Aufgabe 1 (5 Punkte)

Bestimmen Sie das Minimalpolynom von

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 \\ 4 & -4 & -3 & 0 \\ -13 & 13 & 13 & 4 \end{pmatrix} \in Mat(3,3,\mathbb{C})$$

und entscheiden Sie, ob A diagonalisierbar ist.

 $L\ddot{o}sungsskizze$. Die Matrix A ist kein Vielfaches der Identität. Damit muss min_A mindestens Grad 2 haben. Es gilt

$$A^2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 10 & -9 & -10 & -4 \\ -12 & 12 & 13 & 4 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

Versuchen wir also $A^2 + x \cdot A + y \mathbb{I}_4 = 0$ zu lösen. Die ersten Einträge der ersten Spalte liefern die Gleichungen

$$1 + x + y = 0$$
 und $10 + x = 0$

was x = -10 und y = 9 erzwingt. Das liefert uns den Kandidaten $T^2 - 10T + 9$ für das Minimalpolynom. Aber die Gleichung an der dritten Stelle der ersten Spalte lautet

$$-12 + 4x = 0$$

und das wird sicherlich nicht von x=-10 gelöst. Das Minimalpolynom hat also mindestens Grad 3. Wir berechnen

$$A^{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 13 & -12 & -13 & -7 \\ 0 & 0 & 1 & 4 \\ -39 & 39 & 39 & 12 \end{pmatrix}$$

Die ersten drei Einträge der ersten Spalte in $A^3 + xA^2 + yA + z\mathbb{I}_4 = 0$ liefern also das Gleichungssystem

$$1+1 \cdot x + 1 \cdot y + 1 \cdot z = 0$$
$$13+10 \cdot x + 1 \cdot y + 0 \cdot z = 0$$
$$0-12 \cdot x + 4 \cdot y + 0 \cdot z = 0$$

was man mit einer Runde Gauß-Algorithmus lösen kann:

$$\begin{pmatrix} 1 & 1 & 1 & | & -1 \\ 10 & 1 & 0 & | & -13 \\ -12 & 4 & 0 & | & 0 \end{pmatrix}^{1/4III} \begin{pmatrix} 1 & 1 & 1 & | & -1 \\ 10 & 1 & 0 & | & -13 \\ -3 & 1 & 0 & | & 0 \end{pmatrix}^{III-II} \begin{pmatrix} 1 & 1 & 1 & | & -1 \\ 10 & 1 & 0 & | & -13 \\ -13 & 0 & 0 & | & 13 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & | & -1 \\ 10 & 1 & 0 & | & -13 \\ 1 & 0 & 0 & | & -1 \end{pmatrix}^{I-III,II-10III} \begin{pmatrix} 0 & 1 & 1 & | & 0 \\ 0 & 1 & 0 & | & -3 \\ 1 & 0 & 0 & | & -1 \end{pmatrix}^{I-II} \begin{pmatrix} 0 & 0 & 1 & | & 3 \\ 0 & 1 & 0 & | & -3 \\ 1 & 0 & 0 & | & -1 \end{pmatrix}$$

Das liefert uns des Kandidaten T^3-T^2-3T+3 als Minimalpolynom. Und in der Tat sind die andere 13 Gleichungen

$$-39 + (-1) \cdot 0 + (-3) \cdot (-13) + 3 \cdot 0 = 0$$
$$0 + (-1) \cdot 0 + (-3) \cdot 0 + 3 \cdot 0 = 0$$
$$-12 + (-1) \cdot (-9) + (-3) \cdot 0 + 3 \cdot 1 = 0$$

$$0 + (-1) \cdot 12 + (-3) \cdot (-4) + 3 \cdot 0 = 0$$

$$39 + (-1) \cdot 0 + (-3) \cdot (13) + 3 \cdot 0 = 0$$

$$0 + (-1) \cdot 0 + (-3) \cdot 0 + 3 \cdot 0 = 0$$

$$-13 + (-1) \cdot (-10) + (-3) \cdot (-1) + 3 \cdot 0 = 0$$

$$1 + (-1) \cdot 13 + (-3) \cdot (-3) + 3 \cdot 1 = 0$$

$$39 + (-1) \cdot 0 + (-3) \cdot 13 + 3 \cdot 0 = 0$$

$$0 + (-1) \cdot 0 + (-3) \cdot 0 + 3 \cdot 0 = 0$$

$$-7 + (-1) \cdot (-4) + (-3) \cdot (-1) + 3 \cdot 0 = 0$$

$$4 + (-1) \cdot 4 + (-3) \cdot 0 + 3 \cdot 0 = 0$$

$$12 + (-1) \cdot 3 + (-3) \cdot 4 + 3 \cdot 1 = 0$$

sind erfüllt. Überraschend, nicht wahr? Es gilt jedenfalls folglich

$$\min_{A} = T^3 - T^2 - 3T + 3.$$

Es ist offenbar 1 eine Nullstelle hiervon, und eine Runde Polynomdivision liefert

$$\min_{A} = (T-1)(T^2-3) = (T-1)(T-\sqrt[2]{3})(T+\sqrt[2]{3})$$

Nach dem dritten Diagonalisierbarkeitkriterium ist A also diagonalisierbar. Es muss übrigends A ähnlich zu

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \sqrt[2]{3} & 0 \\
0 & 0 & 0 & -\sqrt[2]{3}
\end{pmatrix}$$

sein (nicht dass das gefragt war), da für das charakteristische Polynom χ_A etwa nach dem zweiten Diagonalisierbarkeitskriterium oder dem Satz von Cayley und Hamilton nur die drei Möglichkeiten

$$(T-1)^2(T-\sqrt[2]{3})(T+\sqrt[2]{3}), \quad (T-1)(T-\sqrt[2]{3})^2(T+\sqrt[2]{3}) \quad \text{oder} \quad (T-1)(T-\sqrt[2]{3})(T+\sqrt[2]{3})^2$$

übrig bleiben, aber die rechten beiden Polynome im Gegensatz zu χ_A keine ganzzahligen Koeffizienten haben (der 0-te Koeffizient ist $-3\sqrt[2]{3}$ bzw. $3\sqrt[2]{3}$).

Aufgabe 2 (5 Punkte)

Zeigen Sie: Eine Matrix $A \in \text{Mat}(n, n, K)$ ist invertierbar genau dann, wenn $\min_A(0) \neq 0$ und in diesem Falle gibt es ein Polynom $F \in K[T]$ mit $A^{-1} = F(A)$.

Lösungsskizze. Ist etwa $\min_A = \sum_{i=0}^n c_i \cdot T^i$, so bedeutet $\min_A(0) = 0$ gerade $c_0 = 0$ und allgemein haben wir

$$-c_0 \cdot \mathbb{I}_n = \sum_{i=1}^n c_i \cdot A^i = A \cdot \left(\sum_{i=0}^{n-1} c_{i+1} \cdot A^i\right)$$

Ist nun $c_0=0$ folgt $0=A\cdot(\sum_{i=0}^{n-1}c_{i+1}\cdot A^i)$. Wäre A invertierbar, so würde $\sum_{i=0}^{n-1}c_{i+1}\cdot A^i=0$ folgen. Dann wäre $\sum_{i=0}^{n-1}c_{i+1}\cdot T^i$ ein normiertes Polynom vom Grad n-1, welches A annihiliert. So etwas kann es aber nach Definition des Minimalpolynoms nicht geben. Also ist A nicht invertierbar.

Ist andererseits $c_0 \neq 0$ so erhalten wir

$$\mathbb{I}_n = A \cdot \left(-\sum_{i=0}^{n-1} \frac{c_{i+1}}{c_0} \cdot A^i \right)$$

also ist $A^{-1} = F(A)$ für

$$F = \sum_{i=0}^{n-1} \frac{-c_{i+1}}{c_0} \cdot T^i = \frac{-1}{\min_A(0)} \cdot \frac{\min_A - \min_A(0)}{T} \in K[T].$$

Aufgabe 3 (5 Punkte)

Es sei V ein endlich dimensionaler K-Vektorraum und $\varphi \colon V \to V$ K-linear und sei $\min_{\varphi} = \prod_{i=i}^k P_i^{n_i}$ die Primfaktorzerlegung des Minimalpolynoms von φ und $\varphi_i \colon \mathrm{Ker}(P_i^{n_i}(\varphi)) \to \mathrm{Ker}(P_i^{n_i}(\varphi))$ die Einschränkung von φ . Zeigen Sie:

- a) Sind $U, U' \subseteq V$ Untervektorräume mit $\operatorname{Im}_{\varphi}(U) \subseteq U$ und $\operatorname{Im}_{\varphi}(U') \subseteq U'$ so ist $\min_{\varphi_{|U'+U}}$ das kleinste gemeinsame Vielfache von $\min_{\varphi_{|U'}}$ und $\min_{\varphi_{|U'}}$.
- b) Es gilt $\min_{\varphi_i} = P_i^{n_i}$ für jedes $1 \le i \le k$
- c) Es gilt $\dim_K(\operatorname{Ker}(P^{n_i}(\varphi)) = \deg(P_i) \cdot \operatorname{m}_{\chi_{\omega}}(P_i)$ für jedes $1 \le i \le k$.

Für c) werden sie wohl den Satz von Cayley-Hamilton benutzen müssen.

Anmerkung: Insbesondere liefert c) also

$$\dim_K(\mathrm{Hpt}_{\varphi}(\lambda)) = \mathrm{m}_{\chi_{\varphi}}(T - \lambda)$$

und damit eine geometrische Interpretation der algebraischen Vielfachheiten der Eigenwerte im charakteristischen Polynom und wegen $\mathrm{Eig}_{\varphi}(\lambda) \subseteq \mathrm{Hpt}_{\varphi}(\lambda)$ auch einen zweiten Beweis, dass $\mathrm{m}_{\varphi}(\lambda) \le \mathrm{m}_{\chi_{\varphi}}(T-\lambda)$.

Lösungsskizze. a) Zunächst annihiliert $\min_{\varphi_{|U'+U}}$ sicherlich die Einschränkgungen von φ auf U und U' (es annihiliert ja sogar die ein Einschränkung auf U+U'), sodass

$$\min_{\varphi_{|U}} | \min_{\varphi_{|U'+U}} \quad \text{und} \quad \min_{\varphi_{|U'}} | \min_{\varphi_{|U'+U}}$$

nach der Diskussion unmittelbar nach der Definition des Minimalpolynoms. Es ist also $\min_{\varphi_{|U'+U}}$ ein gemeinsames Vielfaches von $\min_{\varphi_{|U'}}$ und $\min_{\varphi_{|U'}}$. Und gilt $F = H \cdot \min_{\varphi_{|U}}$ und $F = H' \cdot \min_{\varphi_{|U'}}$ für $H, H' \in K[T]$, so folgt sicherlich für $u \in U$

$$(F(\varphi_{|U+U'})_{|U})(u) = (F(\varphi_{|U}))(u) = (H(\varphi_{|U}) \circ \min_{\varphi_{|U}}(\varphi_{|U}))(u) = 0$$

und damit $F(\varphi_{|U+U'})_{|U}=0$. Analog folgt $F(\varphi_{|U+U'})_{|U'}=0$ und damit sicherlich $F(\varphi_{|U+U'})=0$ und damit $\min(\varphi_{|U+U'})|F$. Jedes gemeinsame Vielfache von $\min_{\varphi_{|U}}$ und $\min_{\varphi_{|U}}$ wird also von $\min(\varphi_{|U+U'})$ geteilt. Es hat also $\min(\varphi_{|U+U'})$ kleinsten Grad unter allen diesen gemeinsamen Vielfachen.

b) Sei $U_i = \text{Ker}(P_i^{n_i}(\varphi))$. Dann gilt tautologischerweise

$$P_i^{n_i}(\varphi_i) = P_i^{n_i}(\varphi_{|U_i}) = P_i^{n_i}(\varphi)_{|U_i} = 0$$

und damit $\min_{\varphi_i} | P_i^{n_i}$, sodass $\min_{\varphi_i} = P_i^{m_i}$ für irgendwelche $m_i \le n_i$ aufgrund der Irreduzibilität von P_i . Aber da die $P_i^{n_i}$ alle teilerfremd zueinander sind (sodass ihr kleinstes gemeinsames Vielfaches ihr Produkt ist!) folgt dann aus a), dass

$$\min_{\varphi} = \prod_{i=1}^{k} P_i^{m_i}$$

und damit $m_i = n_i$ nach Eindeutigkeit der Primfaktorzerlegung.

c) Nach dem Satz von Cayley-Hamilton gilt nach b) $\chi_{\varphi_i} = P_i^{l_i}$ für irgendwelche $l_i \ge n_i$ und damit

$$\dim(U_i) = \deg(\chi_{\varphi_i}) = \deg(P_i) \cdot l_i.$$

Nach der letzten Aufgabe des fünften Zettels gilt aber weiter $\chi_{\varphi} = \prod_{i=1}^k \chi_{\varphi_i} = \prod_{i=1}^k P_i^{l_i}$ und damit $l_i = m_{\chi_{\varphi}}(P_i)$, was zu zeigen war.

Aufgabe 4 (5 Punkte)

Sei $A \in \operatorname{Mat}(n, n, K)$ eine Matrix mit $A^2 = \mathbb{I}_n$. Zeigen Sie: Ist char $(K) \neq 2$, so ist A ähnlich zu einer Matrix der Form

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & -1 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & -1 & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & -1 \end{pmatrix} \in \operatorname{Mat}(n, n, K).$$

Wie sieht es aus, wenn K Charakteristik 2 hat?

Lösungsskizze. Es gilt per Annahme F(A) = 0 für $F = T^2 - 1 = (T+1)(T-1)$ und damit $\min_A | T^2 - 1$. Also gibt es die Möglichkeiten

$$T-1$$
, $T+1$, und T^2-1

für \min_A . In jedem Falle zerfällt für $\operatorname{char}(K) \neq 2$ das Polynome \min_A vollständig in Linearfaktoren und hat nur einfache Nullstellen. Es ist also nach dem dritten Kriterium A diagonalisierbar mit Eigenwerte 1 oder -1 oder beides, in jedem Falle von der Form in der Aufgabe.

Für K = 2 muss das nicht gelten: Die Matrix

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in Mat(2, 2, K)$$

erfüllt $A^2 = \mathbb{I}_2$, ist aber kein Vielfaches von \mathbb{I}_2 , sodass $\min_A = T^2 + 1 = (T+1)^2$ gelten muss. Damit ist A aber nach dem dritten Diagonalisierbarkeitskriterium nicht diagonalisierbar, weil es eine doppelte Nullstelle hat.

Das ganze kann man natürlich auch ohne Benutzung des Minimalpolynoms beweisen: Für $v \in K^n$ gilt

$$x = \frac{x - A \cdot x}{2} + \frac{x - A \cdot x}{2}$$

und es gilt

$$A \cdot \frac{x - A \cdot x}{2} = \frac{A \cdot x - x}{2} = -\frac{x - A \cdot x}{2}$$
 und $A \cdot \frac{x + A \cdot x}{2} = \frac{A \cdot x + x}{2} = \frac{x + A \cdot x}{2}$

sodass $\frac{x-A\cdot x}{2}\in \mathrm{Eig}_{-1}(A)$ und $\frac{x+A\cdot x}{2}\in \mathrm{Eig}_{1}(A)$ und damit $K^{n}=\mathrm{Eig}_{1}(A)+\mathrm{Eig}_{-1}(A)$ und damit ist A nach der ersten Diagonalisierbarkeitskriterium diagonalisierbar.