Aufgabe 1 (5 Punkte)

Entscheiden Sie, ob die Matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 1 \\ 1 & 4 & 1 \end{pmatrix} \in Mat(3, 3, \mathbb{Z}/5)$$

diagonalisierbar ist.

Aufgabe 2 (5 Punkte)

Sei K ein Körper und $n \ge 1$ eine natürliche Zahl. Zeigen Sie, dass jede Matrix $A \in \operatorname{Mat}(n,n,K)$ mit $\operatorname{rk}(A) \le 1$ zu genau einer der Matrizen

mit $\lambda \in K$ ähnlich ist.

Aufgabe 3 (5 Punkte)

Finden Sie jeweils Beispiele von einem Körper K und polynomiellen Funktionen $f,g:K\to K$, so dass

- a) $f \cdot g = \text{const}_0$ ohne dass f = 0 oder g = 0,
- b) $f \cdot g = \text{const}_1$ ohne dass f oder g konstant sind.

Aufgabe 4 (5 Punkte)

Zeigen Sie, dass für jeden kommutativen Ring R und polynomielle Funktionen f, $g: R \to R$ mit Koeffizientenfolgen r beziehungweise s die Verkettung $f \circ g$ ebenfalls polynomiell ist mit Koeffizientensequenz

$$i \longmapsto \sum_{k \geq 0} r_k \cdot \sum_{\substack{n_1, \dots, n_k \geq 0 \\ \sum_{i=1}^k n_j = i}} \prod_{j=1}^k s_{n_j}.$$