Zusatzaufgaben zur Linearen **Å**lgebra II

Sommersemester 2007 Dr. A. Haydys

10. April 2007

Aufgabe 1. Seien $A, B \in M_n(\mathbb{R}), z, w \in \mathbb{C}$. Entscheide, ob die folgende Abbildungen $f: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to \mathbb{R} \ (bzw. \ \mathbb{C} \times \mathbb{C} \to \mathbb{R})$

- $\begin{array}{ll} (i) & f(A,B) = Spur(AB); \\ (iii) & f(A,B) = \det(AB); \\ (v) & f(z,w) = \mathrm{Re}(z\bar{w}); \\ \end{array} \quad \begin{array}{ll} (ii) & f(A,B) = Spur(AB^t); \\ (iv) & f(z,w) = \mathrm{Re}(zw); \\ (vi) & f(z,w) = |zw|; \\ \end{array}$

Bilinearformen sind. Welche bestimmen euklidisches Skalarprodukt?

Aufgabe 2. Sei V ein endlichdimensionaler \mathbb{K} -Vektorraum, $b: V \times V \to \mathbb{K}$ eine symmetrische Bilinearform. Bezeichne

$$\operatorname{Kern} b = \{ v \in V \mid b(v, u) = 0 \ \forall u \in V \}.$$

Zeige: b ist genau dann regulär, wenn Kern b trivial ist.

Aufgabe 3. Sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer Raum. Beweise die Cauchy-Schwartz-Ungleichung

$$\langle u,v\rangle^2 \leq \langle u,u\rangle \langle v,v\rangle \qquad \text{ für alle } u,v \in V.$$

Aufgabe 4 (Normierter Raum). Sei $(V, \langle \cdot, \cdot \rangle)$ ein euklidischer Raum. Bezeichne $||v|| = \sqrt{\langle v, v \rangle}$. Zeige:

- $1^{\circ} \ \forall v \in V \ ||v|| \ge 0, \ und \ ||v|| = 0 \ \Leftrightarrow v = 0;$
- $2^{\circ} \|\lambda v\| = |\lambda| \|v\|, \quad \lambda \in \mathbb{R}$:
- $3^{\circ} \|v+w\| < \|v\| + \|w\|$ (Dreiecksungleichung).

Aufgabe 5. Seien die folgende Vektoren aus \mathbb{R}^4 gegeben:

$$v = \begin{pmatrix} 5 \\ 2 \\ -2 \\ 2 \end{pmatrix}, \quad w_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 0 \end{pmatrix}.$$

Bezeichne $W = \operatorname{span}(w_1, w_2)$. Finde die orthogonale Zerlegung von v bezüglich W, d.h. zwei Vektorn $v_1 \in W$, $v_2 \in W^{\perp}$, so dass gilt: $v = v_1 + v_2$.