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Platonic polygonal complexes

A polygonal complex is a union of polygons such that the
intersection of any two polygons is either empty or a vertex of
each of them or an edge of each of them. A polygonal
complex carries a topology in which a set is open if and only if
its intersection with each polygon is open.

A flag in a polygonal complex is mutually incident triple,
consisting of a vertex, an edge, and a polygon.

A polygonal complex is platonic if it admits a flag-transitive
group of symmetries. Examples include the surface of each
platonic solid, and the regular tesselation of the plane by
squares.



Degenerate cases

Sometimes we allow more general complexes: consider the
torus built from a 2× 2-array of squares by identifying
opposite sides. This is platonic, but it isn’t quite a polygonal
complex because the intersections of pairs of squares are
wrong: some pairs intersect in two opposite edges; others
intersect in their four corners.



More degenerate cases

Even worse is the torus built from a single square; here the
boundary of the square has self-intersections although the
interior of the square maps injectively into the torus. This
torus has one vertex, two edges and one square, but we would
like it to have 8 flags.

For a complex like this torus, we modify the definition of a
flag: a flag is the image inside the complex of one of the 2d
triangles into which a d -gon is cut by its axes of symmetry.

Rank 3 incidence geometries with specified 0-, 1- and
2-residues are closely related to polygonal complexes: this
notion includes polygonal complexes and the first type of
degenerate complex but not the second.



Vertex links

We aim to classify simply connected platonic polygonal
complexes with specified vertex links. In a platonic complex all
polygons have the same number, d , of sides, and all vertices
have isomorphic link graphs. The links to which our methods
apply are the following simple graphs Γ:

Any Γ with the property that the natural map

Aut(Γ, v) → Symm(Nv)

is an isomorphism;

The graph On which is the 1-skeleton of the unit ball in the
1-norm on Rn, or equivalently the multipartite graph with n
parts of size 2.



Related work

Ballmann and Brin classified polygonal complexes satisfying a
stronger symmetry condition than our ‘platonic’, for any link
graph satisfying the first of our two conditions.

Świa̧tkowski classified platonic polygonal complexes in which
each edge is contained in precisely three polygons.



Curvature

If d (the number of sides of the polygons) is at least 6, then
every platonic d -gonal complex admits a CAT(0)-metric.

For d ≥ 6 all platonic polygonal complexes are infinite.

In contrast, one can show that for the complete graph K n as
vertex link, all (n, 4)-complexes are finite, and for fixed n, the
(n, 4)-complex with the largest diameter is the 2-skeleton of
the n-cube.

(n, 5)-complexes can be either finite or infinite.

To simplify things, let’s just consider the case when the link
graph is K n from now on. [I did not do this in the actual
lecture.]



Holonomy

For each n and d there is at least one (n, d)-complex, coming
from the Coxeter group whose Dynkin diagram is a line with n
nodes and one terminal edge labeled ‘d ’.

This one has trivial ‘holonomy’: the faces which share an edge
with any given face form n − 2 disjoint rings around the face.

In general, if you stand on a face, and walk around its
perimeter with your hand on a neighbouring face, your hand
might not come back to the same place after one full circle.
The permutation of the neighbours that arises this way is the
holonomy of the complex.



Invariants

Let G denote the full group of symmetries of an
(n, d)-complex.

The vertex stabilizer Gv can be identified with a group of
permutations of Nv , the set of n neighbours of v .

If e is the edge from v to w , the edge stabilizer Ge acts on the
set Nv − {w} and on the set {v , w}. Together these two
actions are faithful.

The holonomy going around the face containing the segment
(u, v , w) can be viewed as a permutation of Nv , which
preserves the subset {u, w}.



Classification

It turns out that these invariants classify (n, d)-complexes:

For d ≥ 6, there is a bijection between isomorphism types of
(n, d)-complexes and conjugacy classes of maximal triples of
the form:

(Gv , Ḡe , Φ).

Here, Gv is a 2-transitive subgroup of Sn;

Ḡe is an index 1 or 2 supergroup of the 1-point stabilizer in Gv ;

Φ is a permutation of n points having certain properties.



Properties of Φ

Let r be an element of the 2-set stabilizer in Gv that is not in
the 2-point stabilizer.

Let s be an element of Ḡe that is not in Gv (or let s = 1 if
there is no such element).

Φ is centralized by the 2-point stabilizer in Gv

Φ is inverted by r

Φ is inverted by s

(rs)dΦ−1 is an element of the 2-point stabilizer in Gv .



Corollaries

There is exactly one (n, d)-complex with trivial holonomy,
coming from the triple (Sn, Sn−1, (n − 1, n)d).

For ‘most’ values of n, there are no other (n, d)-complexes.

The classification of (n, d)-complexes depends only on the
residue of d modulo n!.

If d is odd, then one can find a sequence n = ni of values for
which there are arbitrarily many distinct (n, d)-complexes.



Small values of n

n = 4:
(S4, S3, (1, 2)) for any d .

n = 5:
(A5, S4, (1, 2, 3)) for any d
(AGL(1, 5), D8, (a, b, c)) for d not divisible by 3
(AGL(1, 5), GL(1, 5), (a, b)) for d odd

n = 6:
(PSL(2, 5), ASL(1, 5), (a, b)) for d odd
(PGL(2, 5), AGL(1, 5), (a, b)(c , d)) for d even

n = 7:
(AGL(1, 7), GL(1, 7), (a, b)(c , d)) for d odd
(AGL(1, 7), D12, (a, b, c)) for d not divisible by 3
(GL(3, 2), AGL(2, 2), (a, b)(c , d)) for d even

[Φ acts on {n − 1, n} as (n − 1, n)d . This factor is omitted in
the table.]



Example: Sn, An

The center of Sn−2 is trivial for n > 4. So the only complexes
with Gv = Sn are the untwisted ones (Sn, Sn−1, (n − 1, n)d)
and the Ballmann-Brin example (S4, S3, (3, 4)d(1, 2)), which
exist for all d .

The center of An−2 is trivial for n > 5. So the only extra
complex with Gv = An is (A5, S4, (1, 2, 3)(4, 5)), which exists
for all d .



Example: AGL(1, p)

Let Gv = AGL(1, p) acting on p points. The stabilizer of 0 is
GL(1, p). The 2-point stabilizer is trivial. Choices for Ḡe

correspond to integers m such that x 7→ xm is an involution on
the elements of Fp.

If p − 1 is divisible by 8 and by k distinct odd primes, then
there are 2k+2 choices for m.

For each such m, one obtains a triple (AGL(1, p), Ḡe , Φ). The
permutation Φ is the dth power of x 7→ 1− xm, and so this
gives a new (p, d)-complex for each d not dividing the order of
the map x 7→ 1− xm, viewed as a self-map of Fp − {0, 1}.



Example: PGL(2, p)

Let Gv = PGL(2, p) acting on p + 1 points. The stabilizer of
∞ is AGL(1, p). The stabilizer of the points 0,∞ is GL(1, p).
The map x 7→ 1/x is a choice for r , and s = Id is the only
choice. Hence Φ has to have order 2.

End up with just one nontrivial choice for Φ: the map x 7→ −x
which only works if d is even.

Gv = PSL(2, p) gives just one more case: if p = 5 and d is
odd, the map x 7→ 1/x will work for Φ. (This only works for
p = 5 because only then does x 7→ 1/x commute with the
action of the index two subgroup of GL(1, p).)



Some other examples

Taking Gv to be the Higman-Sims simple group acting on 176
points gives an example for any odd d .

Taking Gv to be the Conway group acting on 276 points
doesn’t give any examples.

The least n for which there are no examples with nontrivial
holonomy for any d is n = 21.


