Zur Erinnerung an die Lineare Algebra: Das Bilden von Darstellungsmatrizen bezüglich der \mathbb{R} -Basis von 1, i von \mathbb{C} liefert einen Ringisomorphismus

$$M: \operatorname{Hom}_{\mathbb{R}}(\mathbb{C}, \mathbb{C}) \longrightarrow \operatorname{Mat}(2, 2, \mathbb{R}).$$

Sei weiter $\overline{(-)}$: $\mathbb{C} \to \mathbb{C}$ die eindeutig bestimmte \mathbb{R} -lineare Abbildung mit $1 \mapsto 1$ und $i \mapsto -i$, die *komplexe Konjugation*. Sie entspricht also der Matrix

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in Mat(2, 2, \mathbb{R}).$$

Aufgabe 1 (5 Punkte)

Zeigen Sie:

- 1. Die Abbildung $\overline{(-)}$: $\mathbb{C} \to \mathbb{C}$ ist ein Körperhomomorphismus.
- 2. Die Abbildungen id \mathbb{C} und $\overline{(-)}$ sind die einzigen \mathbb{R} -linearen Körperhomomorphismen $\mathbb{C} \to \mathbb{C}$.
- 3. Es gelten

$$\overline{\overline{z}} = z$$
, $z \cdot \overline{z} = |z|^2$, $z + \overline{z} = 2 \cdot \text{Re}(z)$ und $z - \overline{z} = 2i \cdot \text{Im}(z)$

für alle $z \in \mathbb{C}$ und

$$\overline{z} = z$$
 genau dann, wenn $z \in \mathbb{R}$.

Aufgabe 2 (5 Punkte)

1. Zeigen Sie, dass die Abbildung

$$\iota: \mathbb{C} \longrightarrow \operatorname{Hom}_{\mathbb{R}}(\mathbb{C}, \mathbb{C}), \quad z \longmapsto (-\cdot z)$$

ein injektiver Ringhomomorphismus ist.

2 Bestimmen sie das Bild a + bi unter Komposition $M \circ \iota : \mathbb{C} \to Mat(2,2,\mathbb{R})$ für alle $a,b \in \mathbb{R}$.

Aufgabe 3 (5 Punkte)

Zeigen Sie:

- 1. Für jede natürlich Zahl $n \ge 1$ hat jede komplexe Zahl $z \ne 0$ genau n n-te Wurzeln.
- 2. Die n-ten Wurzeln von 1, die sogenannten Einheitswurzeln, bilden eine Untergruppe, genannt μ_n , von $\mathbb{C}^{\times} := \mathbb{C} \setminus \{0\}$ bezüglich der Multiplikation.
- 3. Konstruktieren Sie einen Gruppenisomorphismus $\mathbb{Z}/n \longrightarrow \mu_n$.

Hinweis: Polarkoordinaten! Jede komplexe Zahl z besitzt eine Darstellung als

$$z = r \cdot (\cos(\varphi) + \sin(\varphi) \cdot i)$$

mit $r, \varphi \in \mathbb{R}$ und $r \ge 0$.

Aufgabe 4 (5 Punkte)

Finden Sie explizite Formeln für die n-ten Einheitswurzeln für n = 1, 2, 3, 4, 6. Wie sieht es mit dem Fall n = 5 aus? Und wie für n = 7 oder n = 8?

Hinweis: Das Wort "explizit" meint hier Formeln, die keinen Sinus oder Kosinus oder ähnliches enthalten, sondern nur Summen, Differenzen, reelle Wurzeln aus reellen Zahlen usw. Und natürlich die komplexe Zahl *i*.