lower bounds

Here we show some results on pointwise lower bounds of the heat kernel that use only
the volume function.

Theorem 4.1 ([6]) Assume that, for some x ∈ M and all r ≥ r0 > 0,

V (x, r) ≤ CrN , (4.1)

for some C,N > 0. Then, for all large enough t,

pt(x, x) ≥
1/4

V (x,
√

Kt log t)
, (4.2)

where K = K (x, r0, C,N) > 0. Consequently, for some c > 0,

pt (x, x) ≥
c

(t log t)N/2
. (4.3)
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If M has non-negative Ricci curvature then by the theorem of Li-Yau [34] the heat
kernel satisfies on the diagonal the following two-sided estimate

pt (x, x) '
1

V (x,
√

t)
(4.4)

for all x ∈ M and t > 0. Hence, the lower bound (4.3) differs from the best possible
estimate (4.4) by the log-factor. However, under the hypothesis (4.1) alone, the lower
bound (4.2) is optimal and cannot be essentially improved, which is the case for the
model manifold from Section 3 (cf. [23]).

Proof. For the fixed point x, set Br = B(x, r) and V (r) = V (x, r). Using the
semigroup identity and the Cauchy-Schwarz inequality, we obtain

p2t(x, x) =

∫

M

p2
t (x, ∙)dμ ≥

∫

Br

p2
t (x, ∙)dμ

≥
1

V (r)

(∫

Br

pt(x, ∙)dμ

)2

. (4.5)

Since M is complete and the condition (4.1) obviously implies (3.4), we obtain by
Theorem 2.2 that M is stochastically complete, that is

∫

M

pt(x, ∙)dμ = 1.

Using also that pt(x, x) ≥ p2t(x, x) we obtain from (4.5)

pt(x, x) ≥
1

V (r)

(

1 −
∫

M\Br

pt(x, ∙)dμ

)2

. (4.6)

Choose r = r(t) so that ∫

M\Br(t)

pt(x, ∙)dμ ≤
1

2
. (4.7)

Assuming that (4.7) holds, we obtain from (4.6)

pt(x, x) ≥
1/4

V (r(t))
.

To match (4.2), we need the following estimate of r (t):

r(t) ≤
√

Kt log t. (4.8)

Let us prove that (4.7) holds with a function r(t) satisfying (4.8) with some K. Setting
ρ = d(x, ∙) and fixing some D > 2, we obtain by the Cauchy-Schwarz inequality

(∫

M\Br

pt(x, ∙)dμ

)2

≤
∫

M

p2
t (x, ∙) exp

(
ρ2

Dt

)

dμ

∫

M\Br

exp

(

−
ρ2

Dt

)

dμ

= ED(t)

∫

M\Br

exp

(

−
ρ2

Dt

)

dμ, (4.9)
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where

ED(t) :=

∫

M

p2
t (x, ∙) exp

(
ρ2

Dt

)

dμ (4.10)

It is known that if D > 2 then ED(t) is finite and monotone decreasing in t ([14], [19,
Thm. 12.1 and Cor. 15.9]). The latter follows from the fact that. for the function

ξ (t, ∙) = ρ2

Dt
, we have

|∇ξ| ≤ 2
ρ

Dt
and ∂tξ = −

ρ2

Dt2

whence

∂tξ +
1

2
|∇ξ|2 ≤ −

ρ2

Dt2
+

1

2

(
2

ρ

Dt

)2

=

(

−
1

D
+

2

D2

)
ρ2

t2
≤ 0

as D ≥ 2, which matches (2.21).
In particular, we have, for all t > t0,

ED(t) ≤ ED(t0) < ∞. (4.11)

Since x is fixed, we can consider ED(t0) as a constant.
Let us now estimate the integral in (4.9) assuming that

r = r(t) ≥ r0. (4.12)

By splitting the complement of Br into the union of the annuli

B2k+1r \ B2kr, k = 0, 1, 2, ...,

and using the hypothesis (4.1), we obtain

∫

M\Br

exp

(

−
ρ2

Dt

)

dμ =
∞∑

k=0

∫

B
2k+1r

\B
2kr

exp

(

−
ρ2

Dt

)

dμ

≤
∞∑

k=0

exp

(

−
4kr2

Dt

)

V (2k+1r)

≤ CrN

∞∑

k=0

2N(k+1) exp

(

−
4kr2

Dt

)

. (4.13)

Assuming
r2

Dt
≥ 1, (4.14)

the sum in (4.13) is majorized by a geometric series whence

∫

M\Br

exp

(

−
ρ2

Dt

)

dμ ≤ CrN exp

(

−
r2

Dt

)

. (4.15)

Set
r(t) =

√
Kt log t, (4.16)

where the constant K will be chosen below; in any case, it will be larger than D. If so
then assuming that

t ≥ t0 := max
(
r2
0, 3
)
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we obtain that both conditions (4.12) and (4.14) are satisfied.
Substituting (4.16) into (4.15), we obtain

∫

M\Br(r)

exp

(

−
ρ2

Dt

)

dμ ≤ C(Kt log t)
N
2 exp

(

−
K log t

D

)

= CKN/2 (log t)
N
2

t
K
D
−N

2

. (4.17)

If K is large enough then the function in the right hand side of (4.17) is monotone
decreasing in t > t0, whence by (4.9) and (4.11)

(∫

M\Br(t)

pt(x, ∙)dμ

)2

≤ CKN/2 (log t0)
N/2

t
K
D
−N

2
0

ED(t0). (4.18)

Finally, choosing K even larger, we can make the right hand side arbitrarily small,
which finishes the proof.

Theorem 4.2 ([6]) Fix x ∈ M and assume that the function V (x, r) is doubling, that
is, for all r > 0,

V (x, 2r) ≤ CV (x, r) .

Assume also that, for all t > 0,

pt (x, x) ≤
C

V
(
x,
√

t
) .

Then, for all t > 0,

pt (x, x) ≥
c

V
(
x,
√

t
) .

5 Recurrence of subordinated process

For any α ∈ (0, 2), the operator (−Δ)α/2 is the generator of a jump process {X(α)
t } on

M that is called the α-process. It is a natural generalization of the symmetric stable
Levy process of index α in Rn. By a general semigroup theory, the Green function
g(α)(x, y) of (−Δ)α/2 is given by

g(α)(x, y) =

∫ ∞

0

tα/2−1pt(x, y)dt,

and the recurrence of {X(α)
t } is equivalent to g(α) ≡ ∞, that is, to

∫ ∞

tα/2−1pt(x, x)dt = ∞. (5.1)

Theorem 5.1 ([17, Thm. 16.2]) If, for some x ∈ M and all large enough r

V (x, r) ≤ Crα, (5.2)

then {X(α)
t } is recurrent.
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Proof. Indeed, by Theorem 4.1 we have

pt(x, x) ≥
c

tα/2 logα/2 t
.

Substituting into (5.1) we see that the integral diverges.

Conjecture. The process {X(α)
t } is recurrent provided

∫ ∞

1

rα−1dr

V (x, r)
= ∞.

The answer is positive under the hypotheses of Theorem 4.2. For example, this is
the case when M has non-negative Ricci curvature.

6 Bounded solutions of Schrödinger equations

Let Q (x) be a nonnegative continuous function on M , Q 6≡ 0. Consider the equation

Δu − Qu = 0 (6.1)

and ask if any bounded solution to (6.1) is identical zero. In this case we say that
the Liouville property holds for (6.1). In fact, one can prove that (6.1) has a non-zero
bounded solution if and only if it has a positive solution.

By Theorem 2.1, if Q = const > 0 then the Liouville property for (6.1) is equivalent
to the stochastic completeness of M . If Q is a compactly supported function then one
can show that the Liouville property for (6.1) is equivalent to the parabolicity of M .
Hence, it is interesting to find conditions for Liouville property also for a general
function Q.

Fix a reference point x0 ∈ M , set |x| = d (x, x0) and denote

q (r) = inf
|x|=r

Q (x) and F (r) =

∫ r/2

0

√
q (t)dt.

Theorem 6.1 ([12]) If there is a sequence rk → ∞ such that for some C > 0 and all
k

V (rk) ≤ Cr2
k exp

(
CF (rk)

2) (6.2)

then the Liouville property is satisfied for (6.1).

Example. Let Q ≡ 1.Then we have q ≡ 1, F (r) = r/2, and (6.2) becomes V (rk) ≤
exp (Cr2

k) , which coincides with the condition (2.4) for the stochastic completeness.

Example. Let Q have a compact support. Since q (r) = 0 for large enough r, we
obtain that F (r) = const for large r, and (6.2) becomes V (rl) ≤ Cr2

k, which coincides
with the sufficient condition (1.8) for the parabolicity.

Example. Assume that, for all large |x| and some c > 0,

Q (x) ≥
c

|x|2 log |x|
.
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Then

F (r) ≥
∫ r/2

2

c

t
√

log t
dt '

√
log r

so that (6.2) is satisfied provided

V (r) ≤ CrN

for some C,N > 0 and all large r. Hence, in this case (6.1) has no positive solution.
For example, this is the case for M = Rn.

On the other hand, if in Rn

Q (x) ≤
C

|x|2 log1+ε |x|

then (6.1) has a positive bounded solution in Rn.

Problem. Find conditions for the Liouville property for (6.1) without using pointwise
information about Q.

7 Semilinear PDEs

Consider on M the inequality
Δu + uσ ≤ 0 (7.1)

and ask if it has a non-negative solution u on M except for u ≡ 0. Here σ > 1 is a given
parameter. Note that any non-negative solution of (7.1) is superharmonic. Hence, if M
is parabolic then u must be identical zero. In particular, this is the case if V (r) ≤ Cr2.

Otherwise (7.1) may have positive solutions. For example, in Rn with n > 2 the
inequality (7.1) has a positive solution if and only if σ > n

n−2
(cf. [35]). As above, fix

x0 ∈ M and set V (r) = V (x0, r).

Theorem 7.1 ([26]) Assume that, for all large r,

V (r) ≤ Crp logq r, (7.2)

where

p =
2σ

σ − 1
and q =

1

σ − 1
. (7.3)

Then any nonnegative solution of (7.1) is identical zero.

The values of the exponents p and q in (7.3) are sharp: if either p > 2σ
σ−1

or

p = 2σ
σ−1

and q > 1
σ−1

then there is a manifold satisfying (7.2) where the inequality
(7.1) has a positive solution.

Theorem 7.1 can be equivalently reformulated as follows: if, for some α > 2

V (r) ≤ Crα log
α−2

2 r, (7.4)

then, for any σ ≤ α
α−2

, any nonnegative solution of (7.1) is identical zero. In this form
it contains the aforementioned result for Rn as in Rn (7.4) is satisfied with α = n.
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Conjecture. ([27]) If ∫ ∞ r2σ−1dr

V (r)σ−1 = ∞ (7.5)

then any nonnegative solution of (7.1) is identical zero.

In particular, the function (7.4) satisfies (7.5) with σ = α
α−2

.
Similar results for a more general inequality Δu + Quσ ≤ 0 with Q (x) ≥ 0 were

obtained in [37]. In the view of results of Section 6, it may be interesting to investigate
the question of existence of positive solutions for a semilinear equation Δu−Quσ = 0.

Analogous problems for semilinear heat equation were addressed in [38].

8 Biparabolic manifolds

A function u ∈ C4(M) is called bi-superharmonic if Δu ≤ 0 and Δ2u ≥ 0.
For example, let M be nonparabolic and consider the Green operator

Gf =

∫ ∞

0

g (x, y) f (y) dμ (y) ,

where

g (x, y) =

∫ ∞

0

pt(x, y)dt

is the Green function of Δ. If f is non-negative and superharmonic then the function
u = Gf is bi-superharmonic (provided it is finite) because

Δu = −f ≤ 0 and Δ2u = −Δf ≥ 0.

Here is another example of bi-superharmonic functions in a precompact domain
Ω ⊂ M . Let τΩ be the first exit time from Ω of Brownian motion Xt. If f is a
non-negative continuous function on ∂Ω then the function

u (x) = Ex (τΩf (XτΩ
))

solves the following boundary value problem





Δ2u = 0 in Ω
Δu|∂Ω = −f,
u|∂Ω = 0,

and, hence, is bi-superharmonic in Ω.

Definition. A manifold M is called biparabolic, if any positive bi-superharmonic
function on M is harmonic, that is Δu = 0.

Note that the notion of parabolicity also admits a similar equivalent definition: M
is parabolic if and only if any positive superharmonic function on M is harmonic.

Recall that the parabolicity of M is equivalent to g(x, , y) ≡ ∞. One can prove that
M is biparabolic if and only if g(2)(x, y) ≡ ∞ where

g(2)(x, y) :=

∫

M

g(x, z)g (z, y) dμ(z).
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Using the Green function g(x, y) = cn |x − y|2−n in Rn (n > 2), one can show that Rn

is biparabolic if and only if n ≤ 4. If n > 4 then u (x) = |x|−(n−4) is an example of a
(weakly) bi-superharmonic but not harmonic function.

Theorem 8.1 ([28]) If, for all large enough r,

V (r) ≤ C
r4

log r
(8.1)

then M is biparabolic.

The condition (8.1) is not far from optimal in the following sense: for any β > 1
there exists a manifold M with

V (r) ≤ C r4 logβ r

that is not biparabolic.

Conjecture. If

V (r) ≤ Cr4 log r or even

∫ ∞ r3dr

V (r)
= ∞,

then M is biparabolic.
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graph?, Revista Matemática Iberoamericana, 40 (2004) 1-31.

[3] Barlow M.T., Coulhon T., Grigor’yan A., Manifolds and graphs with slow heat kernel decay, Invent.
Math., 144 (2001) 609-649.

[4] Barlow M.T., Perkins E.A., Symmetric Markov chains in Zd: how fast can they move?, Probab.
Th. Rel. Fields, 82 (1989) 95–108.

[5] Cheng S.Y., Yau S.-T., Differential equations on Riemannian manifolds and their geometric ap-
plications, Comm. Pure Appl. Math., 28 (1975) 333-354.

[6] Coulhon T., Grigor’yan A., On-diagonal lower bounds for heat kernels and Markov chains, Duke
Math. J., 89 (1997) no.1, 133-199.

[7] Davies E.B., Heat kernel bounds, conservation of probability and the Feller property, J. d’Analyse
Math., 58 (1992) 99-119.

[8] Dvoretzky A., Erdös P., Some problems on random walk in space, Proc. Second Berkeley Sympo-
sium on Math. Stat. and Probability, University of California Press, 1951. 353-368.

[9] Grigor’yan A., On the existence of positive fundamental solution of the Laplace equation on Rie-
mannian manifolds, (in Russian) Matem. Sbornik, 128 (1985) no.3, 354-363. Engl. transl.: Math.
USSR Sb., 56 (1987) 349-358.

[10] Grigor’yan A., On stochastically complete manifolds, (in Russian) DAN SSSR, 290 (1986) no.3,
534-537. Engl. transl.: Soviet Math. Dokl., 34 (1987) no.2, 310-313.

25



[11] Grigor’yan A., Stochastically complete manifolds and summable harmonic functions, (in Russian)
Izv. AN SSSR, ser. matem., 52 (1988) no.5, 1102-1108. Engl. transl.: Math. USSR Izvestiya, 33
(1989) no.2, 425-432.

[12] Grigor’yan A., Bounded solutions of the Schrödinger equation on non-compact Riemannian man-
ifolds, (in Russian) Trudy seminara I.G.Petrovskogo, (1989) no.14, 66-77. Engl. transl.: J. Soviet
Math., 51 (1990) no.3, 2340-2349.

[13] Grigor’yan A., The heat equation on non-compact Riemannian manifolds, (in Russian) Matem.
Sbornik, 182 (1991) no.1, 55-87. Engl. transl.: Math. USSR Sb., 72 (1992) no.1, 47-77.

[14] Grigor’yan A., Heat kernel upper bounds on a complete non-compact manifold, Revista
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