
HEAT KERNEL ON A MANIFOLD WITH A LOCAL

HARNACK INEQUALITY

Alexander Grigor’yan

1. Introduction

Let M be a complete non-compact finite dimensional Riemannian manifold and p(x, y, t)
be the heat kernel of the corresponding heat equation ut − ∆u = 0 associated with the
Riemannian metric. In this paper, we are concerned with obtaining heat kernel upper
bounds reflecting global geometric properties of the manifold. One of the simplest and the
most natural forms of expected estimates reads as follows

p(x, y, t) ≤ f(t) exp
−const

r2

t

 (1.1)

where r = dist(x, y). For example, in the Euclidean space IRn one can put f(t) = const ·
t−n/2 while in the hyperbolic space Hn f(t) = exp(−const · t) for large t. There are
examples of manifolds for which the heat kernel has an intermediate decay (see [17] ).

There are two approaches to a question. The first one is to obtain an estimate covering
the widest possible class of manifolds while the second is to try to estimate the heat kernel
as sharply as possible, for example, to find the best function f(t), using for this purpose as
much information about the manifold as required and, hence, having to consider a more
particular variety of manifolds.

An example of the former approach is the statement that for any manifold of bounded
geometry the heat kernel decays at least as fast as 1/

√
t. It was first understood by

Varopoulos [15] , [16] , and he proved a little bit weaker statement. The result was
independently announced also in the note [6] .

A complete proof was first given by Chavel and Feldman [2] and for a more general
conception of bounded geometry by Coulhon [4] . Both these proofs were based upon a
discretization technique (developed in [9] , [10] , [11] , [13] etc.), whose main idea is to
replace a manifold by an appropriate graph. From this point of view, the rate 1/

√
t is not

unexpected because this is the magnitude of the heat kernel on the thinnest graph Z.
In this paper, we present a direct proof for manifolds which seems to be more flexible.

It is interesting that the proof needs the same geometric hypotheses as discretization
arguments of [4] despite the approaches are quite different. We discuss below the class
of manifolds which appear as a generalization of the notion of a manifold of bounded
geometry.

The second set of results presented in this paper is related to a connection between the
heat kernel decay in time variable as t → ∞ and an isoperimetric property of a manifold.
We refer the reader to [8] for the history of this question. In that paper, a theorem was
proved which establishes equivalence between the heat kernel on-diagonal estimate

p(x, x, t) ≤ const
V (ct)

(1.2)
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supposed to be true for all t > 0 and the isoperimetric inequality of the Faber-Krahn type

λ1(Ω) ≥ Λ(µΩ) (1.3)

where λ1(Ω) is the first Dirichlet eigenvalue of a pre-compact region Ω and functions Λ(v)
and V (t) are expressed each through the other by means of the following transformation

t =
∫ V (t)

0

dv

vΛ(v)
(1.4)

Whenever we want to restrict our considerations to large values of time only, it becomes
natural to take into account only big regions Ω. The theorem cited above does not allow
us to do that because for its application we need to control Λ(v) for small v so that the
integral in (1.4) converges. To avoid having to consider small regions, one should assume
a manifold to possess a priori a uniform structure .

Localization at infinity was done by Chavel and Feldman [2] for manifolds of bounded
geometry in the case of a polynomial decay of the heat kernel. They considered a classical
(as in Euclidean space) isoperimetric inequality between the area of the boundary and the
volume of any region containing a ball of a given radius (they referred to such a situation
when dealing with regions containing a fixed-size ball as a modified isoperimetric inequality
) and showed that it implies a corresponding heat kernel long time upper estimate.

In this paper, we consider a modified isoperimetric inequality for the first Dirichlet
eigenvalue in the spirit of [2] , but one which, in addition, covers a superpolynomial scale
too. A localization at time infinity becomes possible due to our understanding of a structure
of the heat kernel’s level sets on a locally Harnack manifold to be defined below.

Let us concentrate now on the notion of bounded geometry, which reflects the fact that
a manifold is arranged similarly in a fixed size neighbourhood of any point. There are
different definitions of this notion. The following one was introduced in [3] .

Definition 1 The manifold M is said to have Ck- bounded geometry if an injectivity
radius at any point is bounded away from 0 and the covariant derivatives up to the order
k of the curvature tensor are bounded from above and below.

The next definition occurs the most frequently (see , for example, [11] , [2] ).

Definition 2 The manifold M is said to have bounded geometry if an injectivity radius
at any point is bounded away from 0 and a Ricci curvature at any point is bounded from
below by a (negative) constant.

Finally, a definition of weak bounded geometry was applied in [5] .

Definition 3 The manifold M is said to have weak bounded geometry if there is a
positive radius ρ such that any geodesic ball of this radius is uniformly quasi-isometric to
a Euclidean ball which means that there exists a diffeomorphism of any geodesic ball onto
a Euclidean one changing the metric at most in C times, the constant C not depending
on the ball.

Each of these definitions covers a wider class of manifolds than the preceding one. The
Varopoulos’s conjecture is proved in [2] for manifolds of bounded geometry in the sense
of definition 2. The proof of [4] , as well as that of the present paper, covers a class of
manifolds which is even wider than that of definition 3. But first, we introduce a notion
of locally Harnack manifolds .
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Definition 4 The manifold M is said to be locally Harnack manifold if there is a positive
radius ρ > 0 (which will be referred to as Harnack radius ) such that for any point x ∈ M
the following is true

(a) for any positive numbers r < R < ρ

µB(x, R)
µB(x, r)

≤ a

R

r

n

(1.5)

(b) Poincaré inequality: for any smooth function f(x) in the ball B(x, R) of a radius
R < ρ the following inequality is valid∫

B(x,R)

|∇f |2 ≥ b

R2

∫
B(x,R/2)

(f − f̄)2 (1.6)

provided

f̄ ≡ 1
µB(x, R/2)

∫
B(x,R/2)

f

where a, b, n are positive constants (n is normally but not necessarily the dimension of M).

Let us explain why we apply the name ”locally Harnack manifold” in connection with
properties (a), (b). The cause is that (a) and (b) are equivalent to the Harnack inequality
for the heat equation in any cylinder B(x, R)× (0, R2) where R < ρ (see [14] and also [7]
).

The conditions (a) and (b) are valid, for example, whenever the manifold has Ricci
curvature bounded from below by some (negative) constant −K (see [1] ). On the other
hand, there are manifolds of constant negative curvature (being therefore locally Harnack
manifolds ), for example, those of finite volume, which may in no case be regarded as
manifolds with a locally uniform geometry. To avoid such situations we have to assume
some lower bound of the volume of a geodesic ball to be valid.

Theorem 1.1 Suppose that M is locally Harnack manifold and the following hypothesis
holds for any x ∈ M

µB(x, ρ) ≥ v0r
−α (1.7)

where r = dist(x, y), y being a fixed point on M and v0 > 0, 1 > α ≥ 0, then for any
D > 4, t > ρ2, x ∈ M

p(x, y, t) ≤ const√
t1−α

exp
− r2

Dt

 (1.8)

where const depends on a, b, v0, n, α, ρ, D .

Let us put, for example, α = 0 i.e. we have independently of the point y that
(c) for any x ∈ M µB(x, ρ) ≥ v0

Then by Theorem 1.1 for all x, y ∈ M and for all t > ρ2

p(x, y, t) ≤ const√
t

exp
− r2

Dt

 (1.9)

A manifold satisfying the conditions (a), (b), (c) may be considered as a natural general-
ization of a notion ”manifold of bounded geometry”.

As far as behaviour of the heat kernel for small t is concerned, the following general
estimate is a consequence of results of [8] and [7] .
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Proposition 1.1 If M is locally Harnack manifold with property (c) then the heat kernel
satisfies for all x, y ∈ M the inequality

p(x, y, t) ≤ const




exp
−λ1(M)t − r2

Dt

 , t ≥ ρ2

t−n/2 exp
− r2

Dt

 , t ≤ ρ2
(1.10)

where λ1(M) is the bottom of the spectrum of the operator −∆ in L2(M), D > 4 is
arbitrary and const depends upon a, b, v0, n, ρ, D.

This result yields also a sharp long time heat kernel estimate provided the spectral gap
λ1(M) is positive, but if λ1(M) = 0 then it does not ensure any decay of the heat kernel
in contrast to Theorem 1.1.

Another example where Theorem 1.1 is applicable is the following manifold. Let us
consider a surface M of revolution around a straightline in IRn+1 of a graph of some
function f(τ) defined on IR (=the straightline). Suppose that f is smooth so that M is a
manifold, and f(τ) = |τ |−β

, β > 0 for large values of τ , then for a fixed y ∈ M, ρ > 0
and for any x ∈ M

µB(x, ρ) ≥ constρr−nβ

Since the curvature of the surface in question is bounded from below this manifold is
locally Harnack one. Theorem 1.1 gives us (1.8) for α = −nβ provided β < 1

n . It is
interesting that for this surface a lower bound is valid with the same power of t so that
Theorem 1.1 gives in this case a sharp estimate. Note that for β > 1/n the manifolds
under consideration has a finite volume and, thereby, the heat kernel does not approach
to 0 at all.

Finally, we consider a modified isoperimetric inequality on the manifold in question.

Theorem 1.2 Suppose that M is a locally Harnack manifold with the condition (c). Let
any region Ω containing a ball of radius ρ satisfy an isoperimetric inequality

λ1(Ω) ≥ Λ(Ω) (1.11)

where Λ(v) is a positive continuous decreasing function in (v0,∞). Let the function V (t)
be defined by means of the following identity

t − t0 =
∫ V (t)

v0

dv

vΛ(v)
(1.12)

where t0 = consta,b,nρ2 > 0, then for t > t0 and all x, y ∈ M

p(x, y, t) ≤ const
V (t/2)

(1.13)

Moreover if the function V (t) satisfies some additional conditions (see section 4 for details)
then for all x, y ∈ M, t > t0, D > 4

p(x, y, t) ≤ const
V (ct)

exp
− r2

Dt

 (1.14)

where r = dist(x, y) and constants const, c depend upon a, b, n, ρ, v0, D.

Acknowledgement. The author is very grateful to W.Hansen for his help and hospitality
during his staying in Bielefeld University where this work was done.
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2. A lower bound for the first Dirichlet eigenvalue on a locally Harnack
manifold

The main purpose of this section is to obtain a lower bound for λ1(Ω) via the volume on
a locally Harnack manifold. To understand the idea behind the proof, let us first suppose
that M is a manifold of weak bounded geometry in the sense of definition 3.

Consider a bounded region Ω with a smooth boundary ∂Ω and its intersections with
different balls of radius ρ which are similar to a Euclidean one. If in some of these balls
the set Ω covers at least a half of its volume then by continuity arguments there exists
another ball of radius ρ where Ω covers approximately a half of its volume. Therefore, the
surface ∂Ω divides the ball into two approximately equal parts and by the isoperimetric
property of a partition in the Euclidean ball we have that the measure of ∂Ω is bounded
from below by a positive constant.

Otherwise, Ω occupies in any ball of radius ρ less than a half of the volume and we
can divide Ω into many small parts each of them lying in some of the balls in question
and apply the isoperimetric inequality in any ball once again. Omitting details we shall
only note that the final result in this case is that the measure of ∂Ω is at least as large as
const(µΩ)

n−1
n as it takes place in IRn. Hence, in either case we have obtained some lower

bound for the measure of the boundary via the function of the volume of Ω.
Let us note that the isoperimetric inequality of a partition in a ball is nothing but an

L1-version of Poincaré inequality (b). If we have instead the normal L2- version, then we
cannot hope to estimate the area of the boundary via the volume, but we are able to prove
a L2- version of this inequality - namely, a lower bound for the first Dirichlet eigenvalue
of a region via its volume.

Theorem 2.1 Suppose that the manifold M is a locally Harnack one, then for any
pre-compact region Ω ⊂ M the estimate holds

λ1(Ω) ≥ const
ρ2

min

 V0

µΩ

2

,

 V0

µΩ

2/n
 (2.1)

where ρ is the Harnack radius,

V0 = inf
x
{µB(x, ρ) | B(x, ρ) ∩ Ω �= ∅} (2.2)

and const > 0 depends on constants a, b, n from definition 4.

Proof. Let us consider a non-zero Lipschitz function u ≥ 0 in Ω such that u|∂Ω = 0. It
suffices to prove that the ratio ∫

Ω
|∇u|2∫
Ω

u2
(2.3)

is bounded from below by the expression on the right-hand side of (2.1) . To this end, let
us consider a family of level sets of the function u: Ωt ≡ {u > t} for any t > 0 (here t is
not a time !) and set µΩt = m(t). Let us associate to any t > 0 some t′ > t such that

µ(Ωt \ Ωt′) ≤ δµΩt (2.4)
where δ ∈ (0, 1) is to be chosen later as a function of V0/µΩ. Our first step is to estimate
from below the integral ∫

Ωt\Ωt′
|∇u|2 (2.5)

via the function m(t). For this purpose we shall apply the following lemma proved in [7]
(lemma 1.1 from that paper).
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Lemma 2.1 If the conditions (a) and (b) of the definition 4 hold in the ball B(x, r) then
for any Lipschitz function u in this ball and for all t < t′∫

{t<u<t′}
|∇u|2 ≥ const

(t′ − t)2A−A+

r2µB(x, r)
(2.6)

where
A− = µ

{u ≤ t} ∩ B(x, r/2)


A+ = µ
{u ≥ t′} ∩ B(x, r/2)


Next we shall consider two cases.

CASE 1. Suppose that there exists a ball B(x, ρ/10) in which the set Ωt occupies at
least a half of its volume i.e.

µ
{u > t} ∩ B(x, ρ/10)

 ≥ 1
2
µB(x, ρ/10) (2.7)

Then by continuity arguments there exists a point x at which the equality attains in (2.7)
(here we have made use of unboundedness of the manifold). We intend now to apply
lemma 2.1 in the ball B(x, ρ/5). First we need to estimate from below the corresponding
volumes A−, A+. Due to the choice of x we have that A− = 1

2µB(x, ρ/10). Obviously, we
have the following inequality for A+

A+ ≥ 1
2
µB(x, ρ/10) − µ(Ωt \ Ωt′) ≥ 1

2
µB(x, ρ/10) − δµΩ ≥ cV0 − δµΩ ≥ c

2
V0

where c = 1
2
a−110−n and δ is assumed to satisfy the inequality

δµΩ ≤ c

2
V0 (2.18)

Hence, we get
A+ ≥ constV0 (2.19)

and by lemma 2.1∫
Ωt\Ωt′

|∇u|2 ≥ const
(t′ − t)2A−A+

ρ2µB(x, ρ/5)
≥ const

(t′ − t)2

ρ2
V0

or taking into account (2.18) and µΩ ≥ µΩt we get finally

∫
Ωt\Ωt′

|∇u|2 ≥ const
(t′ − t)2

ρ2
δm(t) (2.20)

CASE 2. Suppose now that in any ball B(x, ρ/10) of radius ρ/10 the set Ωt occupies
less than 1

2
of its volume, then for any x ∈ Ωt there is a radius r(x) < ρ/10 such that

µ
B(x, r(x)) ∩ Ωt

 =
1
2
µB(x, r(x))
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because for a very small r the ball B(x, r) lies completely in Ωt. The union of balls
B(x, 2r(x)) covers Ωt. Hence, by means of Banach process we can select from them at
most a countable sequence {B(xi, 2ri)} so that they do not intersect each other while
the balls B(xi, 10ri) cover together Ωt. We are going to apply lemma 2.1 in every ball
B(xi, 2ri). Let us denote by A−

i , A+
i the corresponding volumes from this lemma. Since

A−
i = 1

2
µB(xi, ri) it follows that

∫
{t<u<t′}∩B(xi,2ri)

|∇u|2 ≥ const
(t′ − t)2

r2
i

A+
i .

We have by the condition (a) that

ri

ρ
≤
µB(xi, ri)

µB(xi, ρ)

1/n

≤ const
µΩ

V0

1/n

whence ∫
{t<u<t′}∩B(xi,2ri)

|∇u|2 ≥ const
(t′ − t)2

ρ2

 V0

µΩ

2/n

A+
i (2.21)

Next, note that
∑

i µB(xi, 10ri) is at least as large as the volume Ωt . Hence, according
to hypothesis (a) we obtain that∑

i

µB(xi, ri) ≥ constµΩt

Taking into account that

A+
i =

1
2
µB(xi, ri) − µ

(Ωt \ Ωt′) ∩ B(xi, ri)


and, therefore,

∑
i

A+
i ≥ constµΩt − µ

Ωt \ Ωt′

 ≥ constm(t) − δm(t) ≥ 1
2
constm(t)

(where we have assumed that δ ≤ 1
2const) we obtain from (2.21)

∫
Ωt\Ωt′

|∇u|2 ≥ const
(t′ − t)2

ρ2

 V0

µΩ

2/n

m(t) (2.22)

We see that in both cases we can choose δ as follows

δ = const min
2,

V0

µΩ

 (2.23)

Let us combine the inequalities (2.20) and (2.22) together. If µΩ ≥ 1
2
V0 then we have

δ = const V0
µΩ

and in either case 1,2 we get

∫
Ωt\Ωt′

|∇u|2 ≥ const
(t′ − t)2

ρ2
min

 V0

µΩ

2/n

,
V0

µΩ

 m(t) (2.24)
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Otherwise, if µΩ < 1
2V0, then the case 2 takes place and (2.24) is valid again (as follows

from (2.22) ). Therefore, (2.24) holds always provided t′ and t satisfy (2.4) and δ is defined
from (2.23) .

Now we shall arrange an infinite sequence 0 = t0 < t1 < t2 < ... according to the rule

tk+1 = min{τ | µ{u ≥ τ} ≥ (1 − δ)m(tk)} (2.25)

Obviously we have that

m(tk+1) ≤ (1 − δ)m(tk)

in particular, m(tk) → 0 as k → ∞. It follows from (2.25) that

µ(Ωtk
\ Ωtk+1) ≤ δµΩtk

so the estimate (2.24) is applicable to t = tk, t′ = tk+1 :

∫
Ωtk

\Ωtk+1

|∇u|2 ≥ const
(tk+1 − tk)2

ρ2
min

 V0

µΩ

2/n

,
V0

µΩ

m(tk) (2.26)

Let us sum up all the inequalities (2.26) over all k = 0, 1, 2, ... and apply the following
lemma (see lemma 1.2 in [7] ).

Lemma 2.2 Suppose that {tk} is an increasing sequence of real numbers, t0 = 0 and
mk is a decreasing sequence of positive numbers such that mk+1 ≤ (1 − δ)mk for some
δ ∈ (0, 1) . Then

∞∑
k=0

(tk+1 − tk)2mk ≥ δ

12

∞∑
k=0

t2k+1(mk − mk+1) (2.27)

Therefore, we obtain

∫
Ω

|∇u|2 ≥ const
ρ2

δ min

 V0

µΩ

2/n

,
V0

µΩ

 ∞∑
k=0

t2k+1(m(tk) − m(tk+1))

We are left to substitute here the value of δ from (2.23) and to observe that m(tk) → 0
implies the estimate ∫

Ω

u2 ≤
∞∑

k=0

t2k+1(m(tk) − m(tk+1))

so that ∫
Ω

|∇u|2 ≥ const
ρ2

min

 V0

µΩ

2/n

,

 V0

µΩ

2


∫
Ω

u2

which was to be proved. �
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3. Upper bound for the heat kernel on a locally Harnack manifold

We are going to obtain upper bounds for the heat kernel applying arguments of [8] . Let
us introduce the notation

ED(x, t) =
∫

M

p2(x, y, t) exp
 r2

Dt

 dy (3.1)

where r = dist(x, y), D > 2. As was proved in [8] for any manifold M and for any D > 2
the function ED(x, t) is always finite and decreasing in t. Moreover, the following estimate
always holds

p(x, y, t) ≤ exp
− r2

2Dt


√

ED(x,
t

2
)ED(y,

t

2
) (3.2)

where r = dist(x, y) (see proposition 5.1 from the paper cited above ). This estimate
enables one to obtain a Gaussian pointwise upper bound whenever one has proved an
estimate of the following kind :

ED(x, t) ≤ f(t) (3.3)

To obtain such an estimate we shall use another result of [8] - a particular case of Theorem
4.2 and corollary 4.2 from there which reads as follows.

Proposition 3.1 Suppose that for some (fixed) ball B(x, R) ⊂ M and for any subdomain
Ω ⊂ B(x, R) the following isoperimetric inequality is valid

λ1(Ω) ≥ Λ(µΩ) (3.4)

where the function Λ(v) is as follows

Λ(v) =
{

Av−α, v < V0

Bv−β , v ≥ V0

(3.5)

A, B, α, β being some positive constants and V0 is determined from the condition

AV −α
0 = BV −β

0 (3.6)

Let the functions V (t), R(t) be defined by the identities

t =
∫ V (t)

0

dv

vΛ(v)
. (3.7)

and

R(t) =
∫ V (t)

0

dv

v
√

Λ(v)
. (3.8)

Assume also that R and t are related as following

R(t) ≤ cR (3.9)

where c = c(α, β) . Then

ED(x, t) ≤ const
V (t)

(3.10)
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with the constant const depending on D and supt tΛ(V (t)).

Remark. The corresponding assertion in [8] was proved for a more general function Λ and
the statement reads even more bulky. Some simplification occurs here due to the particular
polynomial form of Λ.

Functions V (t), R(t) are easily computed and admit the following estimates. Let us set

t0 =
1
α

A
β

α−β B
α

β−α (3.11)

(this value is found from the condition V (t0) = V0). Then we have for any t < t0

V (t) = (Aαt)1/α, R(t) = 2

√
t

α
(3.12)

and for t ≥ t0

V (t) ≥ (B min(α, β)t)1/β, R(t) ≤ 2

√
t0
α

+ 2
√

t

β
(3.13)

In particular, we see that tΛ(V (t)) ≤ constα,β . Therefore, the constant in (3.10) depends
only on D, α, β and what is important to underline it does not depend on A, B as well as
the estimates of R(t) in (3.12) and (3.13) .

The relations (3.12) are obtained by a direct computation from the definition of V (t),R(t).
To explain estimates (3.13) let us note that for t ≥ t0 we get from (3.7)

t − t0 =
∫ V (t)

V0

dv

vΛ(v)
=

1
Bβ

(V (t)β − V β
0 ) (3.14)

that implies
V (t)β/2 − V

β/2
0 ≤

√
Bβt

Comparing with

R(t) − R(t0) =
∫ V (t)

V0

dv

v
√

Λ(v)
=

2√
Bβ

V (t)β/2 − V
β/2
0


we see that

R(t) − R(t0) ≤ 2
√

t

β

whence, the estimate (3.13) for R(t) follows. To prove the lower bound of V (t) in (3.13)
let us note that according to (3.6) , V (t0) = V0 and (3.12) we have V β

0 = B
A V α

0 = Bαt0.
Hence, it follows from (3.14) that

V (t)β = V β
0 + Bβ(t − t0) = Bαt0 + Bβ(t − t0) ≥ B min(α, β)t

The following theorem ensures an upper estimate for ED(x, t) on a locally Harnack
manifold.
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Theorem 3.1 Let M be a locally Harnack manifold with a Harnack radius ρ. Let us
define a function v0(x, R) as the infimum of volumes of all balls B(y, ρ) having a non-empty
intersection with the ball B(x, R), then for D > 2, x ∈ M, t > 0

ED(x, t) ≤ const

v0(x, c̄
√

t) min
√

t
ρ ,

√
t

ρ

n (3.15)

where const depends on D and on the constants a, b, n from definition 4, c̄ = c̄(n) .

Proof. According to Theorem 2.1 any region Ω ∈ B(x, R) satisfies the inequality (3.4) with
function Λ from (3.5) where α = 2/n, β = 2 and

A =
const
ρ2

v0(x, R)2/n, B =
const
ρ2

v0(x, R)2 (3.16)

Calculating t0 as it is required for proposition 3.1 we get from (3.11) the following

t0 = const · ρ2

To apply proposition 3.1 we choose for any t > 0 the corresponding R so that the relation
(3.9) is satisfied. Let us show that for R = 1

c

√
8nt (3.9) is valid. Indeed, if t < t0 this is

obvious because R(t) =
√

2nt. Otherwise, if t ≥ t0 we apply the estimate (3.13) for R(t)
and see that

cR =
√

8nt ≥ √
2nt0 +

√
2t ≥ R(t)

We are left to show that

V (t) ≥ constv0(x, c̄
√

t) min


√
t

ρ
,

 t

ρ2

n/2


Indeed, for t < t0 we get from (3.12) and (3.16)

V (t) = const · v0(x, R)
 t

ρ2

n/2

For t ≥ t0 we have in the same way

V (t) ≥ const · v0(x, R)
 t

ρ2

1/2

Substituting here the value of R and applying finally proposition 3.1 we obtain the desired
inequality (3.15) . �
Corollary 3.1 If M is a locally Harnack manifold with a Harnack radius ρ satisfying to
the condition (c) of section 1 (i.e. the volume of any ball of radius ρ is at least as large as
v0 > 0) then for all t > ρ2, x ∈ M, D > 2

ED(x, t) ≤ const · ρv−1
0√

t
(3.17)

where const depends on a, b, n, D.

Combining Theorem 3.1 with the relation (3.2) we obtain a heat kernel pointwise estimate.
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Corollary 3.2 For a Harnack manifold M the following estimate holds for all x, y ∈
M, t > ρ2, D > 2

p(x, y, t) ≤ const · ρ
√

t
v0(x, c̄

√
t)v0(y, c̄

√
t)

 1
2

exp
− r2

2Dt

 (3.18)

In particular, we have under conditions of corollary 3.1

p(x, y, t) ≤ const · ρv−1
0√

t
exp

− r2

2Dt

 (3.19)

In both inequalities the constants const depend on a, b, n, D; c̄ is the same as in Theorem
3.1.

The estimate (3.18) can be transformed to be expressed via another function of volume.
Indeed, let us fix some point z and put

w(R) = inf
x∈B(z,R)

µB(x, ρ) (3.20)

Obviously, we have
v0(x, R) ≥ w(d(x) + R + ρ)

where d(x) = dist(x, z). Applying the foregoing corollary we obtain for t > ρ2 and any
x, y ∈ M

p(x, y, t) ≤ const · ρ
√

t
w(d(x) + ĉ

√
t)w(d(y) + ĉ

√
t)

 1
2

exp
− r2

2Dt

 (3.21)

where ĉ = c̄ + 1.
For example, if w(R) ≥ const · R−γ , γ > 0 it follows that

p(x, y, t) ≤ const · ρ√
t1−γ

(ĉ +
d(x)√

t
)(ĉ +

d(y)√
t

)
γ/2

exp
− r2

2Dt


In particular, if we put here y = z and note that the polynomial (ĉ+r/

√
t)γ/2 is majorized

by the exponential multiple exp(ε r2

t ) with an arbitrarily small ε > 0 then we obtain nothing
but Theorem 1.1.

4. Modified isoperimetric inequality

The heat kernel estimates obtained in the preceding section are valid for a wide class
of locally Harnack manifolds but of course as any general estimate they are not sharp
for more particular classes of manifolds. Here we impose an additional restriction that
a locally Harnack manifold with the condition (c) satisfies some isoperimetric inequality
for large domains and obtain a more precise information about the heat kernel decay in
time via the isoperimetric function. As was mentioned in Introduction, the main difficulty
lies in the fact that we are not given a priori an isoperimetric inequality for all regions
(otherwise we could simply apply [8] ).
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The key point of our proof is that we are able to show that the level sets of the heat
kernel on a locally Harnack manifold are similar to geodesic balls. More precisely, a level
set (for a fixed time) either lies in some ball or contains a smaller ball, the radii of the
balls being finite proportional to the Harnack radius ρ. To prove this we apply locally
Harnack inequality. Afterwards, to estimate the heat kernel we can repeat arguments
of [8] because as turned out they require the isoperimetric inequality only for the level
sets of the heat kernel rather than for all regions. We apply for large level sets a given
isoperimetric inequality and for small level sets - the isoperimetric inequality inside a small
ball (in fact, Theorem 2.1).

Theorem 4.1 Let M be a locally Harnack manifold with a Harnack radius ρ, then
for any positive ε < ε0 = ε0(a, b, n) there exists δ = δ(ε, a, b, n) > 0 such that for all
x ∈ M, 0 < t < δρ2 the level set

Gt = {y ∈ M | p(x, y, t) > εp(x, x, 2t)} (4.1)

lies in the ball B(x, c1ρ) while for t ≥ δρ2 the set Gt contains the ball B(x, c2ρ) , where
0 < c2 < c1 < 1 and c1,2 depend only on constants a, b, n from the conditions (a), (b).

Proof. The proof will be split onto three steps.
STEP 1. Let us first prove that if t < ρ2 and r = dist(x, y) < ρ then

p(x, y, t) ≤ consta,b,n

µB(x,
√

t)
exp

−r2

5t

 (4.2)

Let us take some x ∈ M, R < ρ and notice that for any region Ω ⊂ B(x, R) we have
according to Theorem 2.1

λ1(Ω) ≥ consta,b,n

R2

µB(x, R)
µΩ

2/n

(4.3)

To explain this first, note that the value of V0 defined from (2.2) is finite proportional to
µB(x, R) so that we may replace it by µB(x, R) . Second, the estimate (2.1) of Theorem
2.1 includes one more term:  V0

µΩ

2

but in the case under consideration it can be omitted for

µΩ ≤ µB(x, R) = consta,nV0 (4.4)

Next we apply proposition 3.1 in the ball B(x, R) and due to (4.4) we have for t ≤
constnR2 , D > 2 that

ED(x, t) ≤ constD,a,b,nRn

tn/2µB(x, R)
(4.5)

Since ED(x, t) is decreasing in t it follows that the following estimate holds for all t > 0

ED(x, t) ≤ constD,a,b,nRn

min(t, R2)n/2µB(x, R)
(4.6)
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Applying the estimate (3.2) we get that for all x, y ∈ M, t > 0, R < ρ

p(x, y, t) ≤
RnconstD,a,b,n exp

− r2

2Dt


min(t, R2)n/2

µB(x, R)µB(y, R)
1

2
(4.7)

where r = dist(x, y). If now t < ρ2 and dist(x, y) < ρ then we set D = 2.5, R =
√

t
and apply the property (a) in a suitable way that yields us that the volumes of balls
B(x, R), B(y, R) are finite proportional whence (4.2) follows.

STEP 2. Let us proof that for t < ρ2

p(x, x, 2t) ≥ consta,b,n

µB(x,
√

t)
(4.8)

Indeed, let us consider the function u(y, τ) =
∫

B(x,
√

t/4)
p(y, ξ, τ)dξ (where t < ρ2 is fixed)

which satisfies the heat equation and to the initial value u(y, 0) = 1 if y ∈ B(x,
√

t/4).
Hence, we can extend this function by 1 for τ < 0, y ∈ B(x,

√
t/4) so that the extended

function satisfies the heat equation in B(x,
√

t/4) × (−∞, +∞). Applying the Harnack
inequality in the cylinder B(x,

√
t/4) × (−t, t) we obtain∫

B(x,
√

t/4)

p(x, ξ, t)dξ = u(x, t) ≥ consta,b,n

where consta,b,n > 0 is the corresponding Harnack constant. Therefore, there exists a
point y ∈ B(x,

√
t/4) such that

p(x, y, t) ≥ consta,b,n

µB(x,
√

t)
(4.9)

Applying Harnack inequality once again for the function p(x, ·, ·) in the cylinder B(y,
√

t/2)×
(0, 2t) we get

p(x, x, 2t) ≥ consta,b,np(x, y, t)

whence (4.8) follows.
Combining the estimates of steps 1,2 we claim that

p(x, y, t)
p(x, x, 2t)

≤ consta,b,n exp
−r2

5t

 (4.10)

provided y ∈ B(x, ρ), t < ρ2.
Let t < δρ2 and y /∈ B(x, c1ρ) where constants δ, c1 are to be chosen later. Then (4.10)

implies that
p(x, y, t)
p(x, x, 2t)

≤ consta,b,n exp
− c2

1

5δ

 (4.11)

If the right-hand side of (4.11) is less than ε then any point y under consideration does
not land at Gt that means that Gt lies in the ball B(x, c1ρ). Thus, the first condition to
be satisfied by the choice of c1, δ is the following

c2
1

δ
> consta,b,n(1 + log

1
ε
) (4.12)
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STEP 3. It is standard that Harnack inequality implies the following estimate for any
positive solution u(y, t) to the heat equation in B(x, ρ)× (0, +∞): there exists τ < t such
that

u(x, τ) ≤ exp
consta,b,n(1 +

r2

t
)
u(y, t) (4.13)

provided r = dist(x, y) < 1
2ρ (see [12] ). Indeed, let m > 2 be an integer such that

r2

m
<

t

4
(4.14)

In particular, m can be taken to satisfy also the inequality

m < 4(1 +
r2

t
)

Let us divide a shortest geodesics connected points x, y into 2m equal parts denoting the
corresponding points as zk, k = 0, 1, ...2m where z0 = y, z2m = x and consider a sequence
of times tk = t − k( r

m )2. Let us apply Harnack inequality in any cylinder

B(zk, ρ/m) ×
tk, tk − 2(

r

m
)2


(note, that tk − 2( r

m )2 > 0 due to (4.14) ) which gives us

u(zk+1, tk+1) ≤ consta,b,nu(zk, tk) .

By induction we obtain
u(x, t2m) ≤ (consta,b,n)2mu(y, t)

whence (4.13) follows.
Applying (4.13) for u(y, t) = p(x, y, t) and noting that p(x, x, 2t) ≤ p(x, x, τ) (which

simply means that p(x, x, ·) is a decreasing function) we have

p(x, x, 2t) ≤ exp
consta,b,n(1 +

r2

t
)
 p(x, y, t)

or
p(x, y, t)
p(x, x, 2t)

≥ exp
−consta,b,n(1 +

r2

t
)
 (4.15)

Suppose now that t > δρ2 and r < c2ρ. Then (4.15) implies

p(x, y, t)
p(x, x, 2t)

≥ exp
−consta,b,n(1 +

c2
2

δ
)


Thus, if the right-hand side of this inequality is greater than ε i.e.

1 +
c2
2

δ
< consta,b,n log

1
ε

(4.16)

then the entire ball B(x, c2ρ) lies in Gt.



16

We are left to compare the relations (4.16) and (4.12) to show that they can be satisfied
simultaneously. Indeed, we set, for example, c1 = 1

2
and find δ so that (4.12) is true:

δ =
consta,b,n

1 + log 1
ε

(4.17)

Substituting this value into (4.16) we obtain the following inequality to be satisfied by
choosing of c2

c2
2 ≤ consta,b,n

consta,b,n log 1
ε
− 1

1 + log 1
ε

Obviously, for sufficiently small ε < ε0(a, b, n) the corresponding value of c2 exists and
does not depend on ε. �

Now we can prove the main result of this section - a heat kernel estimate under an
isoperimetric inequality supposed to be valid only for large sets.

Theorem 4.2 Let M be a locally Harnack manifold with the Harnack radius ρ and x
be some (fixed) point on M . Suppose that for any pre-compact region Ω containing the
ball B(x, ρ) the following inequality holds

λ1(Ω) ≥ Λ(µΩ), (4.18)

Λ being a positive continuous decreasing function defined on (µB(x, ρ),∞), then for all
t > t0 = δρ2 where δ = δ(a, b, n) > 0 we have

p(x, x, 2t) ≤ consta,b,n

V (t)
(4.19)

where the function V (t) is defined from the relation

t − t0 =
∫ V (t)

v0

dv

vΛ(v)
(4.20)

and v0 = µB(x, ρ) .

Remarks. 1. The estimate (4.19) is more rough than it is expected in view of the Theorem
2.1 from [8] . In fact, one can prove that

p(x, x, 2t) ≤ const
V (γt)

where γ may be taken arbitrarily close to 2, but under the condition that the ratio t
ρ2 is

large enough. We have preferred to present a less sharp inequality which however is valid
for a more definite range of time.

2. In the course of the proof we find a certain value of δ = δ(a, b, n) for which the
statement of the theorem holds. In fact, the estimate (4.19) remains valid for smaller
values of δ, too but in this case the constant consta,b,n has to depend on δ as well.
Proof of theorem. To find δ we choose first some positive ε < min( 1

4
, ε0) where ε0 is the

same as in Theorem 4.1 (ε will be specified at the end of the proof) and put δ = δ(ε) from
the relation (4.17) of Theorem 4.1. Let us consider again a set

Gt = {y ∈ M | p(x, y, t) > εp(x, x, 2t)}
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If t > t0 = δρ2 then the set Gt contains by Theorem 4.1 the ball B(x, c2ρ) where c2 is the
constant from Theorem 4.1. We want to estimate from below λ1(Gt) according to (4.18)
, but we may apply this inequality only for sets, containing the ball B(x, ρ). This is why
we shall consider the union Gt ∪ B(x, ρ). Due to the monotonicity of the first Dirichlet
eigenvalue we have

λ1(Gt) ≥ λ1(Gt ∪ B(x, ρ)) ≥ Λ (µ (Gt ∪ B(x, ρ)))

Evidently, we can compare the volumes as follows

µ(Gt ∪ B(x, ρ)) ≤ µGt + µB(x, ρ) ≤ µGt + acn
2µB(x, c2ρ) ≤ CµGt

(where C = 1 + acn
2 ) whence the desired estimate follows:

λ1(Gt) ≥ Λ(CµGt) . (4.21)

We shall apply (4.21) to obtain an upper bound of the function

I(t) =
∫

M

p(x, y, t)2dy = p(x, x, 2t)

Note that for any positive numbers p, ξ the following inequality is true

p2 ≤ (p − ξ)2+ + 2ξp

which follows obviously from considering of two cases: p < ξ and p ≥ ξ. Let us set
ξ = εp(x, x, 2t) = εI(t) and apply this inequality to the heat kernel

∫
M

p(x, y, t)2dy ≤
∫
{p>ξ}

(p − ξ)2dy + 2ξ

∫
M

p(x, y, t)dy

or, applying
∫

M
p(x, y, t)dy ≤ 1

∫
{p>ξ}

(p − ξ)2dy ≥
∫

M

p2dy − 2ξ (4.22)

Now we are going to estimate the integral over Gt = {y| p(x, y, t) > ξ} on the left-hand
side of (4.22) through the Dirichlet integral of the heat kernel over the same set. To this
end we have to show that the level set Gt is bounded for any t > 0. Indeed, it follows from
corollary 3.2 that for a large r = dist(x, y) the value of p(x, y, t) becomes arbitrarily small
so that Gt lies in some big ball. Hence , we have that∫

{p>ξ}
|∇p|2 dy ≥ λ1(Gt)

∫
{p>ξ}

(p − ξ)2dy ≥ Λ(Cµ{p > ξ})
∫
{p>ξ}

(p − ξ)2 .

On the other hand
µ{p > ξ} ≤ 1

ξ
.



18

Combining these inequalities with (4.22) we get

∫
M

|∇p|2 dy ≥ Λ(Cξ−1)
∫

M

p2 − 2ξ

 . (4.23)

Finally, observing that I ′(t) = −2
∫

M
|∇p|2 and replacing ξ by its value we obtain a

differential inequality

I ′(t) ≤ −2(1 − 2ε)Λ
 C

εI(t)

 I(t) (4.24)

which is easily integrated and yields for t > t0

∫ I(t)

I(t0)

dI

IΛ
 C

εI

 ≤ −2(1 − 2ε)
∫ t

t0

dt ≤ −(t − t0) (4.25)

(we have applied that ε ≤ 1
4
). Changing a variable v = C/(εI) we obtain

∫ C
εI(t)

C
εI(t0)

dv

vΛ(v)
≥ t − t0 (4.26)

We are left to relate C
εI(t0)

to v0 = µB(x, ρ), namely, we should find ε so that the following
is true

v0 ≤ C

εI(t0)
(4.27)

- as soon as this is done one can substitute it into (4.26) and a comparison with (4.20)
gives

C

εI(t)
≥ V (t)

and

p(x, x, 2t) = I(t) ≤ C

εV (t)

which was to be proved.
Returning to (4.27) we shall apply the estimate (4.2) from the proof of Theorem 3.1 (or

directly this theorem) which gives in this case

I(t0) = p(x, x, 2t0) ≤ consta,b,n

µB(x,
√

t0)
≤ consta,b,n

δn/2v0

Comparing this with (4.27) we see that (4.27) is satisfied provided

δn/2 ≥ consta,b,nε

For sufficiently small ε this is true due to the fact that δ is a rational function of log 1
ε

-
see (4.17) . �
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Corollary 4.1 Suppose that M is a locally Harnack manifold with the condition (c) i.e.
the volume of any ball of the Harnack radius ρ is bounded from below by v0 > 0. Let any
region Ω containing a ball of radius ρ satisfy the inequality

λ1(Ω) ≥ Λ(Ω) (4.28)

where Λ(v) is a positive continuous decreasing function in (v0,∞). Let t0 be the same
as in Theorem 4.2 and the function V (t) is defined by means of(4.20) . Suppose that the
following additional condition holds:

function tΛ(V (t)) is increasing on (T, +∞) for some large T . (4.29)

Then for all x, y ∈ M, t > t0 the following estimate holds

p(x, y, t) ≤ const
V (ct)

exp
− r2

Dt

 (4.30)

where r = dist(x, y), D > 4 is arbitrary, c and const depend on all constants a, b, n,
v0, ρ, T, D.

Remark. The condition (4.29) is required to apply a theorem from [8] . It puts some
restrictions on a possible behaviour of V (t) as t → ∞. Let us note that as follows from
(4.20) Λ(V (t)) = V ′(t)

V (t) . Any a more or less regular function V (t) of at least a polynomial
growth, for example, tα, exp(tα) etc. satisfies (4.29) . On the contrary, the function
V (t) = log t does not suit it. We do not lose much with such functions because on the
manifold under consideration the heat kernel decreases always at least as fast as 1/

√
t.

Proof. The idea behind the proof is, first, to obtain a heat kernel on-diagonal estimate
being valid for all t > 0, second, to deduce from it an isoperimetric inequality for all
bounded domains (including small ones which are not covered by (4.28) ) and, finally, to
apply the theorem [8] which ensures a heat kernel bound with a Gaussian term.

Indeed, (4.2) implies for t < ρ2 and for all x that

p(x, x, t) ≤ 1
C1tn/2

(4.31)

while for t > 2t0 = 2δρ2 we have by Theorem 4.2

p(x, x, t) ≤ 1
C2V (t/2)

(4.32)

where C1,2 depend on a, b, n, ρ, v0. Since we can take δ to be smaller than 1
2
, it follows

that for all x ∈ M, t > 0 either (4.31) or (4.32) is valid.
Let us define a new function Ṽ ∈ C1(0, +∞) so that

Ṽ (t) =
{

C1t
n/2, t ≤ 2t0

C2V (t/2), t ≥ ρ2
(4.33)

and in the interval (2t0, ρ2)

Ṽ (t) ≤ max
C1t

n/2, C2V (t/2)
 (4.34)
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Hence, for all t > 0 we have

p(x, x, t) ≤ 1

Ṽ (t)
(4.35)

For the further considerations we need that Ṽ ′(t)/Ṽ (t) is a decreasing function which
is certainly true for small arguments as well as for large ones (the latter follows from
V ′(t)/V (t) = Λ(V (t)) and from monotone decreasing of Λ). For intermediate values of t

that can be achieved by a proper choice of the function Ṽ (t) - so far it had only to satisfy
the inequality (4.34) . Moreover, we need also that this function Ṽ ′(t)/Ṽ (t) has at most
polynomial decay that follows from the condition (4.29) for large t, from a polynomial
form of Ṽ (t) for small t and for intermediate values of t can be again obtained by a choice
of Ṽ (t).

Let us define the function Λ̃(v) by the identity

Λ̃(Ṽ (t)) =
Ṽ ′(t)

Ṽ (t)
(4.36)

Obviously, for large v we have

Λ̃(v) =
1
2
Λ(C−1

2 v)

while for small v Λ(v) ∼ v−2/n. By Theorem 2.2 from [8] the on-diagonal bound (4.35)
implies under the conditions on Ṽ (t) specified above the following isoperimetric inequality
for any bounded region Ω

λ1(Ω) ≥ constΛ̃(µΩ) (4.37)

On the other hand, this isoperimetric inequality implies by Theorem 5.1 of [8] that for all
x, y ∈ M, t > 0 a Gaussian upper bound holds

p(x, y, t) ≤ const

Ṽ (ĉt)
exp

− r2

Dt

 (4.38)

provided the function tṼ ′(t)/Ṽ (t) is increasing for large t and bounded for small t which is
obviously valid in our case. We are left to replace in (4.38) the function Ṽ (t) by C2V (t/2)
for t > ρ2. �

As it is seen from the proof, the modified isoperimetric inequality (4.18) is not only
sufficient but necessary condition as well for the upper bound (4.19) to be valid (up to
constant multiples). Indeed, as soon as we have got the estimate (4.19) for large t we can
combine it with the estimate (4.2) for small t as it has been done in the course of the proof
and obtain the isoperimetric inequality (4.37) for all domains which acquires the desired
form for large regions.
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