Einführung in die Differentialgeometrie

Wintersemester 2007/08 Dr. A. Haydys

5. Übungsblatt

Aufgabe 1.

- (i) $Sei\ B(r) = \{x \in \mathbb{R}^k \mid ||x|| < r\}$ $ein\ k$ -dimensionaler Ball. $Zeige,\ dass\ B(r)$ $diffeomorph\ zu\ \mathbb{R}^k$ ist.
- (ii) Sei M eine k-dimensionale Mannigfaltigkeit. Zeige, dass für jeden Punkt $m \in M$ eine lokale Parametrisierung $\varphi \colon \mathbb{R}^k \to M$ existiert, die auf dem ganzen Raum \mathbb{R}^k definiert ist.

Aufgabe 2.

Seien $M \subset \mathbb{R}^n$ und $N \subset \mathbb{R}^l$ zwei Teilmannigfaltigkeiten. Zeige, dass $M \times N \subset \mathbb{R}^{n+l}$ auch eine Teilmannigfaltigkeit ist. Dabei gilt: $\dim(M \times N) = \dim M + \dim N$.

Aufgabe 3.

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine glatte Funktion und $a \in \mathbb{R}$ ein regulärer Wert von f.

- (i) Beweise, dass M_a : = $f^{-1}(a) \subset \mathbb{R}^n$ eine (n-1)-dimensionale Teilmannig-faltigkeit ist, d.h. $\forall m \in M_a$ finde eine lokale Parametrisierung $\varphi \colon \mathbb{R}^{n-1} \to W$, wobei $W \subset M_a$ eine Umgebung von m ist.
- (ii) Zeige, dass

$$T_m M_a = \left\{ (a_1, \dots, a_n) \in \mathbb{R}^n \mid \frac{\partial f}{\partial x_1}(m) \cdot a_1 + \dots + \frac{\partial f}{\partial x_n}(m) a_n = 0 \right\}.$$

(iii) Bestimme $T_EGL_n(\mathbb{R})$, $T_ESL_n(\mathbb{R})$ und $T_EO(n)$, wobei $E \in M_n(\mathbb{R})$ die Identitätsmatrix ist (die Teilmannigfaltigkeiten $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$ und O(n) sind im Übungsblatt 4, Aufgabe 2 definiert).

Aufgabe 4.

Zeige, dass die Späre S^2 sich mit zwei Karten überdecken lässt und finde die Koordinatenwechsel-Abbildung.