Aufgabe 1 (5 Punkte)

Betrachten Sie die drei Quadriken $q_i: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch

$$q_1(x, y) = x^2 + xy - 1$$
, $q_2(x, y) = xy - 1$, $q_3(x, y) = x^2 + 2x + y$

und bestimmen sie deren Normalformen und die fundamentale Gestalt ihrer Nullstellenmengen (also ob diese eine Ellipse, Hyperbel etc. ist)

Aufgabe 2 (5 Punkte)

Sei V ein endlich dimensionaler komplex euklidischer Vektorraum und $\varphi: V \to V$ \mathbb{C} -linear. Zeigen Sie: φ ist normal genau dann, wenn selbstadjungierte $\eta, \zeta: V \to V$ existieren mit

$$\varphi = \eta + \zeta \cdot i$$
 und $\eta \circ \zeta = \zeta \circ \eta$.

Zeigen Sie auch, dass η und ζ dann eindeutig als

$$\eta = \frac{\varphi + \varphi^{\dagger}}{2} \quad \text{und} \quad \zeta = \frac{\varphi - \varphi^{\dagger}}{2i}$$

bestimmt sind.

Aufgabe 3 (5 Punkte)

Sei V ein endlich dimensionaler komplex euklidischer Vektorraum und $\varphi: V \to V$ \mathbb{C} -linear. Zeigen Sie, dass φ normal ist, genau dann, wenn $||\varphi(v)|| = ||\varphi^{\dagger}(v)||$ für alle $v \in V$ gilt.

Aufgabe 4 (5 Punkte)

Entscheiden Sie welche der beiden Matrizen

$$\begin{pmatrix} 1+2i & 1-i & 1-i \\ 1-i & 1+2i & 1-i \\ 1-i & 1-i & 1+2i \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} 1+2i & 1-i & 1+i \\ 1-i & 1+2i & 1-i \\ 1+i & 1-i & 1+2i \end{pmatrix}$$

in $Mat(3,3,\mathbb{C})$ eine unitäre Eigenbasis besitzt und bestimmen Sie eine solche.