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We consider upper estimates for the Green function of the heat equation on an arbitrary 
smooth connected Riemannian manifold H. We define the Green function G(t. Xi y) as the 
limit of the Green functions GD for the precompact domains OC: H as a • H. If the manifold 
H has boundary, then we will always assume the Neumann homogeneous condition to be fulfilled 
on the boundary and also consider only those 0 for which ao is transversed to aM. 

Let us denote the geodesic distance between two points x, ye H by Ix - yl and the 
geodesic ball of radius r with center at x by Brx, If N 1"s a- submanifold, then we will 
denote its volume, corresponding to the dimension, by 1Nl. 

THEOREM 1. Let the following isoperimetric inequality be fulfilled in a precompact 
geodesic ball Bpx: for each domain Q Q; Bpx that has smooth boundary aQ, transversal to 
'M. 

.... here n ~ dimM and K ) O. 

Then 

~here ~ is an arbitrary number greater than 1 and c depends on n and ~. 

( 1) 

Remarks. 1. We can consider the following arbitrary parabolic equation on the mani­
fold 11: 

p(.r) ~~ =div(a(t.z)'\"u) .. (3) 

.... here p(x) is a smooth positive function on M and "et, x) is a positive self-adjoint oper ­
ator Txl1 - TxM that depends smoothly on t and x. In particular, if p : 1 and a : id, then 
~e get the heat equation. 

The estimate (2) is also valid for the Green function of Eq. () with the only d!ffer­
ence that the parabolicity constant of (3) occurs in the exponent . 

2. In the case where H is a domain in Rn, Gushchin [1) has obtained an estimate, sim­
ilar to ( 2) . Ho~ever, Gushchin's proof is highly complicated, uses a stronger isoperimetric 
inequality, and does not give the exact exponent. 

). We obtain the following point estimate from the 'estimate (2) by standard arguments, 
using the semig roup property of the Green function: 

If the isoperimetric inequalities with the constant kl and k2 are fulfilled in the 
balls BptX and Bp2 X, respectively, then 

GI . ..... '11r,lrtl-~ I: . ( j.l' - VP) 
t.oL.V)..... Ill) exp - 4$t • 

.... here f( t) - min (tnl ~. PI n/2) min (tnl ~, pln/2); in particular. f( t) .. tn/2 for small t. 

(4) 

Proof of Theorem 1. It is sufficient to prove the estimate (2) for the Green function 
Gn of a precompact domain n =.. BpX. We use the following facts. 
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1. Integral Principle of HaxLmum . If u(t, y) is the solution of the ~qu.tion aut 
at - Au in the cylinder a M (0, +-), such that ulao • O. then the integral 

\' ul(t g)up Iz- ,1' dV 
jg' 26{t " 

is a nonincreasing function of t in the intervals (0, 5) and (5, +-). Here x ~Q. 5 > 0, 
p ~ 1 are arbitrary and fixed. See (2, 3J for the proof. 

2 . Moser' s Lemma. If u is a positive solution of the heat equa tion in the cylinder 
B/t X • {O. tl. and if the isoperimetric inequality (1) is fulfilled in t he ball Bltx • then 

Moser's proof [4] for the case of Rn uses only the isoperimetric inequality (or rather, 
a consequence of i t - the Sobolev inequality) and passes to our case (see also (3. 5. 6J ) . 

At first. we prove (2) fo r It < p. tet u . be the function from the condition of the 
integral pr inciple of maximum. Since It < p, we can apply Moser's lemma and get 

Observing that 

up IZ- fl
t 

>const>O 
l" 2'61 

fo r Ix - yl s It. T S t, and ~ > I, and using the integra l principle of maximum with respect 
to t, .... e get 

u1 (t,z) < c~~~ !Up ) UI(T.V)Up k: -;~:dIl< t!~: c ut(O,V)Up(- rz~:I')d!/, 
I ofiiu;:;r eX j Ja -

l'T 

(5) 

On the other hand , by t~e definition of the Green funct i on, 

u(t.z) . ~ Ca(t,.l;y)u«(}'V) dV, '. (6 ) 

The initial function u(O , y) can ~e chosen arbitrarily, 
,-

Then the integrals i n t he right-hand sides 

Le t us set u(a, y ) - Ga ( t, x; y). 

of (5) and (6) coincide and we get 

Hence 

(7) 

The estioate (2) fo r It l P follows from the fact that the integral (7) is a nonincreasing 
function of t . The theorem is proved. 

tet us observe that to obtain the point estimate of the Green function, we traditionally 
consider the integral 

(8 ) 

Although it can be estimated for It:< p by the Aronson-5errin method [7, 81. a var i ant 
of wh ich we have used i n the proof of Theorem I, great diff iculties arise for It: > p (see, 
e . g .• (11). We have easily avoided them by using an i ntegra l with exponential weight in 
place of (8), 

.-. -\. __ .. __ . . , 
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In spite of the simplicity of proof, majority of the known upper estimates of the Green 
function follow from Theorem 1. 

Here are some of them. 

1. If the isoperimetric inequality (1) is fulfilled everywhere in M, then it follows 
from (4) t hat 

In the case of Rn with a metric that is quasi isometric with the Euclidean metric we get 
the classical estimate of Aronson (7] and, in the case of a domain in Rn we get Gushchin's 
estimate (I] . 

2. Le t H be a complete manifold with the sectional curvature bounded on both -sides . 
As shown in {2]. for a fixed Pl the isoperimetric eonstant kl 2 C-le-Cr , where r· Ix - yl , 
and C > 0; whence we get 

G(t • .z; y)<~exp (er -';;") . 
(lbl) .~ 

This estimate is suitable for all t > 0, in distinetion from the estimate (2] 

C,T) ( ") C(t • .r;y),7"up --;rrr- forl=[O,TJ 

(the constant C(T) can grow exponentially with respect to T1. 
3. Let the numbers P and k be fixed for all x -= H. Then it follows from (4) that 

- '( ") G(t,z;y)<;~exp -V- . 
{lllll .. po 

Unde r more restrictive conditions on H, this 
(a report at the Landis-Kondrat'ev seminar, 1984) 
the exponent. 

estimate was obtained by S. A. 
without the exact value of the 

Holchanov 
constant i n 

I BRil'" 
4. If the isoperimetric inequ~lity (1) with the constant k= C R is fulfilled 

in t he ball BRK for each point x, then it follows from (4) that (for P - It) 

A similar estimate has been proved by A. K. Gushchin. V. P. Mikhailov. and Yu. A. Mik­
hailov (a report at the joint session of the I. G. Petrovskii seminar and the Moscow Math­
ematical Society. 198~) fo r a stronger isoperimetric inequality and an additional condition 
on the growth of the volume ISRxl. 

The author thanks E. M. Landis and S. A. Molchanov for useful discussions. The articles 
of Gushchin [1] and Cheng, Li. and Yau [21 have exerted great influence on the author. 
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