Ich erinnere an die Abbildung $\iota: \mathbb{C} \to \operatorname{Mat}(2,2,\mathbb{R})$, die ein $z \in \mathbb{C}$ auf die Darstellungsmatrix der Multiplikation mit z bezüglich der Basis 1, i schickt.

Aufgabe 1 (5 Punkte)

Zeigen Sie, dass das Bild von $\mathbb{C} \setminus \{0\}$ unter ι genau aus den winkelerhaltenden Matrizen mit positiver Determinante besteht.

Aufgabe 2 (5 Punkte)

Beweisen Sie die Kettenregel, also dass für $f: U \to \mathbb{C}$ und $g: V \to \mathbb{C}$, $U, V \subseteq \mathbb{C}$ offen, mit $f(U) \subseteq V$ und jedes $z \in U$ derart, dass f bei z und g bei f(z) komplex differenzierbar sind, auch $g \circ f$ bei z komplex differenzierbar ist mit

$$(g \circ f)'(z) = g'(f(z)) \cdot f'(z).$$

Eine holomorphe Abbildung $U \to \mathbb{C}$, $U \subseteq \mathbb{C}$ offen, heißt *biholomorph* auf ein offenes $V \subseteq \mathbb{C}$, falls f sich zu einer Bijektion $U \to V$ einschränkt und die Umkehrabbildung $V \to \mathbb{C}$ ebenfalls holomorph ist.

Aufgabe 3 (5 Punkte)

Zeigen Sie, dass

1. die Funktion

$$\mathbb{C}\setminus\{-i\}\longrightarrow\mathbb{C},\quad z\longmapsto \frac{z-i}{z+i}$$

eine biholomorphe Abbildung H → D liefert, und

2. finden Sie eine biholomorphe Abbildung $D \to \mathbb{C} \setminus \mathbb{R}_{< 0}$.

Hier bezeichnen

$$D = \{z \in \mathbb{C} \mid |z| < 1\}$$
 und $H = \{z \in \mathbb{C} \mid Im(z) > 0\}$

die Einheitskreisschreibe und obere Halbebene.

Aufgabe 4 (5 Punkte)

Zeigen Sie, dass für jedes $n \in \mathbb{N}, n \ge 1$, auf jedem Schlitzgebiet

$$S_{\nu} = \{ z \in \mathbb{C} \mid \nexists \lambda \ge 0 \text{ mit } z = \lambda \nu \}$$

für $0 \neq v \in \mathbb{C}$ eine komplex differenzierbare n-te Wurzelfunktion existiert, also eine Funktion $f: S_v \to \mathbb{C}$ mit $f(z)^n = z$ für alle $z \in S_v$.