
Analysis I + II

Literature

� These lecture notes!

� Various books in the library with the word \Analysis" in the title. In par-
ticular the books by F�orster.

Some standard logical symbols commonly used in mathemat-
ics

� \a 2 X" means, X is a set, and a is an element of X.

� \;" is the empty set, which contains no elements.

� \X [ Y " is the union of the sets X and Y . It is the set which contains the
elements of X and also the elements of Y .

� \X \Y " is the intersection. It is the set consisting of the elements which are
in both X and Y .

� \X nY " is the set di�erence. It is the set containing the elements of X which
are not in Y .

� \X � Y " means that X is a subset of Y . All the elements of X are also
elements of Y . Note that many people use the notation X � Y to expressly
say that equality X = Y is also possible. But I will assume that when writing
X � Y , the case X = Y is also possible.

� \8" means \for all", as for example: \8x, x � 0". That means: \for all x,
we have the condition x � 0".

� \9" means \there exists".

� \P ) Q" means that P and Q are logical statements, and if P is true, then
Q must also be true. (If P is false, then the combined statement \P ) Q"
is true, regardless of whether or not Q is true.)

� \P , Q" means that both P ) Q and also Q ) P are true. That is, P
and Q are logically equivalent; they are simply di�erent ways of saying the
same thing. (Although often it is not immediately clear that this is the case.
Thus we need to think about why it is true, constructing a proof.)
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Chapter 1

Numbers, Arithmetic, Basic
Concepts of Mathematics

In some branches of mathematics | for example geometry, or graph theory |
numbers are only used as a tool for describing things which are not really nu-
merical in themselves. On the other hand, one can say that the subject of these
lectures | Analysis | is purely and simply the study of numbers. Thus it is pure
mathematics, rather than applied mathematics.

But what are numbers?
Surely everybody will agree that the numbers we use to count things: 1,2,3,. . . ,

are the numbers which are \naturally" given to us by nature. So we use the
symbol N to denote the set of all such \natural" numbers. When thinking about
physical objects which we count using the natural numbers, it is useful to have the
standard arithmetical operations: addition, subtraction, and multiplication. The
other standard operation, namely division, is often not so natural. For example
if an odd number of people are in a lecture, and there are two tutorial groups,
then it is impossible that they be of equal size (assuming that all students are
active participants!). But it is equally true that subtraction has its limitations.
For example if there are 50 students in a given lecture, then it is not possible to
have 51 of those students deciding that it is not worthwile to continue attending
the lecture, and thus withdrawing.

Despite these sensible objections, some hundreds of years ago people decided to
expand our system of natural numbers with various kinds of \imaginary", or non-
natural numbers. For example the number zero, and the negative whole numbers:
-1,-2,. . . , were considered to be sensible things to think about. Modern mathe-
maticians use the symbol Z to denote the set of both positive and negative whole
numbers, together with 0. One says that Z is the set of (real) integers. Then, of
course, in order to allow division, we also have the set of rational numbers Q.

To summarize then, we have the \usual" systems of numbers:

� The natural numbers N = f1; 2; 3; 4; : : : g
� The whole numbers, or integers Z = f: : : ;�3;�2;�1; 0; 1; 2; 3; : : : g
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� The rational numbers Q = fa
b
: a 2 Z; b 2 Ng

But often other systems of numbers are used as well, perhaps without even
realizing that they are di�erent from those dealt with above. For example if we
look at a clock, we see that there are 60 minutes in an hour.1 Thus if a lecture
starts at 15 minutes, and the lecture lasts for 90 minutes, then it is obvious that
there are not enough minutes on the clock to describe the situation completely.
The clock counts up the minutes to 60, but then when reaching 60 it suddenly
jumps back to the number 0. Therefore we see that as far as the clock is concerned,
we have the equation

15 + 90 = 45:

In mathematics we write

45 � 15 + 90 mod 60:

Perhaps the reason for using the strange symbol \�", which has three horizontal
lines, rather than the more usual \=", is to avoid having all those overly smart
people constantly telling us that the equation 15 + 90 = 45 is \wrong".2

More generally, let n 2 N, and x, y 2 Z be given. Then the expression

x � y mod n

is de�ned to mean that the number x� y is divisible by n. One writes nj(x� y).
That is to say, there exists some number m 2 Z with m � n = (x� y).

For example we have that (15+90)�45 is 1 times 60, so that 15+90 � 45 mod 60
is true. Also 15 � 90 � 45 mod 60, since 60j(15 � 90) � 45. On the other hand
15 + 90 6� 46 mod 60, since 60 - (15 + 90)� 46.

If we do arithmetic according to the 60 minutes of the clock, then it can be said
that we are doing \modular arithmetic", modulo 60. One writes Z=60Z to denote
this system of arithmetic with just 60 di�erent numbers. It is usual to consider
these 60 numbers to be the whole numbers from 0 to 59. In fact for any n 2 N,
we can consider the system Z=nZ. Then, using the same convention, we could say
that Z=nZ = f0; 1; 2; : : : ; n� 1g.

1This convention is due to the ancient Babylonians, whose number system was based on the
number 60.

2Being even more overly smart, we could say that the expression 15+90 = 105 is also \wrong",
owing to the fact that the expression on the left-hand side, namely \15 + 90", is the description
of two numbers and an arithmetical operation, whereas \105" is a pure number. And these are
two di�erent things. On the other hand, if | as in the usual convention | we agree to say that
\15+90" is the number given by the result of the operation, then the expression is true. But then
equally well, we could say that \15 + 90 mod 60" is also an arithmetical operation, and in this
case it would make sense to say that the expression 45 = 15 + 90 mod 60 is true. But then the
expression 15 + 90 = 45 mod 60 would be false.
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1.1 The system Z=nZ for n = 60

We have seen that in the system of modular arithmetic modulo 60, we have the
equation

15 + 90 = 45:

Another way to think about this is to say that in the usual integer arithmetic of
Z we have

15 + 90 = 105 = 1� 60 + 45:

In fact, given any integer x, and any natural number n, then we have two unique
integers a and b, such that

x = an+ b;

where 0 � b < n. The number a is the result of the whole number division of x
by n, and b is the remainder which results from this whole number division. The
operation of �nding the remainder when x is divided by n is denoted \x mod n".
In particular then, we have the equation

45 = 105 mod 60:

Arithmetic generally has four operations: addition, subtraction, multiplication,
and division. So let us say we have two numbers, x and y in our system Z=nZ.
That is, we can assume that 0 � x; y < n. Then in Z=nZ we can simply de�ne
the sum of x and y to be

(x+ y) mod n:

Similarly, the di�erence is
(x� y) mod n;

and the product is
(x� y) mod n:

All of this is easy, since x� y and x� y are always integers. However, what about
division? The number x

y
is only occasionally an integer. And what do we do when

y = 0?
The solution to this problem is to think of division as being the problem of

solving a simple equation. Thus the number x
y
is really the solution z of the

equation
z � y = x:

For example, what is 1
7
in our modular arithmetic modulo 60? That is, the problem

is to �nd some number z with 0 � z < 60, such that

1 = (z � 7) mod 60:

The answer? It is z = 43, since 43� 7 = 301, and 1 = 301 mod 60.
On the other hand, what is 1

2
modulo 60? That is, let z be such that

1 = (z � 2) mod 60:
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What is z? The answer is that there is no answer! That is to say, the number 1
2

does not exist in the modular arithmetic modulo 60. The reason for this is that
for all z we always have z � 2 being an even number, yet since 60 is also an even
number, it must be that the equation 1 = y mod 60 can only have a solution when
y is an odd number.

1.2 Equivalence relations, equivalence classes

Definition. Let M be a set. The set of all pairs of elements of M is denoted
by M �M . Thus

M �M = f(a; b) : a; b 2Mg:
This is called the Cartesian product of M with itself.3 An equivalence relation
\�" on M is a subset of M�M . Given two elements a, b 2M , we write a � b
to denote that the pair (a; b) is in the subset. For an equivalence relation, we
must have:

1. a � a, for all a 2M (re
ectivity)

2. if a � b, then we also have b � a (symmetry)

3. if a � b and b � c the we also have a � c (transitivity)

If a � b, then we say that \a is equivalent to b".

Examples

1. Given any set M , the most trivial possible equivalence relation is simply
equality. Namely a � b only when a = b.

2. In Z, the set of integers, let us say that for two integers a and b, we have
a � b if and only if a � b is an even number. Then this is an equivalence
relation on Z.

3. Again in Z, this time take some natural number n 2 N. Now we de�ne a to
be equivalent to b if and only if there exists some further number x 2 Z with

a� b = xn:

That is, the di�erence a�b is divisible by n. And again, this is an equivalence
relation on Z.
(Obviously, the example 2 is just a special case of example 3. In fact, it is
the equivalence relation which results when we take n = 2.)

3More generally, if X and Y are two di�erent sets, then the Cartesian product X �Y is the set
of all pairs (x; y), with x 2 X and y 2 Y .
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Definition. Given a set M with an equivalence relation �, then we have M
being split up into equivalence classes. For each a 2 M , the equivalence class
containing a is the set of all elements of M which are equivalent to a. The
equivalence class containing a is usually denoted by [a]. Therefore

[a] = fx 2M : x � ag:

Note that if we have two equivalence classes [a] and [b] such that their inter-
section is not empty

[a] \ [b] 6= ;;
then we must have [a] = [b]. To see this, assume that x 2 [a]\ [b]. Then x � a and
x � b. But x � a means that a � x, since the equivalence relation is symmetric.
Then a � b since it is transitive. If then y 2 [b], then we have y � b. But also
b � a, and so using the transitivity of the equivalence relation again, we have
y � a. Thus y 2 [a]. So this shows that [b] is contained in [a]. i.e. [b] � [a]. A
similar argument shows that also [a] � [b]. Therefore we have shown that:

Theorem 1.1. Given an equivalence relation � on a set M , then the equiva-
lence relation splits M into a set of disjoint equivalence classes.

1.3 The system Z=nZ revisited

In fact, rather than thinking about Z=nZ as the set of numbers f0; : : : ; n� 1g, it
is more usual to say that Z=nZ is the set of equivalence classes with respect to the
equivalence relation given by x � y if and only if x� y is divisible by n. Thus

Z=nZ = f[0]; : : : ; [n� 1]g:

As we have seen, it is more usual to write

x � y mod n;

rather than x � y when describing this equivalence relation. One says that \x is
congruent to y modulo n". It is easy to see that if two numbers x, y 2 Z are given,
then we have x � y mod n if, and only if, the remainder when x is divided by n
is equal to the remainder when y is divided by n. That is, thinking of \mod" as
an operation in the arithmetic of Z, then we have x � y mod n if, and only if,

x mod n = y mod n:

Addition and multiplication in Z=nZ are given by the simple rules

[x] + [y] = [x+ y]

and
[x]� [y] = [x� y];

5



for any two numbers x, y 2 Z.
But we must be careful! It is necessary to check that these operations are

well-de�ned. What does this mean?
Let us say that we have two di�erent numbers x and x0 in Z which are equivalent

to one another. That is, we have x � x0 mod n. But then, since both x and x0 are
in the same equivalance class, we must have

[x] = [x0]:

Similarly, if we have two numbers y and y0 with y � y0 mod n, then we have

[y] = [y0]:

To say that the addition operation, as we have de�ned it above, is well-de�ned,
means that we must show that for arbitrary such x, x0, y, and y0, we always have

[x] + [y] = [x+ y] = [x0 + y0] = [x0] + [y0]:

But this is clear, since

[x] = [x0] ) x � x0 mod n ) nj(x� x0)

and
[y] = [y0] ) y � y0 mod n ) nj(y � y0):

Therefore

nj(x� x0) + (y � y0) ) nj(x+ y)� (x0 + y0)

) (x+ y) � (x0 + y0) mod n

) [x+ y] = [x0 + y0]:

It is now a simple exercise to show that multiplication is also well-de�ned in
the arithmetic of Z=nZ.

But we are still left with the problem of division in Z=nZ. That is, given a,
b 2 Z, does there exist an x 2 Z such that ax � b mod n?

1.4 The greatest common divisor function

To solve this equation, we �rst need to think about greatest common divisors.

Definition. Let x, y 2 Z. Then we say that x is a divisor of y if there exists
z 2 Z with y = xz. Given two numbers a, b 2 Z, the number d is a common
divisor of a and b if d is a divisor of both a and b. The greatest common divisor
of a and b, is denoted by gcd(a; b).
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Obviously, every integer is a divisor of the number zero. Furthermore, if x
divides y, then obviously x also divides �y. Thus we can restrict our thinking to
the integers which are either zero, or else positive. Given two integers a and b,
not both zero, then obviously the number 1 is a common divisor. Therefore we
always have gcd(a; b) � 1.

Theorem 1.2. Given any two integers a and b, not both zero, then there exist
two further integers x and y, such that

xa+ yb = gcd(a; b):

Proof. If one of the integers is zero, say a = 0, then obviously gcd(a; b) = b (we
assume here that b is positive). So we have4

gcd(a; b) = b = 0 � a+ 1 � b;

and the theorem is true in this case.
Let us therefore assume that a and b are both positive integers. If the theorem

were to be false, then it must be false for some pair of integers a, b 2 N. Assume
that a � b, and that this pair is the smallest possible counterexample to the
theorem, in the sense that the theorem is true for all pairs of integers a0 � b0, with
b0 < b.

But we can immediately rule out the possibility that a = b, since in that case
we would have gcd(a; b) = b, and again we would have the solution

gcd(a; b) = b = 0 � a+ 1 � b:

Thus the pair a, b would not be a counterexample to the theorem. Therefore we
must have a < b

So let c = b�a. Then c 2 N and the theorem must be true for the smaller pair
c, a. Thus there exist x0, y0 2 Z with

gcd(a; c) = x0a+ y0c = x0a+ y0(b� a) = (x0 � y0)a+ y0b:

But what is gcd(a; c) = gcd(a; b� a)? Obviously, any common divisor of a and b
is also a common divisor of a and b� a. Also any common divisor of a and b� a
must be a common divisor of both a and b. Therefore gcd(a; c) = gcd(a; b), and
so we have

gcd(a; b) = (x0 � y0)a+ y0b;

which contradicts the assumption that the pair a, b is a counterexample to the
theorem. It follows that there can be no counterexample, and the theorem must
always be true.

4From now on I will use the more usual notation a � b, or even just ab, for multiplication, rather
than the notation a� b, which I have been using up till now.
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Solving the equation ax � b mod n

So let a, b 2 Z be given, together with a natural number n 2 N. The question is,
does there exist some x 2 Z with ax � b mod n? That is to say, does n divide the
number ax� b? Or put another way, does there exist some y 2 Z with

ax� b = yn ?

That is the same as
b = xa+ (�y)n:

Therefore, we see that the equation ax � b mod n can only have a solution if every
common divisor of a and n is also a divisor of b. That is, we must have gcd(a; n)
being a divisor of b.

On the other hand, assume that gcd(a; n) does, in fact, divide b. Say b =
z � gcd(a; n). Then, according to the previous theorem, there must exist u, v 2 Z
with

gcd(a; n) = ua+ vn:

Therefore, we have

b = z � gcd(a; n) = z(ua+ vn) = (zu)a+ (zv)n = xa+ (�y)n;
when we take x = zu and y = �zv.

To summarize:

Theorem 1.3. The equation ax � b mod n has a solution if and only if
gcd(a; n) is a divisor of b. If b = z � gcd(a; n) then a solution is x = zu,
where gcd(a; n) = ua+ vn:

1.5 The system Z=pZ, when p is a prime number

The prime numbers are 2; 3; 5; 7; 11; 13; 17; 19; 23; : : : . A prime number p 2 N is
such that it has no divisors in N other than itself and 1. Or put another way, for
all 1 � a < p we have gcd(a; p) = 1. Therefore, according to the previous theorem,
for all [a] 2 Z=pZ with [a] 6= [0] there must exist some [b] 2 Z=pZ with [a][b] = [1].
That is to say,

ab � 1 mod p

so that in the modular arithmetic modulo p, we have that 1
a
is b. Therefore it is

always possible to divide numbers by a. In fact, dividing by a is simply the same
as multiplying by b.

On the other hand, if n is not a prime number, then there exists some a with
1 < a < n and gcd(a; n) > 1. In this case, according to the theorem, there can be
no solution to the equation

ax � 1 mod n:

Therefore it is impossible to divide numbers by a in modular arithmetic modulo
n when n is not a prime number and gcd(a; n) > 1.

8



1.6 Mathematical induction

An example

The formula
nX
k=1

1

k(k + 1)
=

n

n+ 1

is true for all n 2 N. How do we know that this is true??

Well, �rst of all, we know that it is true in the simple case n = 1. For here we
just have

1X
k=1

1

k(k + 1)
=

1

1(1 + 1)
=

1

1 + 1
:

But then we know it's true for n = 2 as well, since

2X
k=1

1

k(k + 1)
=

1

2(2 + 1)
+

1X
k=1

1

k(k + 1)

=
1

2(2 + 1)
+

1

1 + 1

=
2

2 + 1
:

Note that the second equation follows, since we already know that the formula is
true for the case n = 1.

More generally, assume that we know that the formula is true for the case n,
for some particular n 2 N. Then, exactly as before, we can write

n+1X
k=1

1

k(k + 1)
=

1

(n+ 1)((n+ 1) + 1)
+

nX
k=1

1

k(k + 1)

=
1

(n+ 1)((n+ 1) + 1)
+

n

n+ 1

=
(n+ 1)

(n+ 1) + 1
:

Therefore, the proof that the formula is true progresses stepwise through the
numbers 1; 2; 3; : : : , and so we conclude that the formula is true for all n 2 N.

This is the principle of mathematical induction (or vollst�andige Induktion
in German). Let P (n) be some statement which depends on the number n, for
arbitrary n 2 N. Then P (n) is true for all n 2 N if:

� First of all, the special case P (1) can be proved, and

� then it can be proved that if P (n) is true for some arbitrarily given n 2 N,
then also P (n+ 1) must be true.

We will be using mathematical induction very often here in these lectures! It
is one of the most basic principles of mathematics.
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1.7 The binomial theorem: using mathematical

induction

The binomial theorem is concerned with what happens when the expression (a+b)n

is multiplied out. For example, we have

1 : a+ b
2 : a2 + 2a+ b2

3 : a3 + 3a2b+ 3ab2 + b3

4 : a4 + 4a3b+ 6a2b2 + 4ab3 + b4

5 : a5 + 5a4b+ 10a3b2 + 10a2b3 + 5ab4 + b5

etc:

Gradually we see a pattern emerging, namely Pascal's triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

and so on. . .
Writing out the expression (a+b)n as a sum, one uses the binomial coe�cients,�

n
k

�
. Thus one writes

(a+ b)n =
nX
k=0

 
n

k

!
an�kbk:

So looking at Pascal's triangle, we see that
�
2
0

�
= 1,

�
7
4

�
= 35, and so forth. The

binomial theorem is the formula that says that for all n 2 N and 0 � k � n, we
have  

n

k

!
=

n!

k!(n� k)! :

But for the moment, let us simply de�ne the number
�
n
k

�
to be n!

k!(n�k)!
, and then

see if these are truly the binomial coe�cients.
The expression n! is called \n-factorial". For n 2 N it is de�ned to be

n! = n � (n� 1) � (n� 2) � � � � � 3 � 2 � 1:

That is, just the product of all the numbers from 1 up to n. In the special case
that n = 0, we de�ne

0! = 1:
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So let's see how this works out in the case
�
7
4

�
. We have

 
7

4

!
=

7!

4!(7� 4)!
=

7 � 6 � 5 � 4 � 3 � 2 � 1
(4 � 3 � 2 � 1) � (3 � 2 � 1) = 35;

in agreement with Pascal's triangle.

But how do we prove it in general?

Theorem 1.4. As in Pascal's triangle, we have 
n+ 1

k

!
=

 
n

k � 1

!
+

 
n

k

!
;

that is
(n+ 1)!

k!((n+ 1)� k)! =
n!

(k � 1)!(n� (k � 1))!
+

n!

k!(n� k)! ;

for all n 2 N and 1 � k � n.

Proof.

n!

(k � 1)!(n� (k � 1))!
+

n!

k!(n� k)! =
k � n!

k!(n� k + 1))!
+

(n� k + 1) � n!
k!(n� k + 1)!

=
k � n!

k!(n� k + 1))!
+

(n+ 1) � n!� k � n!
k!(n� k + 1)!

=
(n+ 1) � n!

k!(n� k + 1))!

=
(n+ 1)!

k!((n+ 1)� k)!

Theorem 1.5. For all n 2 N and 0 � k < n, we have

(a+ b)n =
nX
k=0

 
n

k

!
an�kbk;

with  
n

k

!
=

n!

k!(n� k)! :

Proof. Induction on n. For the case n = 1, the theorem is trivially true. Therefore
we assume that the theorem is true in the case n, and so our task is to prove that
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under this assumption, the theorem must also be true in the case n+1. We have:

(a+ b)n+1 = (a+ b) � (a+ b)n

= (a+ b)

 
nX
k=0

 
n

k

!
an�kbk

!

= a �
 

nX
k=0

 
n

k

!
an�kbk

!
+ b �

 
nX
k=0

 
n

k

!
an�kbk

!

=
nX
k=0

 
n

k

!
an�k+1bk +

nX
k=0

 
n

k

!
an�kbk+1

=
nX
k=0

 
n

k

!
an�k+1bk +

n+1X
k=1

 
n

k � 1

!
an�(k�1)bk

=

 
n

0

!
an+1 +

nX
k=1

  
n

k

!
+

 
n

k � 1

!!
a(n+1)�kbk +

 
n

n

!
bn+1

=
n+1X
k=0

 
n+ 1

k

!
a(n+1)�kbk

Here we have:

� the �rst equation is trivial,

� the second equation is the inductive hypothesis,

� the third and fourth equations are trivial,

� the �fth equation involves substituting k � 1 for k in the second term,

� the sixth equation is trivial, and

� the seventh equation uses the theorem which we have just proved and, also
the fact that

�
n
0

�
=
�
n
n

�
= 1, for all n 2 N.

1.8 The basic structures of algebra: groups, fields

Now that we have gotten the binomial theorem out of the way, let us return to
thinking about numbers. We have N � Z � Q. The set of natural numbers N has
addition and multiplication, but not subtraction and division.5 The set of integers
Z has addition, subtraction and multiplication, but division fails. However, in the

5Subtraction fails in N: for example 1� 2 = �1, but �1 is not an element of N. Also division
obviously fails: for example 1=2 is also not an element of N.
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set of rational numbers Q, all of these four basic operations can be carried out.
(Of course, we exclude the special number zero when thinking about division.)

Furthermore, in the arithmetical system Z=nZ we have addition, subtraction
and multiplication. If (and only if) n is a prime number, then we also have division.

Arithmetical systems in which these four operations can be sensibly carried
out are called �elds. (In German, K�orper.) In order to de�ne the concept of a
�eld, it is best to start by de�ning what we mean in mathematics when we speak
of a group. But in order to do that, we should �rst say what is meant when we
speak of a function, or mapping.

Definition. Let X and Y be non-empty sets. A function f : X ! Y is a rule
which assigns to each element x 2 X a unique element f(x) 2 Y .

Examples

� For example, f : N! N with f(n) = n2 is a function.

� But f(n) = �n is not a function from N to N, since �n 62 N, for all n 2 N.

� On the other hand, f(n) = �n is a function from N to Z. That is, f : N! Z.

Definition. A group is a set G, together with a mapping f : G � G ! G
satisfying the following three conditions:

� f((f(a; b); c)) = f((a; f(b; c))), for all a, b and c in G.

� There exists an element e 2 G with f((e; g)) = f((g; e)) = g, for all g 2 G.
� For all g 2 G there exists a element, usually denoted by g�1 2 G, such
that f((g�1; g)) = f((g; g�1)) = e.

Actually, this mapping f : G�G! G is usually thought of as being an abstract
kind of \multiplication". Therefore, we usually write ab or a � b, rather than
this cumbersome f((a; b)). With this notation, the group axioms become

� (ab)c = a(bc), for all a, b and c in G (The Associative Law).

� There exists a special element (the \unit element") e 2 G, with eg =
ge = g, for all g 2 G (The existence of the unit, or \neutral" element).

� For all g 2 G there exists an inverse g�1 2 G with g�1g = gg�1 = e. (The
existence of inverses).

If, in addition to this, the Commutative Law holds:

� ab = ba, for all a and b in G,

then the group G is called an \Abelian group".
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Remark. When thinking about numbers, you might think that it is entirely
natural that all groups are Abelian groups. However this is certainly not true!
Many commonly used groups are de�nitely not Abelian. For example the
matrix groups | which a computer uses to calculate 3-dimensional graphics
| are non-Abelian groups.

But now we can de�ne the idea of a �eld.

Definition. A �eld is a set F , together with two operations, which are called
\addition" and \multiplication". They are mappings

+ : F � F ! F

� : F � F ! F

satisfying the following conditions (or \axioms").

� F is an Abelian group with respect to addition. The neutral element of
F under addition is called \zero", denoted by the symbol 0. For each
element a 2 F , its inverse under addition is denoted by �a. Thus, for
each a, we have a+ (�a) = 0.

� Let Fnf0g denote the set of elements of F which are not the zero element.
That is, we remove 0 from F . Then F n f0g is an Abelian group with
respect to multiplication. The neutral element of multiplication is called
\one", denoted by the symbol 1. For each a 2 F with a 6= 0, the inverse
is denoted by a�1. Thus a � a�1 = 1.

� The \Distributive Law" holds: For all a, b and c in F we have both

a(b+ c) = ab+ ac; and

(a+ b)c = ac+ bc:

Examples

1. The set of rational numbers Q, together with the usual addition and multi-
plication operations, is a �eld.

2. The set of integers Z is not a �eld, since Z n f0g is not a group with respect
to multiplication.

3. The sets Z=nZ, together with the addition and multiplication operations we
have described, are �elds if n is a prime number. However, if n is not prime,
then Z=nZ is not a �eld.

Remark. A set R, having an addition and a multiplication operation which
satis�es all the axioms for a �eld except that the elements of R n f0g do not
necessarily have inverses under multiplication, is called a \ring". Thus Z=nZ,
when n is not a prime is a ring, but not a �eld. Another standard example
of a ring is the set of all polynomials Q[x] in one variable x, with coe�cients
in the �eld Q. Finally of course, Z itself is a ring.
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Some simple consequences of the de�nition are the following.

Theorem 1.6. Let F be a �eld. Then the following statements are true for
all a and b in F .

1. Both �a and a�1 (for a 6= 0) are unique.

2. a � 0 = 0 � a = 0,

3. a � (�b) = �(a � b) = (�a) � b,
4. �(�a) = a,

5. (a�1)�1 = a, if a 6= 0,

6. (�1) � a = �a,
7. (�a)(�b) = ab,

8. ab = 0) a = 0 or b = 0.

Proof. This involves a few simple exercises in �ddling with the de�nition.

1. If a+ a0 = 0 and a+ a00 = 0 then a0 + (a+ a00) = a0 + 0. Therefore

a00 = 0 + a00 = (a0 + a) + a00 = a0 + (a+ a00) = a0 + 0 = a0:

The fact that a�1 is unique is proved similarly.

2. Since 0 + 0 = 0, we have a(0 + 0) = a � 0 + a � 0 = a � 0. Then
0 = a � 0 + (�(a � 0))

= (a � 0 + a � 0) + (�(a � 0))
= a � 0 + (a � 0 + (�(a � 0)))
= a � 0 + 0

= a � 0:
The fact that 0 � a = 0 is proved similarly.

3. 0 = a � 0 = a(b+ (�b)) = ab+ a(�b). Therefore we must have �ab = a(�b).
The other cases are similar.

4. �a+(�(�a)) = 0. But also �a+a = 0, and from (1) we know that additive
inverses are unique. Therefore a = �(�a).

5. (a�1)�1 = a is similar.

6. We have

0 = 0 � a = a(1 + (�1)) = 1 � a+ (�1) � a = a+ (�1)a:
Therefore (�1)a = �a.
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7.
0 = 0 � (�1) = (1 + (�1))(�1) = �1 + (�1)(�1):

Therefore
1 + 0 = 1 = 1 + (�1) + (�1)(�1) = (�1)(�1):

Then

(�a)(�b) = ((�1)a)((�1)b) = ((�1)(�1))ab = 1 � ab = ab:

8. If a 6= 0 then

b = 1 � b = (a�1a)b = a�1(ab) = a�1 � 0 = 0:

1.9 How numbers are represented

Before proceeding with the usual de�nitions of analysis, it might be useful to have
a quick look at a di�erent way of representing numbers.

In the usual decimal notation we have for example:

2009 = 2 � 103 + 0 � 102 + 0 � 101 + 9 � 100;

or
22

7
= 3:142 � � � = 3 � 100 + 1 � 10�1 + 4 � 10�2 + 2 � 10�3 + � � � ;

or p
2 = 1:414 � � � = 1 � 100 + 4 � 10�1 + 1 � 10�2 + 4 � 10�3 + � � � :

Continued fractions (Kettenbruchzahlen)

Here we have again simply the integer 2009 as its own continued fraction ex-
pression. In fact each integer n 2 Z is simply itself in the continued fraction
representation.

But then we have
22

7
= 3 +

1

7
;

and p
2 = 1 +

1

2 +
1

2 +
1

2 + � � �

16



In fact, in general, using the Euclidean algorithm, we see that any rational number
can be represented as a �nite continued fraction

a0 +
1

a1 +
1

a2 +
1

a3 + � � � 1
ak

where a0 2 Z and ai 2 N, for i = 1; : : : ; k. On the other hand, if a number is
irrational then its continued fraction representation must be in�nite.
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Chapter 2

Analysis 1

2.1 Injections, Surjections, Bijections

The subject of mathematical analysis has much to do with functions, or map-
pings.1 We have already seen that a function is a rule f , which assigns to each
element x 2 X of a set X, a unique element f(x) 2 Y of a set Y . One writes

f : X ! Y:

Given such a function f from X to Y , one says that X is the domain of f .
Furthermore, the set ff(x) : x 2 Xg � Y is the range of f . One writes f(X) for
the range of X. Thus,

f(X) = ff(x) : x 2 Xg:
Given any element y 2 Y , one writes f�1(y) to denote the subset of X consisting
of all the elements which are mapped onto y. That is,

f�1(y) = fx 2 X : f(x) = yg:
Of course, if f is not a surjection, then f�1(y) must be the empty set, for some
of the elements of Y .

Definition. Let X and Y be sets, and let f : X ! Y be a function. Then we
say that:

� f is an injection if, given any two di�erent elements x1, x2 2 X with
x1 6= x2, we must have f(x1) 6= f(x2). Or put another way, the only way
we can have f(x1) = f(x2) is when x1 = x2.

� f is a surjection if, for all y 2 Y , there exists some x 2 X with f(x) = y.
That is, if f : X ! Y is a surjection, then we must have f(X) = Y .

� f is a bijection if it is both an injection, and also a surjection.

1That is, \Funktionen" and \Abbildungen" in German. The words function and mapping both
mean the same thing in mathematics. Perhaps some people would say that a mapping f : X ! Y
is a function if the set Y is some sort of system of \numbers", otherwise it is a mapping. But we
certainly needn't make this distinction here.
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Examples

Consider the following functions f : Z! Z:

� f(a) = 2a, for all a 2 Z. This is an injection, but it is not a surjection since
only even numbers are of the form 2a, for a 2 Z. For example, the number
�3 is in Z, yet there exists no integer a with 2a = �3.

� f(a) =
8<:a=2; if a is even,

(a+ 1)=2; if a is odd,

is a surjection, but it is not an injection. For example, f(0) = 0 = f(�1).
� f(a) = �a, for all a 2 Z, is a bijection.

Theorem 2.1. Let f : X ! Y be an injection. Then there exists a surjection
g : Y ! X. Conversely, if there exists a surjection f : X ! Y , then there
exists an injection g : Y ! X.

Proof. Assume that there exists an injection f : X ! Y . A surjection g : Y ! X
can be constructed in the following way. First choose some particular element
x0 2 X. Then a surjection g : Y ! X is given by the rule

g(y) =

8<:x; where f(x) = y if y 2 f(X);

x0; if y 62 f(X);

for all y 2 Y .
Going the other way, assume that there exists a surjection f : X ! Y . Then

an injection g : Y ! X can be constructed in the following way. Since f is
a surjection, we know that the set f�1(y) � X is not empty, for each y 2 Y .
Therefore, for each y 2 Y , choose some particular element xy 2 f�1(y). Then the
injection g : Y ! X is given by the rule g(y) = xy, for all y 2 Y .

Remark: This procedure of choosing elements from a collection of sets is only
valid if we use the \axiom of choice" in the theory of sets. This is certainly the
usual kind of mathematics which almost all mathematicians pursue. However it
is perfectly possible to develop an alternative theory of mathematics in which the
axiom of choice is not true. In this alternative mathematics, this proof would not
be valid.

Furthermore, we have the following theorem about bijections.

Theorem 2.2 (Schr�oder-Bernstein). Let X and Y be sets. Assume that there
exists an injection f : X ! Y , and also there exists a surjection g : X ! Y .
Then there exists a bijection h : X ! Y .

Proof. An exercise.
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2.2 Constructing the set of real numbers R

2.2.1 Dedekind cuts

The simplest method for de�ning real numbers is to use the technique of Dedekind
cuts.

Definition. A Dedekind cut of the rational numbers Q is a pair of non-empty
subsets A, B � Q, such that if a 2 A and x < a, then x 2 A as well.
Furthermore, if b 2 B and y > b, then y 2 B as well. Also A [ B = Q and
A \B = ;. Finally, we require that the subset A has no greatest element.

Then the set of real numbers R can be de�ned to be the set of Dedekind cuts of
the rational numbers. One may think of each real number as the \point" between
the \upper" set B and the \lower" set A. If the given real number happens to be
a rational number, then it is the smallest number in the set B.

For example, it is well known that the number
p
2 is irrational.2

Theorem 2.3. There exists no rational number a
b
with

�
a
b

�2
= 2.

Proof. Assume to the contrary that there does indeed exist such a rational number
a
b
. Perhaps there exist many such rational square roots of 2. If so, choose the

smallest one, a
b
, in the sense that if a0

b0
is also a square root of 2, then we must

have b � b0.
Now, since a

b
is a square root of 2, we must have

�
a

b

�2

= 2:

Therefore,
a2 = 2b2:

But this can only be true if a is an even number. So let us write a = 2c, with
c 2 Z. Then we have

a2 = 4c2 = 2b2:

Or
b2 = 2c2:

Therefore b is also an even number, say b = 2d. But in this case we must have
c
d
= a

b
, so c

d
is also a square root of 2. But this is impossible, since d < b and we

have assumed that a
b
was a smallest possible square root of 2.

Given any rational number q 2 Q, we have q2 being also a rational number.
So we can make a Dedekind cut by taking the pair (A;B), with B being all the
positive rational numbers b with b2 > 2. Then A is the rest of the rational numbers.

2We have seen that this must be true, owing to the fact that the continued fraction represen-
tation of

p
2 is in�nite.
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That is, A is the set of rational numbers less than
p
2, and B is the set of rational

numbers greater than
p
2. So this Dedekind cut de�nes the real number

p
2.

Of course the rational numbers themselves can also be represented in terms
of Dedekind cuts. For example the number 2 is simply the Dedekind cut (A;B),
with A = fq 2 Q : q < 2g and B = fq 2 Q : q � 2g. So here, the number 2 is the
smallest number in the set B.

The reason Dedekind brought in this de�nition in the 19th century is that with
it, it is possible to de�ne the real numbers without, having to use the axiom of
choice.

2.2.2 Decimal expansions

Written as a decimal number, we have

1

3
= 0:333333333333333 : : : :

Also p
2 = 1:414213562373095 : : : :

Another well-known irrational number is

� = 3:141592653589793 : : : :

As we know, a rational number has a repeating decimal expansion. On the other
hand, irrational numbers do not repeat when written out as decimal expansions.

One might say that, for example, the number

0:999999999999999999 : : :

is the same as the number

1:000000000000000000 : : : ;

which, of course, is really just the number one. But if we exclude decimal ex-
pansions which end in a never-ending sequence of 9s, then the decimal expansion
for each real number is unique. Therefore, an alternative way to de�ne the real
numbers is to say that they are nothing more than the set of all possible decimal
expansions which do not end with an in�nite sequence of 9s.

2.2.3 Convergent sequences

But the most usual method of de�ning the real numbers is as equivalence classes
of convergent sequences. We need the idea of convergent sequences in any case,
so let us take the set of real numbers R as given (using either of the previous
de�nitions), and consider the theory of sequences, either in Q or in R itself.3

3Again | and this is the last time I will mention this fact | the theory of convergent sequences
requires the axiom of choice.
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2.3 Convergent sequences

A sequence is simply an in�nite list of numbers. For example, the sequence

1; 2; 3; 4; 5; 6; 7; : : :

is certainly easy to think about, but obviously it doesn't converge. The numbers
in the sequence get larger and larger, increasing beyond all possible �nite bounds.
Another example is the sequence

1;�1; 1;�1; 1;�1; 1;�1; : : :

This sequence remains bounded, just jumping back and forth between the two
numbers 1 and �1. But it never converges to anything; it always keeps jumping
back and forth.

An example of a convergent sequence is

1;
1

2
;
1

3
;
1

4
;
1

5
;
1

6
;
1

7
; : : :

This sequence obviously converges down to zero.
In general, when thinking about abstract sequences of numbers, we write

a1; a2; a3; : : :

So a1 is the �rst number in the sequence. a2 is the second number, and so forth.
A shorter notation, for representing the whole sequence is

(an)n2N:

But when thinking about the concept of \convergence", it is clear that we also
need an idea of the distance between two numbers.

Definition. Given a real (or rational) number x, the absolute value of x is
given by

jxj =
8<:x; if x � 0;

�x; if x < 0:

So one can think of jxj as being either zero, if x is zero, otherwise jxj is the
distance of x from zero. More generally, given two numbers a and b, the distance
between them is ja� bj.

It is a simple matter to verify that the triangle inequality always holds. That
is, for all x, y 2 R, we always have

jx+ yj � jxj+ jyj:
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Definition. The sequence (an)n2N converges to the number a if, for all positive
numbers � > 0, there exists some su�ciently large natural number N� 2 N,
such that ja� anj < �, for all n � N�. In this case, we write

lim
n!1

an = a:

If the sequence does not converge, then one says that it diverges.

This de�nition is rather abstract. But, for example, it doesn't really tell us
what is happening with the simple sequence 1;�1; 1;�1; 1;�1; : : : Although this
sequence does not converge | according to our de�nition | still, in a way it
\really" converges to the two di�erent points 1 and �1.

2.3.1 Bounded sets

Given the set of all real numbers R, let us consider some arbitrarily given subset
A � R.

Definition. We will say that A � R is bounded above, if there exists some
K 2 R, such that a � K, for all a 2 A. The number K is called an upper
bound for A. Similarly, A is bounded below if there exists some L 2 R with
a � L, for all a 2 A. Then L is a lower bound for A. If A is bounded both
above and below, then we say that A is bounded. In this case, clearly there
exists some M � 0 with jaj �M , for all a 2 A.

If A 6= ;, and if A is bounded above, then the smallest upper bound is called
the least upper bound, written lub(A). Similarly, glb(A) is the greatest lower
bound. The least upper bound is also called the Supremum, that is, sup(A).
The greatest lower bound is called the In�mum, written inf(A).

Examples

� Let [0; 1] = fx 2 R : 0 � x � 1g. Then [0; 1] is bounded, and the least upper
bound is 1; the greatest lower bound is 0.

� This time, take [0; 1) = fx 2 R : 0 � x < 1g. This is of course also bounded,
and the least upper bound is again 1, even though 1 is not contained in the
subset [0; 1).

� N � R is bounded below (with greatest lower bound 1), but it is not bounded
above.

� Z � R is not bounded below, and also not bounded above.
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2.3.2 Subsequences

Definition. Let i : N ! N be a mapping such that for all n, m 2 N with
m < n, we have i(m) < i(n). Then given a sequence (an)n2N, a subsequence,
with respect to the mapping i, is the sequence (ai(n))n2N.

For example, let's look again at the sequence ((�1)n)n2N. Then take the map-
ping i : N! N with i(n) = 2n. In this case, we have the subsequence

((�1)i(n))n2N = ((�1)2n)n2N =
��
(�1)2

�n�
n2N

= (1n)n2N = (1)n2N:

But this is just the trivially convergent constant sequence of 1s, which obviously
converges to 1.

So we see that in this example, the sequence really consists of two convergent
subsequences, one of them converges to the number 1, and the other converges to
the number �1.

On the other hand, the sequence (n)n2N has no convergent subsequences. All
subsequences simply diverge to \in�nity". The problem is that it just keeps get-
ting bigger, increasing beyond all bounds. To avoid this, we have the following
de�nition.

Definition. The sequence (an)n2N is called bounded if the set fan : n 2 Ag is
bounded in R. (Similarly, we say the sequence is bounded above, or below, if
those conditions apply to this set.)

We also have an interesting re�nement of this de�nition.

Definition. Let (an)n2N be a sequence. Then

lim
n!1

sup an = lim
n!1

supfam : m � ng;

assuming this limit exists. Similarly

lim
n!1

inf an = lim
n!1

inffam : m � ng;

if it exists. One says \limit superior" and \limit inferior".

Theorem 2.4 (Bolzano-Weierstra�). Let (an)n2N be a bounded sequence in R.
Then there exists a convergent subsequence, converging to a number in R.

Proof. Since the sequence is bounded, there must exist two real numbers x < y,
such that

x � an � y;

for all n 2 N. Let z = (x + y)=2. That is, z is the point half way between x
and y. So now the original interval from x to y has been split into two equal
subintervals, namely the lower one from x to z, and the upper one from z to y.
Since our sequence contains in�nitely many elements, it must be that there are
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in�nitely many in one of these two subintervals. For example, let's say there are
in�nitely many elements of the sequence in the lower subinterval. In this case, we
set x1 = x and y1 = z. If only �nitely many elements of the sequence are in the
lower subinterval, then there must be in�nitely many in the upper subinterval. In
this case, we set x1 = z and y1 = y.

Then the interval from x1 to y1 is divided in half as before, and a subinterval
x2 to y2 is chosen which contains in�nitely many elements of the sequence. And
so on. By this method, we construct two new sequences, (xn)n2N and (yn)n2N, and
we have

x � x1 � x2 � x3 � x4 � � � � � y4 � y3 � y2 � y1 � y

We have

yn � xn = y � x
2n

:

Therefore the two sequences approach each other more and more nearly as n gets
larger.

Now take (A;B) to be the following Dedekind cut of the rational numbers Q.

B = fq 2 Q : q � xn;8ng:

Then set A = Q n B. Let us say that a 2 R is the real number which is given by
the Dedekind cut (A;B). Then clearly there is a subsequence (ai(n))n2N with

lim
n!1

ai(n) = a:

Definition. The sequence (an)n2N is called monotonically increasing if an �
an+1, for all n; it is monotonically decreasing if an � an+1, for all n; �nally,
one simply says that it is monotonic if it is either monotonically increasing,
or monotonically decreasing.

It is a simple exercise to show that theorem 2.4 implies that the following
theorem is also true.

Theorem 2.5. Every bounded, monotonic sequence in R converges.

Conversely, we have that

Theorem 2.6. Every convergent sequence is bounded.

Proof. This is really rather obvious. Let the sequence (an)n2N converge to the
point a 2 R. Choose � = 1. Then there exists some N(1) 2 N with ja � anj < 1,
for all n � N(1). We have the numbers ja1j; ja2j; : : : ; jaN(1)j. Let M be either the
largest of these numbers, or else jaj + 1, whichever is larger. Then we must have
janj � M , for all n 2 N. Thus the sequence is bounded below by �M , and above
by M .
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2.3.3 Cauchy sequences

Definition. A sequence (an)n2N is called a Cauchy sequence if for all � > 0,
there exists a number N(�) 2 N such that jan � amj < �, for all m, n � N(�).

It is again an exercise to show that:

Theorem 2.7. Every convergent sequence is a Cauchy sequence.

The alternative, and more usual way to de�ne the real numbers is as equivalence
classes of Cauchy sequences of rational numbers. The equivalence relation is the
following.

Let (an)n2N and (bn)n2N be two Cauchy sequences, with an and bn 2 Q, for all
n. Then we will say that the they are equivalent to one another if | and only if |
for all � > 0, there exists some N(�) 2 N, with jan� bnj < �, for all n � N(�). The
fact that this is, in fact, an equivalence relation is also left as an exercise. Then R
is de�ned to be the set of equivalence classes in the set of Cauchy sequences in Q.

But not all Cauchy sequences converge!!

If we always think about the set of real numbers R, then of course every Cauchy
sequence converges. As we have seen, this is simply a way of de�ning the set of
real numbers!

But if we think about other sets which are not simply all of R, then it is de�-
nitely not true that all Cauchy sequences converge. For example, let us consider
the set

(0; 1] = fx 2 R : 0 < x � 1g:
Within this set, the sequence (1=n)n2N is a Cauchy sequence. Considered in R, it
converges to the number 0. But considered within (0; 1] alone, it doesn't converge,
since 0 is not an element of (0; 1].

Similarly, if we consider the set of rational numbers Q, then there are many
Cauchy sequences which converge to irrational numbers, when considered in R.
Yet those irrational numbers do not belong to Q. Therefore they do not converge
in Q.

On the other hand, all Cauchy sequences do converge in R.

To begin with, it is a simple matter to show that all Cauchy sequences are bounded.
Therefore limn!N sup an exists. Let B be the set of all rational numbers greater
than or equal to limn!N sup an, and let A = Q n B. Then the pair (A;B) is a
Dedekind cut of Q, representing the real number a 2 R say, and we must have the
Cauchy sequence (an)n2N converging to a.

To see this, let � > 0 be chosen. The problem is to show that there exists some
N(�) 2 N, such that ja� anj < �, for all n � N(�).

Let us start by choosing some rational number q 2 A with ja� qj < �=6. Then
there must exist some other rational number p 2 B, with p > a and jp� qj < �=3.
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Looking at the de�nition of limn!N sup an, we see that there exists some N1 2 N
such that an < p, for all n � N1.

Since the sequence (an)n2N is a Cauchy sequence, there exists a number N2 2 N
such that for all n,m � N2, we have jan�amj < �=3. Furthermore, looking again at
the de�nition of limn!N sup an, we see that there exist arbitrarily large numbers
m, with q < am. Then setting N(�) = maxfN1; N2g, and taking m � N with
q < am, we have for all n � N(�)

ja� anj = j(a� q) + (q � am) + (am � an)j
� ja� qj+ jq � amj+ jam � anj
<

�

3
+
�

3
+
�

3
= �:

Therefore we have the theorem:

Theorem 2.8. All Cauchy sequences converge in R.

2.3.4 Sums, products, and quotients of convergent sequences

Let (an)n2N and (bn)n2N be two convergent sequences in R with

lim
n!1

an = a and lim
n!1

bn = b:

Then the sequence (an + bn)n2N also converges, and

lim
n!1

(an + bn) = a+ b:

To see this, let � > 0 be given, and let Na(�); Nb(�) 2 N with ja�anj < �=2 and jb�
bmj < �=2, for all n � Na(�) andm � Nb(�). Then take N(�) = maxfNa(�); Nb(�)g,
that is, the larger of the two numbers. For any k � N(�) we then have

j(a+ b)� (ak � bk)j = j(a� ak) + (b� bk)j
� j(a� ak)j+ j(b� bk)j
<

�

2
+
�

2
= �:

Here, we have used the triangle inequality for the absolute value function. Obvi-
ously, the di�erence of two sequences also converges to the di�erence of their limit
points.

As for multiplication, again take the convergent sequences (an)n2N and (bn)n2N
as before. We have limn!1 an = a and limn!1 bn = b. Now let Ma > 0 be such
that jaj and janj � Ma, for all n 2 N. Also let Mb > 0 be such that jbj and
jbmj �Mb, for all m 2 N. (These numbers must exist, since convergent sequences
are bounded.) Then, given � > 0, choose Na(�) such that for all n � Na(�) we
have

ja� anj < �

2Mb
:
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Similarly, Nb(�) is chosen such that for all m � Nb(�) we have

jb� bnj < �

2Ma
:

Then take N(�) = maxfNa(�); Nb(�)g. So again, For any k � N(�) we have

ja � b� ak � bkj = ja � b� a � bk + a � bk � akbkj
� ja � b� a � bkj+ ja � bk � akbkj
= jajjb� bkj+ jbkjja� akj
< jaj �

2Ma
+ jbkj �

2Mb

� �

2
+
�

2
= �:

Finally, assume that (an)n2N is a convergent sequence such that the limit a
is not zero. Then the sequence (1=an)n2N (at most �nitely many elements of the
sequence can be zero, and so we disregard these zero elements) converges to 1=a.
In order to see this, let M > 0 be a lower bound of the sequence of absolute values
(janj)n2N, together with jaj. Given � > 0, this time choose N(�) 2 N to be so large
that for all n � N(�), we have ja� anj < �M2. Then����1a � 1

an

���� =
����a� anaan

����
=

1

jaanj ja� anj

<
�M2

jajjanj � �:

Then, in order to divide a convergent sequence by a convergent sequence which
does not converge to zero, we �rst take the convergent sequence of the inverses,
then multiply with that.

In summary, we have

Theorem 2.9. Convergent series can be added, subtracted, multiplied and
divided (as long as they do not converge to zero), to obtain new convergent
sequences which converge to the sum, di�erence, product, and quotient of the
limits of the given sequences.

2.4 Convergent series

Given a sequence (an)n2N, we can imagine trying to �nd the sum of all the numbers
in the sequence. Thus writing

1X
n=1

an;
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we have the series given by the sequence (an)n2N. Obviously, many series do not
converge. For example the series

1X
n=1

n = 1 + 2 + 3 + 4 + 5 + 6 + 7 + � � �

does not converge. Also the series
1X
n=1

(�1)n = �1 + 1� 1 + 1� 1 + 1� 1 + � � �

does not converge. Why is this?

Definition. Given the series
P1
n=1 an, the n-th partial sum (for each n 2 N)

is the �nite sum

Sn =
nX
k=1

an:

The series
P1
n=1 an converges, if the sequence of its partial sums (Sn)n2N con-

verges. If the series does not converge, then one says that it diverges.

So what are the partial sums for the series
P1
n=1(�1)n? Clearly, we have

Sn =

8<:�1; if n is odd,

0; if n is even.

Therefore, the partial sums jump back and forth between -1 and 0, never converg-
ing.

A delicate case: the series
P1
n=1 1=n

But what about the series
1X
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+ � � �

Obviously the partial sums get larger and larger: Sn+1 > Sn, for all n 2 N. But
the growth of the sequence of partial sums keeps slowing down. So one might
think that this series could converge. But does it?

In fact, it actually diverges. We can see this by looking at the sum split into
blocks of ever increasing length.

1X
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4| {z }
>1=2

+
1

5
+

1

6
+

1

7
+

1

8| {z }
>1=2

+ � � �

That is to say, for each n 2 N, we have
2nX

k=2n�1+1

1

k
>

2nX
k=2n�1+1

1

2n
=

1

2
;

so we have an in�nite series of blocks, each greater than 1=2. Therefore it must
diverge.
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The geometric series

This is the series
1X
n=0

an;

for various possible numbers a 2 R. (Note that it is sometimes convenient to
take the sum from 0 to in�nity, rather than from 1 to in�nity. Also note that by
convention, we always de�ne a0 = 1, even in the case that a = 0.)

Theorem 2.10. For all real numbers a with jaj < 1, the sequence (an)n2N
converges to zero. For jaj � 1, the sequence diverges.

Proof. Without loss of generality, we may assume that a > 0. If a < 1 then the
sequence (an)n2N is a strictly decreasing sequence. That is, an+1 < an, for all
n 2 N. This follows, since an+1 = a � an, and 0 < a < 1.

So the sequence (an)n2N gets smaller and smaller, as n gets bigger. And of
course, it starts with a, so it is con�ned to the interval between 0 and a. We can
de�ne a Dedekind cut (A;B) of Q as follows.

A� = fx 2 Q : x < an; 8n 2 Ng;
and B� = Q nA� (the set di�erence). Finally, if A� has a greatest element, say x0,
then take A = A� n fx0g and B = B� [ fx0g. Otherwise simply take A = A� and
B = B�. The pair (A;B) is then a Dedekind cut.

So let � be the real number represented by this Dedekind cut. Then we must
have 0 � � < 1. If � = 0 then the sequence converges to zero, and we are �nished.
Otherwise, we must have � > 0. Now since 0 < a < 1, it must be that the number
1=a is greater than 1. Thus

� < � � 1
a
:

But from the de�nition of �, there must be some m 2 N with

� < am < � � 1
a
:

However, then we have

am+1 = a � am < a � � � 1
a
= �;

and this contradicts the de�nition of �. Therefore the idea that we might have
� > 0 simply leads to a contradiction. The only conclusion is that � = 0, and so
the sequence converges.

If a > 1, then, using what we have just proved, we see that the sequence�
1
an

�
n2N

converges to zero. Clearly, this implies that (an)n2N diverges (or, in this

case, \converges to in�nity").

Theorem 2.11. The geometric series converges for jaj < 1, and it diverges
for jaj � 1.
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Proof. We have

(a� 1)

 
nX
k=0

ak
!
= an+1 � 1:

Therefore, if a 6= 1, we have

nX
k=0

ak =
an+1 � 1

a� 1
;

for all n 2 N.
For jaj < 1, we know that the sequence (an)n2N converges to zero. Thus

P1
n=1 a

n

is a convergent series for 0 < a < 1, and we have

1X
n=0

an =
�1
a� 1

=
1

1� a:

If jaj > 1, then the series diverges since
Pn
k=1 a

k = an+1�1
a�1

, and the sequence
(an)n2N diverges.

2.5 The standard tests for convergence of a series

2.5.1 The Leibniz test

Theorem 2.12. Let (an)n2N be a decreasing sequence of numbers, that is,
an+1 � an, for all n, such that the sequence converges, with limn!1 an = 0.
Then the alternating series

1X
n=1

(�1)nan
converges.

Proof. Consider the partial sums Sn for this series. If a1 6= 0, then S1 = (�1)a1 is
a negative number. But then S3 = �a1 + (a2� a3), and we see that we must have
S1 � S3 since a2 � a3, and therefore a2 � a3 is a positive number or zero. More
generally, if n is an odd number, say n = 2m+ 1, then we must have Sn+2 � Sn.
This follows, since

Sn+2 = Sn + (�1)n+1an+1 + (�1)n+2an+2

= Sn + (�1)(2m+1)+1an+1 + (�1)(2m+1)+2an+2

= Sn + (an+1 � an+2);

and an+1 � an+2 � 0. Therefore the sequence of odd partial sums is an increasing
sequence.

S1 � S3 � S5 � S7 � � � �
On the other hand, we have that the sequence of even partial sums is a decreasing
sequence.

S2 � S4 � S6 � S8 � � � �
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This is proved analogously to the situation with the odd partial sums. Further-
more, it is easy to see that

S2m � S2m+1;

and
S2m+1 � S2m+2;

for all m 2 N. Therefore the even partial sums are always greater than, or equal
to, the odd partial sums. On the other hand, the distance between adjacent partial
sums is jSn+1 � Snj = jan+1j, and we know that limn!1 janj = 0. Thus the even
and the odd sums must converge from above and below to some common limit
point, which is then the limit of the series.

An example

We have already seen that the series
P1
n=1

1
n
diverges. But according to Leibniz

test, the alternating series
1X
n=1

(�1)n
n

must converge. In fact, if we write T =
P1
n=1

(�1)n

n
, then we know from the proof of

theorem 2.12 that T must lie somewhere between the �rst and the second partial
sums. That is

S1 = �1 < T < �1

2
= �1 + 1

2
= S2:

In other words, the sum of the whole series is a negative number lying somewhere
between �1 and �1

2
.

Reordering the terms in the series

While all of what has been said above is true, there is a strange twist to the story
which makes one realize that it is important to be careful.

To begin with, note that we have the following.

1

4
<

1

2
+

1

4
1

4
<

1

6
+

1

8
1

4
<

1

10
+

1

12
+

1

14
+

1

16
1

4
<

1

18
+

1

20
+

1

22
+

1

24
+

1

26
+

1

28
+

1

30
+

1

32
etc:
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Therefore, if we rearrange the terms in the sum, we get

1X
n=1

(�1)n
n

???
= �1 +

�
1

2
+

1

4

�

�1

3
+
�
1

6
+

1

8

�
�1

5
+
�
1

10
+

1

12
+

1

14
+

1

16

�
�1

7
+
�
1

18
+

1

20
+

1

22
+

1

24
+

1

26
+

1

28
+

1

30
+

1

32

�
�1

9
+ etc:

Obviously the sum is getting bigger and bigger. It suddenly doesn't converge!
The problem is that our original sum is convergent, but not absolutely convergent.
It is only conditionally convergent. Conditionally convergent series can be made
to converge to practically anything | or else they can be made to diverge | if
we allow ourselves to rearrange the order of the terms in the sum in any way we
want.

But let's look at the other convergence tests, before coming back to this prob-
lem.

2.5.2 The comparison test

Theorem 2.13. Let
1X
n=1

cn

be a series which is known to be convergent, where cn � 0, for all n. Further-
more, let

1X
n=1

an

be some other series, where 0 � an � cn, for all n. Then the series
P1
n=1 an

is convergent, and the limit of the series is no greater than the limit of the
series

P1
n=1 cn.

Proof. This is obvious. Let Sn be the n-th partial sum of the series
P1
n=1 an, and

let
1X
n=1

cn = C;

say. Then we have that the sequence of partial sums (Sn)n2N is monotonically
increasing, and it is bounded below by zero, and above by C. Thus it must
converge to a number between zero and C.
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2.5.3 Absolute convergence

Definition. The series
1X
n=1

an

is called absolutely convergent if the series consisting of the absolute values of
the individual terms

1X
n=1

janj
converges.

Theorem 2.14. Each series which is absolutely convergent is also convergent.

Proof. Assume that the series
P1
n=1 janj converges, where an 2 R for all n. Let

1X
n=1

janj = C;

say, and let S�n be the partial sums of this series. Since janj � 0 for all n, it must be
that the sequence (S�n)n2N is monotonically increasing. Therefore, for each � > 0,
there exists some N(�) 2 N such that jC � S�nj < �, for all n � N(�). But then, in
particular, we must have jS�n � S�mj < �, for all n, m � N(�). But (assuming that
m � n), we have

jS�n � S�mj =
nX

k=m+1

jakj < �:

So now we can show that the sequence of partial sums Sn for the original seriesP1
n=1 an is a Cauchy sequence. For all n, m � N(�) (and again, we assume without

loss of generality that m � n) we have

jSn � Smj =

������
nX

k=m+1

ak

������
�

nX
k=m+1

jakj
< �:

The �rst inequality here is simply the triangle inequality for the absolute-value
function, and the second inequality is jS�n � S�mj < �, which we have already
found.

Corollary (Majorantenkriterium). Let (cn)n2N be sequence with cn � 0, for all
n, such that

1X
n=1

cn
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converges. Then given another sequence (an)n2N, with janj � cn for all n, we
must have the series

1X
n=1

an

also converging.

Theorem 2.15. Let
P1
n=1 an be an absolutely convergent series, and let

P1
n=1 bn

be the same series, but with the terms possibly rearranged in some way. ThenP1
n=1 bn is also absolutely convergent, and we have

1X
n=1

an =
1X
n=1

bn:

But �rst we prove the following lemma.

Lemma. Let
P1
n=1 cn be a convergent series with cn � 0 for all n. If

P1
n=1 dn is

the same series, but perhaps with the terms rearranged in some other order,
then we still have

P1
n=1 dn being convergent, and

1X
n=1

cn =
1X
n=1

dn:

Proof. In both cases, the sequence of partial sums is monotonically increasing.
Given the partial sum

PN1
n=1 cn, for some N1 2 N, then we can �nd some N2 �

N1 which is su�ciently large that all the numbers c1; : : : ; cN1 appear in the list
d1; : : : ; dN2. Therefore we must have

N1X
n=1

cn �
N2X
n=1

dn:

But we can just as easily show that for all N3 2 N, there exists some N4 � N3

with
N4X
n=1

cn �
N3X
n=1

dn:

Therefore we must have the limits of the sequences of partial sums being equal.

Proof. (Of theorem 2.15)
Let

1X
n=1

an =
1X
n=1

a+n �
1X
n=1

a�n ;

where

a+n =

8<:an; if an � 0;

0; otherwise,

a�n =

8<:�an; if an � 0;

0; otherwise.
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Similarly,
1X
n=1

bn =
1X
n=1

b+n �
1X
n=1

b�n :

But, according to the lemma, we must have

1X
n=1

a+n =
1X
n=1

b+n

and
1X
n=1

a�n =
1X
n=1

b�n :

2.5.4 The quotient test

Theorem 2.16. Assume that the series
P1
n=1 an is such that there exists some

real number � 2 R with 0 � � < 1, such that����an+1

an

���� � �;

for all n 2 N. Then the series is absolutely convergent, hence also convergent.

Proof. We have already seen that the geometric series

1X
n=1

�n

converges. So if we simply multiply each term by the number ja1j, we see that
also the series

1X
n=1

ja1j�n

converges. In fact it converges to the number

ja1j
 

1X
n=1

�n
!
:

Now since ja2=a1j � �, we must have ja2j � ja1j�. Also, since ja3=a2j � �, we must
have ja3j � ja2j�. That is, ja3j � ja2j� � ja1j�2. Similarly, we have ja4j � ja1j�3,
and in general, for each n, we have

janj � ja1j�n�1:

Therefore, using the comparison test, we see that the series

1X
n=1

janj

converges.
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Corollary. Let N 2 N be given, and we assume that the series
P1
n=1 an is such

that there exists some real number � 2 R with 0 � � < 1, such that����an+1

an

���� � �;

for all n � N . Then the series is absolutely convergent, hence also convergent.

Proof. This follows, since the argument in the proof of the previous theorem can
be applied to the numbers greater than or equal to N . So the series

1X
n=N

an

is absolutely convergent. However we can then simply add in the �nitely many
terms

a1 + a2 + � � �+ aN�1;

and this cannot change the fact that the whole in�nite series is absolutely conver-
gent.

Example: the exponential series is convergent everywhere

Rather than always taking the sum in a series from 1 to 1, it is often convenient
to sum from 0 to1. In particular, for each x 2 R we have the famous exponential
series

1X
n=0

xn

n!
:

Using the quotient test, it is easy to see that the exponential series is absolutely
convergent, for all x 2 R.

For let some arbitrary x 2 R be given. Now if we happen to have x = 0, then
the exponential series is obviously absolutely convergent. Therefore we assume
that x 6= 0. Then let N 2 N be the smallest integer with N � jxj. We have������

xn+1

(n+1)!
xn

n!

������ =
���� x

n+ 1

���� � ���� x

N + 1

���� < 1;

for all n � N , and it follows that the exponential series must be absolutely con-
vergent in this case as well.

2.6 Continuous functions

Let A � R be some interval. For example we might have A = [a; b], for a < b.
That is the closed interval from a to b. The open interval from a to b is (a; b) =
fx 2 R : a < x < bg. Then we have the half closed, and half open intervals [a; b)
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and (a; b]. We can also consider the whole of R to be the interval (�1;1). That
is also an open interval. For most of the time, we will consider functions

f : A! R

from some open interval A � R into R.

Definition. The function f : A ! R is continuous in the point x0 2 A if for
all � > 0, there exists some � > 0 such that jf(x) � f(x0)j < �, for all x 2 A
with jx � x0j < �. If the function f is continuous in x0 for all x0 2 A, then
one simply says that f is continuous.

Examples

For these examples, we consider in each case a function f : R ! R. That is, our
open interval is A = R. We will specify f by specifying what f(x) is, for each
x 2 R.

� If there exists some constant number c 2 R, such that f(x) = c, for all x 2 R,
then f is a constant function. Obviously, f is then continuous.

� If f(x) = x for all x, then f is continuous. For let x0 2 R be some arbitrary
real number. Let � > 0 be given. Then choose � = �. With this choice, if
we have x 2 R with jx � x0j < � = �, then we must have jf(x) � f(x0)j =
jx�x0j < � = �. Therefore f is continuous in x0, and since x0 was arbitrary,
f is continuous everywhere.

� If f(x) = xn, for some n 2 N larger than one, then f is also continuous. This
is not quite as trivial to prove, so we will put o� the proof till later.

� This time let

f(x) =

8<:1; if x � 0;

0; if x < 0:

Then f is continuous for all x0 6= 0, but f is not continuous at the point 0.

An alternative way to describe continuity

Theorem 2.17. The function f : A ! R is continuous in the point x0 2 A
if and only if for all convergent sequences (an)n2N with an 2 A for all n,
and limn!1 an = x0, we have that (f(an))n2N is a convergent sequence with
limn!1f(an) = f(x0).

Proof. Assume �rst that f is continuous at x0 2 A. Let (an)n2N be a sequence
with an 2 A for all n, and limn!1 an = x0. That means that for all � > 0, there
exists some N(�) 2 N with jx0 � anj < � for all n � N(�). Now let � > 0 be
given. Since f is assumed to be continuous at x0, there must exist some � > 0
with jf(x)�f(x0)j < �, for all x 2 A with jx�x0j < �. Therefore, given our N(�),
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we must have jx0 � anj < � for all n � N(�). That means that for all n � N(�)
we have jf(x)� f(x0)j < �. Therefore limn!1 f(an) = f(x0).

Now assume that limn!1 f(an) = f(x0) for all convergent sequences (an)n2N
in A with limn!1 an = x0. In order to obtain a contradiction, assume furthermore
that f is not continuous at x0. That would mean that there must exist some
�0 > 0, such that for all � > 0 some u� 2 A must exist with jx0 � u�j < �,
yet jf(x0) � f(u�)j � �0. In particular, we can progressively take � = 1=n, for
n = 1; 2; 3; : : : .

That is, we take the sequence (an)n2N with an = u 1
n
, for all n. Then we have

limn!1 an = x0, yet jf(x0)�f(an)j � �0, for all n. Therefore the series (f(an))n2N
cannot possibly converge to f(x0). This contradicts our assumption.

2.6.1 Sums, products, and quotients of continuous functions
are continuous

Theorem 2.18. Assume that f; g : A! R are two continuous functions from
A to R. Then f + g is also continuous. Here, f + g is the function whose
value at each x 2 A is simply (f + g)(x) = f(x) + g(x).

Proof. Let x0 2 A be given. The problem then is to show that the function f + g
is continuous at x0. For this we will use theorem 2.17. Let (an)n2N be some
convergent sequence in A with limn!1 an = x0. Then, since f is continuous at
x0, we have limn!1 f(an) = f(x0). Similarly, we have limn!1 g(an) = g(x0). But
then, according to theorem 2.9, the series

(f(an) + g(an))n2N

converges to f(x0) + g(x0) = (f + g)(x0). Therefore, again according to theo-
rem 2.17, the function f + g must be continuous at x0.

Of course, this also means that the di�erence of two continuous functions f�g
is also continuous.

Theorem 2.19. The functions f and g are given as before. Then also their
product f � g is continuous. Here, the product is simply the function whose
value at x 2 A is given by (f � g)(x) = f(x) � g(x), for all such x.
Proof. The same as for theorem 2.18

Similarly we have

Theorem 2.20. The functions f and g are given as before, where we assume
that g(x) 6= 0, for all x 2 A. Then the quotient f=g is continuous, where the
quotient is the function whose value at x 2 A is given by (f=g)(x) = f(x)=g(x),
for all x 2 A.
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Theorem 2.21. Assume that A � R and B � R, and we have two functions
f : A! R and g : B ! R such that f(A) � B. We can consider the function
f � g : A! R, where f � g(x) = g(f(x)), for all x 2 A. Then if f is continuous
at x0 2 A, and g is continuous at f(x0), it follows that f � g is continuous at
x0.

Proof. Let (an)n2N be a sequence in A, converging to x0. Then, since f is
continuous at x0, the sequence (f(an))n2N must converge to f(x0) in B. But
then since g is continuous at f(x0), the sequence (g(f(an)))n2N must converge to
g(f(x0)) = f � g(x0).

All polynomials are continuous

This is now obvious. Let

f(x) = c0 + c1x+ c2x
2 + � � �+ cnx

n

be some polynomial. Then, as we have seen, the constant function c0 is continuous.
Also the identity function x! x is continuous. Therefore the product c1x gives a
continuous function. Also the product x � x = x2 is a product of two continuous
functions, therefore continuous. So c1x

2 is continuous. And so forth. Finally
the polynomial is seen to be just a sum of continuous functions, therefore itself
continuous.

2.7 The exponential function

We have already seen that the series

1X
n=0

xn

n!

converges for all x 2 R. This gives the exponential function

Definition. The exponential function exp(x), often written ex, is de�ned for
real numbers x 2 R to be exp(x) =

P1
n=0

xn

n!
. The de�ning series here is called

the exponential series.

Obviously, by looking at the exponential series, we see that exp(0) = 1. But
what is exp(x) for other values of x? Let us take another look at the exponential
series and then think about the following points.

� As already seen, we have exp(0) = 1.

� For x > 0 we must have exp(x) > 0 since all terms in the exponential series
are positive.
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� In fact, if we have two positive numbers 0 < x < y, then we must have
1 < exp(x) < exp(y). This follows, since we must have xn < yn, for all n;
therefore the exponential series for y dominates the exponential series for
x. Therefore, for non-negative real numbers, we see that the exponential
function is a strictly monotonically increasing function.

� But for negative numbers x < 0, the situation remains unclear.

Theorem 2.22. For all x and y 2 R we have exp(x+ y) = exp(x) � exp(y).
Proof.

exp(x+ y) =
1X
n=0

(x+ y)n

n!

=
1X
n=0

1

n!

nX
k=0

 
n

k

!
xn�kyk

=
1X
n=0

1

n!

nX
k=0

n!

(n� k)!k!x
n�kyk

=
1X
n=0

nX
k=0

xn�kyk

(n� k)!k!

=
1X
n=0

 
nX
k=0

xn�k

(n� k)! �
yk

k!

!

=

 
1X
n=0

xn

n!

!
�
 

1X
n=0

yn

n!

!
= exp(x) � exp(y)

Note here that:

� The second equation is our Binomial theorem (theorem 1.4).

� The sixth equation is our Exercise 7.1.

� The other equations are nothing but the de�nitions of the various things,
and simple arithmetic operations.

Consequences of this “functional equation” for the exponential function

� Let x < 0 be a negative number. Then we know that �x is a positive number,
and thus exp(�x) > 0. But also

exp(x) exp(�x) = exp(x� x) = exp(0) = 1:

Therefore it follows that

exp(x) =
1

exp(�x) > 0

and we see that exp(x) > 0 for all real numbers x 2 R.
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� In fact, if x < y < 0 then we have

exp(y)� exp(x) =
1

exp(�y) �
1

exp(�x) =
exp(�x)� exp(�y)
exp(�y) exp(�x) > 0;

since the exponential function is strictly monotonically increasing, and �x >
�y.
Therefore, the exponential function is strictly monotonically increasing for
all R.

� Let x 2 R be a real number with 0 < x < 1. Then the sequence�
xn

n!

�
n2N

is a strictly decreasing sequence of positive real numbers. Therefore, looking
at the proof of Leibniz test (theorem 2.12), we see that the exponential series
for �x must converge to some real number between 1� x and 1� x+ x2=2.
That is, we must have

1� x < exp(�x) < 1� x+ x2

2
< 1;

or
0 < 1� exp(�x) < x:

In particular, given any real number y 2 (�1; 0), then we must have

j exp(y)� exp(0)j < jyj:

� On the other hand, if x is a positive number with x 2 (0; 1=2), then we must
have

j exp(x)� exp(0)j =
����� 1

exp(�x) � 1

����� <
���� 1

1� x � 1
���� = ���� x

1� x
���� <

�����x1
2

����� = 2jxj:

� Putting these two things together, we have that if jxj < 1=2, that is jx�0j <
1=2, then j exp(x)�exp(0)j < 2jxj. Therefore, the exponential function must
be continuous at the point 0 2 R.

� Finally, take any other element y 2 R. Let (yn)n2N be some convergent
sequence, with limn!1 yn = y. Then if we take zn = yn � y for all n, we
must have that (zn)n2N is a convergent sequence, with

lim
n!1

zn = 0:

Therefore, since the exponential function is continuous at 0, we must have
(exp(zn))n2N being a convergent sequence, with

lim
n!1

exp(zn) = exp(0) = 1:
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But

1 = lim
n!1

exp(zn) = lim
n!1

exp(yn � y)
= lim

n!1
exp(yn) � exp(�y)

= lim
n!1

exp(yn)

exp(y)

=
1

exp(y)
lim
n!1

exp(yn);

since exp(y) is constant (that is, independent of the number n). Therefore,
in the end we have

lim
n!1

exp(yn) = exp(y);

and it follows that the exponential function is also continuous at y.

So to summarize all of this, we have shown that:

Theorem 2.23. The exponential function is strictly monotonically increasing,
positive, continuous, with exp(�x) = 1

exp(x)
, for all x 2 R. Therefore, also

exp(0) = 1.

2.8 Some general theorems concerning continu-

ous functions

So now that we have seen the standard examples of continuous functions | namely
the polynomials and the exponential function4 | it is time to look at some of the
theorems which show us why the idea of continuity is so important.

Theorem 2.24. Let [a; b] � R be a closed interval, and let f : [a; b] ! R be
continuous. Then f is bounded (that is, the set f([a; b]) = ff(x) : x 2 [a; b]g
is bounded), and in fact, there exists both an x� 2 [a; b] such that f(x�) =
supff([a; b])g, and also there exists y� 2 [a; b] such that f(y�) = infff([a; b])g.
Proof. If f were not bounded, then it is either unbounded above, or below. Let
us assume that it is unbounded above, so that for every n 2 N, there exists some
xn 2 [a; b], such that f(xn) > n. Therefore, (f(xn))n2N is a sequence in R which
can have no convergent subsequences. On the other hand, (xn)n2N is a bounded
sequence in R, therefore it contains a convergent subsequence (theorem 2.4). So
let (xi(n))n2N be such a convergent subsequence, with

lim
n!1

xi(n) = x� 2 [a; b];

4The other \standard functions" like sin, cos, ln, and so forth, are simply de�ned in terms of
the exponential function. So, at least in principle, we now have all of them.
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say. Then, since f is continuous at x�, we must have that the subsequence
(f(xi(n)))n2N is also convergent, with

lim
n!1

f(xi(n)) = f(x�):

This is a contradiction, and so we must conclude that f is bounded.
Next, let us consider the number supff([a; b])g. Since it is the least upper

bound, it must be that for each n 2 N, we can choose some xn 2 [a; b] with

j supff([a; b])g � f(xn)j < 1

n
:

Therefore, not only does the sequence (f(xn))n2N converge to supff([a; b])g, in
fact, every subsequence must also converge to supff([a; b])g. But, considered in
[a; b], we have that (xn)n2N is a bounded sequence; therefore there is a convergent
subsequence (xi(n))n2N, with

lim
n!1

xi(n) = x� 2 [a; b];

say. Then since f is continuous at x�, we must have

f(x�) = lim
n!1

f(xi(n)) = supff([a; b])g:

The proof with regard to infff([a; b])g is analogous.

But be careful! Here is almost a counterexample.

The function f : (0; 1)! R, with

f(x) =
1

x

is obviously continuous everywhere in (0; 1). Yet it is unbounded! Why can't
we apply our theorem 2.24 here? The answer is that we can indeed construct a
sequence (xn)n2N such that the sequence (f(xn))n2N increases without bound. But
in this case, we will simply have

lim
n!1

xn = 0;

but 0 62 (0; 1), therefore the sequence does not converge when considered as a
sequence taken within the set (0; 1).

Theorem 2.25 (Intermediate value theorem, or \Zwischenwertsatz"). Let f :
[a; b] ! R be a continuous function, such that f(a)f(b) < 0. (That is, both
f(a) 6= 0 and f(b) 6= 0, and furthermore one is positive and the other is
negative.) Then there exists some point x 2 (a; b), such that f(x) = 0.
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Proof. Let x1 = (b � a)=2 be the half-way point between a and b. If f(x1) = 0,
then we have a solution. Otherwise, f(x1) 6= 0, and so either f(a) and f(x1) have
opposite signs, or else f(x1) and f(b) have opposite signs. In any case, the original
interval [a; b] can be divided into two smaller sub-intervals [a; x1] and [x1; b], both
of which are only half as big as the original interval. Choose the sub-interval
which is such that the endpoints have opposite signs under f . Then subdivide
that subinterval in half. And so on.

In the end, either we end up with a solution, or else, by taking say the up-
per endpoint of each sub-interval, we obtain a convergent sequence (yn)n2N. Let
limn!1 yn = y. Then there are both positive, as well as negative values of f
arbitrarily near to f(y). Since f is continuous, we must then have f(y) = 0.

Definition. Let W � R be some subset of R. The function f :W ! R is called
uniformly continuous if for all � > 0, there exists some � > 0 such that for all
x, y 2W with jx� yj < � we have jf(x)� f(y)j < �.

Theorem 2.26. Let a < b in R, and let f : [a; b] ! R be continuous. Then f
is uniformly continuous.

Proof. Assume that f is not uniformly continuous. That would mean that there
exists some �0 > 0 such that for all � > 0, two points p�, q� 2 [a; b] must exist,
with the property that jp� � q�j < �, and yet jf(p�) � f(q�)j � �0. In particular,
for each n 2 N, we can �nd xn, yn 2 [a; b] with

jxn � ynj < 1

n
;

yet
jf(xn)� f(yn)j � �0:

But, as we know (theorem 2.4), there must be a convergent subsequence (xi(n))n2N,
with say

lim
n!1

xi(n) = t 2 [a; b]:

But then the corresponding subsequence (yi(n))n2N must also converge, and we
have

lim
n!1

xi(n) = lim
n!1

yi(n) = t:

Since f is continuous, we must also have

lim
n!1

f(xi(n)) = lim
n!1

f(yi(n)) = f(t):

But this is a contradiction, since jf(xi(n))� f(yi(n))j � �0, for all n.

Remark. Again, the important property of closed, bounded intervals like [a; b]
is that they are compact. Thus the more general formulation of theorem 2.26
would be:

Let K � R be compact and let f : K ! R be continuous; then f is uniformly
continuous.
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2.9 Differentiability

In this section, it is convenient to consider functions f : U ! R, where U is an
open subset of R. In particular, we will take U = (a; b), with a < b, or else simply
U = R.

Definition. The function f : U ! R is di�erentiable at the point x0 2 U if
there exists some number f 0(x0) 2 R, such that for all � > 0, a � > 0 exists
with �����f(x)� f(x0)x� x0 � f 0(x0)

����� < �;

for all x 2 U with x 6= x0 and jx� x0j < �.

Another way of saying the same thing is to say that

lim
h!0

f(x0 + h)� f(x0)
h

= f 0(x0):

But when writing this, we must always be careful to say that we do not allow h
to be zero (after all, you can't divide by zero!), and also we must ensure that the
point x0 + h is always an element of U .

That is, the function f is di�erentiable at x0 if for any convergent sequence
(un)n2N, with un 2 U , limn!1 un = x0, but un 6= x0 for all n, we have

lim
n!1

f(un)� f(x0)
un � x0 = f 0(x0):

Theorem 2.27. If f : U ! R is di�erentiable at the point x0 2 U , then f is
also continuous at x0.

Proof. Obvious!

We also have the following theorem, which you have undoubtedly seen at
school.

Theorem 2.28. Let f , g : U ! R be di�erentiable at the point x0 2 U . Then
� (f + g) : U ! R is di�erentiable at x0, and we have (f + g)0(x0) =
f 0(x0) + g0(x0).

� (f � g) : U ! R is di�erentiable at x0, and we have

(f � g)0(x0) = f 0(x0)g(x0) + f(x0)g
0(x0):

� If g(x0) 6= 0 then (f=g)0 : U ! R is di�erentiable at x0, and we have 
f

g

!0
(x0) =

f 0(x0)g(x0)� f(x0)g0(x0)
(g(x0))2

:
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� Assuming g is di�erentiable at f(x0), with g : f(U) ! R, then (f � g) :
U ! R is di�erentiable at x0, and we have (f � g)0(x0) = f 0(x0)g

0(f(x0)).

Proof. A simple exercise, using the results for convergent sequences which we have
already studied. But perhaps it might be worthwhile to look at the proof for the
chain rule.

Given the function f � g, that is, (f � g)(x) = g(f(x)), let us de�ne

h(y) =

8<:
g(y)�g(f(x0))
y�f(x0)

; if y 6= f(x0);

g0(f(x0)); if y = f(x0):

Since g is di�erentiable at f(x0), we have

lim
y!f(x0)

h(y) = g0(f(x0)):

(That is, given any sequence (yn)n2N of points in f(U) with limn!1 yn = f(x0),
then we must have limn!1 h(yn) = g0(f(x0)).)

Therefore, we have

g(y)� g(f(x0)) = h(y)(y � f(x0));

for all y 2 U , and so

(f � g)0(x0) = lim
x!x0

(f � g)(x)� (f � g)(x0)
x� x0

= lim
x!x0

g(f(x))� g(f(x0))
x� x0

= lim
x!x0

h(f(x))(f(x)� f(x0)
x� x0

=
�
lim
x!x0

h(f(x))
� 

lim
x!x0

f(x)� f(x0)
x� x0

!
= g0(f(x0))f

0(x0):

Theorem 2.29. Let f : (a; b)! R be a strictly monotonic, continuous function
with f((a; b)) = (c; d), say, such that the mapping f : (a; b) ! (c; d) is a
bijection whose inverse is the mapping � : (c; d) ! (a; b). Assume that f
is di�erentiable at the point x0 2 (a; b), such that f 0(x0) 6= 0. Then � is
di�erentiable at the point f(x0), and we have

�0(f(x0)) =
1

f 0(x0)
:

Proof. Let (yn)n2N be any convergent sequence in (c; d), with limn!1 yn = f(x0),
such that yn 6= f(x0), for all n. Then, taking zn = �(yn) for each n 2 N (that
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means that f(zn) = yn), we have that limn!1 zn = x0, since � is continuous.
Therefore

�0(f(x0)) = lim
n!1

�(yn)� �(f(x0))
yn � f(x0)

= lim
n!1

zn � x0
f(zn)� f(x0)

= lim
n!1

1
f(zn)�f(x0)

zn�x0

=
1

f 0(x0)
:

2.10 Taking another look at the exponential func-

tion

Theorem 2.30. Let (un)n2N be a convergent sequence of real numbers, with
un 6= 0, for all n, and furthermore, limn!1 un = 0. Then we have

lim
n!1

exp(un)� 1

un
= 1:

In order to prove this theorem, we �rst prove the following

Lemma. For all x 2 R with jxj � 1 we have j exp(x)� (1 + x)j < jxj2.
Proof. We have

j exp(x)� (1 + x)j =

�����x
2

2!
+
x3

3!
+
x4

4!
+ � � �

�����
� jxj2

 
1

2!
+
jxj
3!

+
jxj2
4!

+ � � �
!

� jxj2
�
1

2!
+

1

3!
+

1

4!
+ � � �

�
=

jxj2
2

�
1 +

2

3!
+

2

4!
+ � � �

�
<

jxj2
2

 
1X
n=0

�
1

2

�n!

=
jxj2
2

 
1

1� 1
2

!
= jxj2:
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Proof. (of theorem 2.30)�����exp(un)� 1

un
� 1

����� =
�����exp(un)� (1 + un)

un

����� < junj;

for junj < 1. And this converges to zero as the sequence converges to zero.

Theorem 2.31. The exponential function is everywhere di�erentiable, with
exp0(x) = exp(x), for all x 2 R.
Proof. Let (un)n2N be a convergent sequence of real numbers, with un 6= 0, for all
n, and furthermore, limn!1 un = 0. Then we have

exp0(x) = lim
n!1

exp(x+ un)� exp(x)

un

= exp(x) lim
n!1

exp(un)� exp(0)

un

= exp(x) lim
n!1

exp(un)� 1

un
= exp(x) � 1
= exp(x):

2.11 The logarithm function

Definition. From the properties of the exponential function (continuous, strictly
monotonic, positive, etc.), we see that the mapping exp : R ! (0;1) is a bi-
jection. The inverse mapping from (0;1) back to R is called the logarithm,
denoted by

ln : (0;1)! R:
Remark. This is the natural logarithm. The logarithm to the base 10, some-
times written log10, which you might encounter in practical computer appli-
cations, plays no role in mathematics. How do we convert natural logarithms
into logarithms to the base 10? The answer: by means of the formula

log10(x) =
ln(x)

ln(10)
:

Since we know that exp(x + y) = exp(x) � exp(y), for all x, y 2 R, it follows
that

x+ y = ln(exp(x+ y)) = ln(exp(x) � exp(y)):
Now let a = exp(x), and b = exp(y). Then we have x = ln(a) and y = ln(b).

All of this gives the functional equation for the logarithm function:

ln(a � b) = ln(a) + ln(b);

for all a, b > 0.
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Identifying the exponential function with powers and roots: the number
e

But thinking about this leads to the more general question: given x, y 2 R, what
is xy. After all, every pocket calculator these days has a button marked \xy".

Well, to begin with, given a, then we all know that a2 = a � a. More generally,
given m, n 2 N, we write am+n = am � an. This is beginning to look like the
functional equation for the exponential function!

Following this additive business, if a � 0, then the square root of a is the
number which, when multiplied with itself gives a = a1. Therefore, it is natural
to write

p
a = a1=2. Also 1

an
= a�n, for n 2 N. And in general, following this plan,

we have the rule
a
p
q =

�
q
p
a
�p
;

for all a � 0, p 2 Z and q 2 N.
But looking at the functional equations for both the exponential and the log-

arithm functions, we see that for a � 0 we have

an = exp(ln(an)) = exp(n � ln(a));

for n 2 N. But then also

1

an
= a�n = exp(ln(a�n)) = exp(�n � ln(a));

since an � 1
an

= 1 = exp(0). Similarly,

a
1
n = exp(

1

n
� ln(a)):

Therefore, by extension we have

a
p
q = exp(

p

q
� ln(a));

for all rational numbers p=q. Finally, since exp and ln are continuous, we must
have

ab = exp(b � ln(a));
for all b 2 R.

At this stage, mathematicians become interested in the special number exp(1),
which we call \e", for short. It is an important mathematical constant, similar to
that other special number �. People have worked out that

e � 2:718281828459045:

Now, given any n 2 N, we have

n = ln(exp(n)) = ln(exp(1) � � � exp(1)| {z }
n times

) = ln(en):
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Therefore
exp(n) = exp(ln(en)) = en;

and so on. Following our reasoning from before, we conclude that

exp(x) = ex;

for all x 2 R. Thus, in general we have

ab = eb�ln(a);

for all a � 0 and b 2 R.

Theorem 2.32. For all x 2 (0;1), we have

ln0(x) =
1

x
:

Proof. We have exp(ln(x)) = x, for all x 2 (0;1). Therefore

1 = exp(ln(x))0 = ln0(x) � exp0(ln(x)) = ln0(x) � exp(ln(x)) = ln0(x) � x:

2.12 The mean value theorem

Theorem 2.33 (Rolle). Let a < b in R, and let f : [a; b] ! R be continuous
in [a; b] and di�erentiable everywhere in (a; b). Assume furthermore, that
f(a) = f(b). Then there exists some point � 2 (a; b), such that f 0(�) = 0.

Proof. If f is the constant function, f(x) = f(a), for all x 2 [a; b], then obviously
f(�) = 0, for all � 2 (a; b). On the other hand, if f is not constant, then either

1. there exists y 2 (a; b) with f(y) > f(a), or else

2. there exists z 2 (a; b) with f(z) < f(a).

Assume that we have case (1.). (Case (2.) is similar.) Then, according to theo-
rem 2.24, there exists some � 2 (a; b) with f(�) � f(x), for all x 2 [a; b]. For each
n 2 N, let un = � � ��a

n+1
. Then (un)n2N is a convergent sequence in (a; b) with

limn!1 un = �. Thus we must have

f 0(�) = lim
n!N

f(un)� f(�)
un � � :

However f(un)�f(�) � 0, since f(�) is the largest possible value. Also un� � < 0
for all n. Thus we must have f 0(�) � 0.
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On the other hand, let vn = �+ b��
n+1

, for all n. Then (vn)n2N is also a convergent
sequence in (a; b) with limn!1 un = �. Thus we must have

f 0(�) = lim
n!N

f(vn)� f(�)
vn � � :

However f(vn)�f(�) � 0, since f(�) is the largest possible value, and also un�� >
0 for all n. Thus we must have f 0(�) � 0.

Combining these two conclusions, we see that the only possibility is that f 0(�) =
0.

Theorem 2.34 (Mean value theorem (or \Mittelwertsatz")). Let a < b in R, and
let f : [a; b]! R be continuous in [a; b] and di�erentiable everywhere in (a; b).
Then there exists some point � 2 (a; b) with

f 0(�) =
f(b)� f(a)

b� a :

Proof. Let the new function F : [a; b]! R be de�ned by

F (x) = f(x)� f(b)� f(a)
b� a (x� a):

Obviously the function F ful�lls the conditions of Rolle's theorem (2.33). So let
� 2 (a; b) with F 0(�) = 0. Then we have

F 0(�) = 0 = f 0(�)� f(b)� f(a)
b� a :

2.13 Complex numbers

The equation x2 +1 = 0 has no solution within the system of real numbers R. To
solve this \problem", mathematicians have invented an imaginary number, called
i (for \i"maginary), which is supposed to solve the equation. So we could imagine
that we have

i =
p�1:

But then, since (�1)2 = 1, it would seem to make sense to agree that also

(�i)2 = ((�1) � i)2 = (�1)2 � i2 = 1 � �1 = �1:
More generally, given any x 2 R, we can imagine that ix is also a number, such
that (ix)2 = �x2.

In order to combine these imaginary numbers with the \real" numbers of our
normal existence, we just add the two kinds of numbers together. This results in
the �eld of complex numbers, denoted by C. That is,

C = fa+ ib : a; b 2 Rg:
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Addition in C is given by

(a+ ib) + (c+ id) = (a+ c) + i(b+ d):

The rule for multiplication uses the fact that we have agreed to make i2 = �1.
Therefore,

(a+ ib) � (c+ id) = (ac� bd) + i(ad+ bc):

It is a simple exercise to verify that with these rules for addition and multipli-
cation, C is a �eld. The zero element is 0+ i0 and the one is 1+ i0. In particular,
if a+ ib is not zero, then the inverse under multiplication is

(a+ ib)�1 =
a� ib
a2 + b2

:

Using the ideas of linear algebra, we see that C is a 2-dimensional vector space
over R. Therefore it is natural to picture the numbers in C on the 2-dimensional
Euclidean plane, the horizontal axis representing R, the real numbers, and the
vertical axis representing the imaginary numbers iR. Thus we have R � C when
real numbers x 2 R are identi�ed with their real counterparts x+ i0 2 C.

We have seen how important it is to think about the distance between two
numbers. Therefore, in C, we de�ne the distance between pairs of complex num-
bers to be the usual Euclidean distance. That is, given a+ bi and c+ id in C, then
the distance between them is

j(a+ ib)� (c+ id)j =
q
(a� c)2 + (b� d)2:

So let z 2 C be some complex number. That is, there are two real numbers,
a and b, with z = a+ ib. We sometimes write re(z) to represent the real part of
z. That is, re(z) = a. Also the imaginary part of z is im(z) = b. The complex
conjugate z to z is the complex number

z = a� ib:
Then we have

zz = (a+ ib)(a� ib) = a2 + b2 = jzj2:
Here, jzj denotes the distance between z and the zero of C, namely 0 + i0. It is
the absolute value of z, and for real numbers it corresponds to the absolute value
function which we have already seen in R.

We have

� jzj = 0 , z = 0,

� jzj = jzj, and
� jw � zj = jwj � jzj, for all w, z 2 C.

Also, the combinations of addition and multiplication with complex conjugates
are
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� w + z = w + z and

� w � z = w � z.
Therefore, if we have a polynomial with real coe�cients

P (z) = a0 + a1z + � � �+ anz
n;

where aj 2 R, for j = 0; : : : ; n, then the complex conjugate is P (z) = P (z).
Given two complex numbers w, z 2 C, we have

jw + zj � jwj+ jzj:
In order to see this, begin by observing that for all complex numbers u 2 C, we
have both

re(u) � juj and im(u) � juj:
In particular, we have

re(wz) � jwzj = jwj � jzj = jwj � jzj:
Therefore

jw + zj2 = (w + z)(w + z)

= (w + z)(w + z)

= ww + wz + zw + zz

= ww + wz + wz + zz

= jwj2 + 2re(wz) + jzj2
� jwj2 + 2jwj � jzj+ jzj2
= (jwj+ jzj)2

And so the triangle inequality jw + zj � jwj+ jzj holds.5
It is now a simple exercise to verify that for arbitrary triples of complex numbers

u, v, w 2 C, we have
ju� wj � ju� vj+ jv � wj:

All of our ideas concerning convergent sequences and series of real numbers
can be taken over directly into the realm of complex numbers. The proofs are the
same, again using absolute values to measure distances. In particular, we see that
a sequence (zn)n2N, with zn = xn+iyn, for each n, converges if and only if both the
sequences of real numbers (xn)n2N and (yn)n2N converge. Thus if limn!1 xn = x
and limn!1 yn = y, then

lim
n!1

zn = lim
n!1

(xn + iyn) = lim
n!1

xn + i lim
n!1

yn = x+ iy:

5Of course the fact that the absolute value of a complex number corresponds with the norm of
the vector representing that number in R2 means that the triangle inequality in C is nothing more
than the triangle inequality in R2, considered as a normed vector space.
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Speci�cally, given an � > 0, there exists an Nr 2 N and an Ni 2 N such that for
all nr � Nr we have jxn � xj < �=2 and for all ni � Ni we have jyn � yj < �=2.
Now take N = maxfNr; Nig. Then for all n � N we have

jzn � zj = j(xn � x) + i(yn � y)j � jxn � xj+ jyn � yj < �

2
+
�

2
= �:

In particular, we have that:

� Every bounded sequence in C contains a convergent subsequence.6

� Every Cauchy sequence in C converges.

� The idea of absolutely convergent series of complex numbers is de�ned anal-
ogously to the real case.

� Absolutely convergent series are convergent, and furthermore, the limit of
an absolutely convergent series does not depend on its ordering.

� Both the comparison test and the quotient test are valid in C.

� A function f : C! C is continuous at a point z0 2 C if for all � > 0, a � > 0
exists with jf(z) � f(z0)j < � for all z 2 C with jz � z0j < �. Equally, f is
continuous at z0 if for every convergent sequence (zn)n2N with zn �! z0, we
have f(zn) �! f(z0).

If we have a convergent power series
P1
n=0 anz

n, then the complex conjugate is

1X
n=0

anzn =
1X
n=0

anz
n:

For complex numbers z 2 C, we have that the exponential series

exp(z) =
1X
n=0

zn

n!

is also absolutely convergent, and the resulting function exp : C! C is continuous.
So, in particular, we have

exp(z) = exp(z);

for all z 2 C.
And, of course, the functional equation for the exponential function

exp(w + z) = exp(w) exp(z)

also holds in C.
6The sequence (zn)n 2 N is bounded if there exists some positive real number K > 0 such that

jznj � K, for all n 2 N.
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2.14 The trigonometric functions: sine and cosine

Definition. For all x 2 R the functions sin and cos are de�ned by

cos(x) = re(exp(ix)) and sin(x) = im(exp(ix)):

That is, the sine and cosine functions are de�ned in terms of Euler's formula

eix = cos(x) + i sin(x):

Since ei(�x) = e�ix = eix, we have

cos(x) =
1

2

�
eix + e�ix

�
and

sin(x) =
1

2i

�
eix � e�ix

�
:

Therefore
cos(�x) = cos(x) and sin(�x) = � sin(x):

Now, we have

j exp(ix)j =
q
exp(ix) � exp(ix)

=
q
exp(ix) � exp(ix)

=
q
exp(ix) exp(�ix)

=
q
exp(ix� ix)

=
q
exp(0)

=
p
1 = 1:

Therefore, it must be that j sin(x)j � 1 and j cos(x)j � 1, for all x 2 R. But also,

sin2(x) + cos2(x) = (re(exp(ix)))2 + (im(exp(ix)))2 = j exp(ix)j = 1:

Furthermore, using the functional equation of the exponential function, we
have

cos(x+ y) + i sin(x+ y) = exp(i(x+ y))

= exp(ix) � exp(iy)
= (cos(x) + i sin(x))(cos(y) + i sin(y))

= (cos(x) cos(y)� sin(x) sin(y)) + i(cos(x) sin(y) + sin(x) cos(y))

Since the real, and the imaginary parts must be equal, we have the two equations

cos(x+ y) = cos(x) cos(y)� sin(x) sin(y);
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and
sin(x+ y) = cos(x) sin(y) + sin(x) cos(y):

It is now an easy exercise to obtain the standard formulas

sin(x)� sin(y) = 2 cos
�
x+ y

2

�
sin

�
x� y
2

�
;

and

cos(x)� cos(y) = �2 sin
�
x+ y

2

�
sin

�
x� y
2

�
:

In particular let u = x+y
2

and v = x�y
2
, so that x = u+ v and y = u� v. Then we

have

sin(x)� sin(y) = sin(u+ v)� sin(u� v)
= (sin(u) cos(v) + cos(u) sin(v))

�(sin(u) cos(�v) + cos(u) sin(�v))
= 2 cos(u) sin(v)

= 2 cos
�
x+ y

2

�
sin

�
x� y
2

�
Also

cos(x)� cos(y) = cos(u+ v)� cos(u� v)
= (cos(u) cos(v)� sin(u) sin(v))

�(cos(u) cos(�v)� sin(u) sin(�v))
= �2 sin(u) sin(v)
= �2 sin

�
x+ y

2

�
sin

�
x� y
2

�
The trigonometric functions can be expressed in terms of power series as follows

Theorem 2.35.

sin(x) =
1X
n=0

(�1)n x2n+1

(2n+ 1)!
= x� x3

3!
+
x5

5!
� � � �

and

cos(x) =
1X
n=0

(�1)n x2n

(2n)!
= 1� x2

2!
+
x4

4!
� � � �

Proof. This follows by looking at the exponential series, observing that i2 = �1.
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Namely,

exp(ix) =
1X
n=0

(ix)n

n!

=
1X
n=0

in
xn

n!

=

 
1X
k=0

i2k
x2k

(2k)!

!
+

 
1X
k=0

i2k+1 x2k+1

(2k + 1)!

!

=

 
1X
k=0

(�1)k x
2k

(2k)!

!
+ i

 
1X
k=0

(�1)k x2k+1

(2k + 1)!

!
= cos(x) + i sin(x):

The derivatives of the trigonometric functions are also found using the expo-
nential function. In fact within the theory of complex analysis, we de�ne the
derivative in exactly the same way it is de�ned in real analysis. Namely the func-
tion f : C ! C is di�erentiable at the point z0 2 C if there exists a complex
number f 0(z0), such that

lim
z!z0

f(z)� f(z0)
z � z0 = f 0(z0);

with z 6= z0. That is to say, for all convergent sequences (zn)n2N, with limn!1 zn =
z0 and zn 6= z0 for all n, we have

lim
n!1

f(zn)� f(z0)
zn � z0 = f 0(z0):

The proof that the exponential function is di�erentiable for all complex num-
bers z0 2 C is the same as in the real case. Again, we obtain the result that

exp0(z) = exp(z);

for all z 2 C.

Theorem 2.36. sin0(x) = cos(x) and cos0(x) = � sin(x), for all x 2 R.

Proof. Using the chain rule, we have exp0(ix) = i exp(x). That is,

cos0(x)+i sin0(x) = exp0(ix) = i exp(ix) = i(cos(x)+i sin(x)) = � sin(x)+i cos(x):

But we can also �nd a more direct proof, where the functions sin and cos are
considered as being simply real functions R! R.
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Lemma.

lim
x!0
x 6=0

sin(x)

x
= 1

Proof.

j sin(x)� xj =

������x
3

3!
+
x5

5!
� x7

7!
+ � � �

�����
=

�����x
3

3!
� x5

5!
+
x7

7!
� � � �

�����
<

jxj3
3!

when jxj < 1:

Therefore �����sin(x)� xx

����� =
�����sin(x)x

� 1

����� < jxj2
3!
:

Then, for h 6= 0, we have

sin(x+ h)� sin(x)

h
=

2 cos
�
2x+h

2

�
sin

�
h
2

�
h

= cos

 
2x+ h

2

!
�
sin

�
h
2

�
h
2

:

Therefore in the limit h! 0 we obtain

sin0(x) = lim
h!0
h 6=0

0@cos 2x+ h

2

!
�
sin

�
h
2

�
h
2

1A = cos(x):

Similarly, we have

cos(x+ h)� cos(x)

h
=

�2 sin
�
2x+h

2

�
sin

�
h
2

�
h

= � sin

 
2x+ h

2

!
�
sin

�
h
2

�
h
2

;

leading to cos0(x) = � sin(x).

2.15 The number �

Theorem 2.37. The function cos has exactly one single zero in the open
interval (0; 2). That is, there exists a unique x0 2 (0; 2) with cos(x0) = 0.
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The proof of this theorem starts by looking at the power series expression
for the cosine function, namely cos(x) =

P1
n=0(�1)n x2n

(2n)!
. Obviously we have

cos(0) = 1. But then

cos(2) = 1� 22

2!
+

24

4!
� 26

6!
+ � � �

= 1� 4

2
+

16

24
� 64

720
+ � � �

= 1� 2 +
2

3
� 4

45
+ � � �

Thinking about Leibniz convergence test for series, we see that it must be that
cos(2) < 0. Then theorem 2.25 shows that there must be a zero somewhere between
0 and 2. On the other hand, the power series expression for the sine function shows
that sin(x) > 0, for all x 2 (0; 2). Then given 0 < x < y < 2, we must have

cos(y)� cos(x) = �2 sin
�
y + x

2

�
sin

�
y � x
2

�
< 0:

Therefore, the cosine function must be strictly monotonically decreasing between
0 and 2.

Definition. The number � is de�ned to be � = 2x0, where x0 is the unique
zero of cos in the open interval (0; 2).

Theorem 2.38. We have

� cos(�) = �1, cos(3�=2) = 0 and cos(2�) = 1,

� sin(�=2) = 1, sin(�) = 0, sin(3�=2) = �1 and sin(2�) = 0,

� cos(x+ 2�) = cos(x), sin(x+ 2�) = sin(x),

� cos(x+ �) = � cos(x), sin(x+ �) = � sin(x),

� cos(�=2� x) = sin(x), and sin(�=2� x) = cos(x)

for all x 2 R.

The proof involves lots of little exercises which you can look up in the standard
textbooks on analysis. For example, since we know that cos(�=2) = 0, sin(�=2) >
0, and cos2(�=2) + sin2(�=2) = 1, it must follow that sin(�=2) = 1. But then

cos(�) = cos
�
�

2
+
�

2

�
= cos2

�
�

2

�
� sin2

�
�

2

�
= 0� 1 = �1:

The other points in this theorem can be similarly proved.

Using these ideas, people have found various formulas for the number �. One
particularly interesting formula (which is related to the famous Riemann zeta
function in number theory) is the following

�2

6
=

1X
n=1

1

n2
:
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2.16 The geometry of the complex numbers

Given a complex number z = x+ iy 2 C, with x, y 2 R, we can say that z is the
point (x; y) 2 R2, where R2 is the Euclidean plane. Then, given another complex
number w = u+ iv, we have that the sum z +w is the point (x+ u; y + v) 2 R2.
This is just the normal vector addition operation of linear algebra.

But things become more interesting when we multiply two complex numbers
together. For this, another representation, using polar coordinates, is more ap-
propriate. Taking z = x+ iy, and using the trigonometric functions, we see that
there is a unique r 2 R with r � 0, and (if r > 0) a unique � 2 [0; 2�), such that
x = r cos(�) and y = r sin(�). That is

z = r cos(�) + ir sin(�):

Similarly, there exist s � 0 and � 2 [0; 2�), such that

w = s cos(�) + is sin(�):

Then we have

z � z = (r cos(�) + ir sin(�)) � (s cos(�) + is sin(�))

= rs((cos(�) cos(�)� sin(�) sin(�)) + i(cos(�) sin(�) + sin(�) cos(�)))

= rs(cos(� + �) + i sin(� + �))

Another way to say the same thing is to write z = rei� and w = sei�. Then

zw = rei� � sei� = rs � ei(�+�):

When writing z = rei�, we can think of the complex number z as being the
two-dimensional vector with length r, and with angle � to the x-axis. Then we
see that multiplying two complex numbers z and w gives as the result the vector
with length the product of the lengths of z and w, and the angle to the x-axis is
the sum of the angles of z and w.

In particular, multiplying z by ei� simply results in the vector z having its
length remain unchanged (since jei�j = 1), but its angle is increased by �. Also,
one sees that if we take increasing values of x 2 R, then the complex number eix

just winds around the unit circle of the complex plane, in direct proportion to x.

2.17 The Riemann integral

Definition. Let a < b in R. A partition of the interval [a; b] is a �nite sequence
of numbers t0; : : : ; tn, such that t0 = a, tn = b, and tk�1 < tk for k = 1; : : : ; n.
Therefore, we can imagine that the partition splits the interval into n subin-
tervals

[a; b] = [t0; t1] [ [t1; t2] [ � � � [ [tn�1; tn]:
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The �neness of the partition is the length of the longest subinterval, namely

max
k=1;:::;n

tk � tk�1:

Definition. Let f : [a; b] ! R be a function, and let P = f[t0; t1]; : : : ; [tn�1; tn]g
be a partition of [a; b]. A Riemann sum for f with respect to P is a sum of
the form

S =
nX
k=1

f(xk)(tk � tk�1);

where tk�1 � xk � tk, for each k.

Definition. Let f : [a; b] ! R be a function. We say that f is Riemann
integrable if there exists a real number, denoted by

R b
a f(x)dx, such that for all

� > 0, a � > 0 exists, such that for all Riemann sums S over partitions with
�neness less than �, we have�����S �

Z b

a
f(x)dx

����� < �:

2.17.1 Step functions

The usual way to think about integrals is to consider step functions. Again, take
the interval [a; b], and a partition a = t0 < t1 < � � � < tn�1 < tn = b. Next, choose
n real numbers, c1; � � � ; cn. Then the step function corresponding to these choices
would be the function f : [a; b]! R given by

f(x) = ck , x 2 (tk�1; tk):

The values of f(tk) can be arbitrarily chosen. Obviously every step function is
Riemann integrable (in fact, this follows from our theorem 2.39), and the integral
is simply

nX
k=1

ck(tk � tk�1):

Furthermore, just as obviously, most step functions are not continuous | they
make a \jump" between adjacent intervals of the partition. So let us denote by
S([a; b];R) the set of all step functions from [a; b] to R.

Now, given two step functions g; h 2 S([a; b];R) with g � h, that is g(x) � h(x),
for all x 2 [a; b] then we must haveZ b

a
g(x)dx �

Z b

a
h(x)dx:
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2.17.2 Integrals defined using step functions

So this leads to another way of thinking about integrals. For let f : [a; b]! R be a
function such that there exist two step functions g; h 2 S([a; b];R) with g � f � h.
Then, assuming that f is, indeed, Riemann integrable, it would follow that we
must have Z b

a
g(x)dx �

Z b

a
f(x)dx �

Z b

a
h(x)dx:

Definition. Let f : [a; b] ! R be a function such that there exist two step
functions g; h 2 S([a; b];R) with g � f � h. The upper integral of f , denoted
by

R � f , is given byZ �

f = inf

(Z b

a
h(x)dx : f � h;where h 2 S([a; b];R)

)
:

Similarly, the lower integral
R
� f is

Z
�
f = sup

(Z b

a
g(x)dx : g � f;where g 2 S([a; b];R)

)
:

Theorem 2.39. The bounded function f : [a; b] ! R is Riemann integrable if
and only if

R
� f =

R � f . In this case, we have
R b
a f(x)dx =

R
� f .

Proof.

� \)": Let � > 0 be given. The problem then is to show that
R � f � R

� f < �.

Since f is Riemann integrable, there must exist some � > 0 which is su�-
ciently small that �����

nX
k=1

f(�k)(tk � tk�1)�
Z b

a
f(x)dx

����� < �

2
;

for every partition whose �neness is less than �. Given such a partition, for
each k, let

uk = infff(x) : x 2 [tk�1; tk]g
vk = supff(x) : x 2 [tk�1; tk]g

Then we have

Su =
nX
k=1

uk(tk � tk�1) �
Z b

a
f(x)dx; and

Sv =
nX
k=1

vk(tk � tk�1) �
Z b

a
f(x)dx:

However,

Sv �
Z �

f �
Z b

a
f(x)dx �

Z
�
f � Su;
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and

Sv � Su �
 
Sv �

Z b

a
f(x)dx

!
+

 Z b

a
f(x)dx� Su

!
<
�

2
+
�

2
= �:

� \(": Again, let � > 0 be given. Since
R � f =

R
� f , there must exist two step

functions g, h 2 S([a; b];R) with g � f � h andZ b

a
h(x)dx�

Z b

a
g(x)dx <

�

2
:

By possibly subdividing the partitions de�ning g and h we may assume that
both are de�ned along a single partition of [a; b], namely

a = x0 < x1 < � � � < xm = b:

Since f lies between the two step functions g and h, which are both bounded,
it follows that f is also bounded. So let

M = supfjf(x)j : x 2 [a; b]g:
Then choose

� =
�

8Mm
:

The problem now is to show that the Riemann sum with respect to any
partition of [a; b] of �neness less than � is within � of

R � f =
R
� �f . So let

a = t0 < t1 < � � � tn = b

be a partition whose �neness is less than �, and let �k 2 [tk�1; tk], for each k.
We de�ne the new function F : [a; b]! R by the rule

F (x) =

8<:0; if x 2 ft0; : : : ; tng;
f(�k); if x 2 (tk�1; tk):

Then F is Riemann integrable, and we haveZ b

a
F (x)dx =

nX
k=1

f(�k)(tk � tk�1):

A further function s : [a; b]! R is now de�ned as follows.

s(x) =

8<:0; if x 2 [tk�1; tk]; where [tk�1; tk] \ fx0; : : : ; xmg = ;;
2M; otherwise.

Then we have g � s � F � h + s, and furthermore, both g � s and h + s
are step functions. But we can only have s(�k) 6= 0 for at most 2m of the
numbers �k. ThereforeZ b

a
s(x)dx =

nX
k=1

s(�k)(tk � tk�1) � 2m � 2M � �

8Mm
=
�

2
:
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This means that Z b

a
g(x)dx� �

2
<

Z b

a
(g(x)� s(x))dx

�
Z b

a
F (x)dx

�
Z b

a
(h(x) + s(x))dx

<
Z b

a
h(x)dx+

�

2
:

But we also haveZ b

a
h(x)dx� �

2
<
Z �

f =
Z
�
f <

Z b

a
g(x)dx+

�

2
:

It is now a simple exercise to show that we have�����
Z b

a
f(x)dx�

Z b

a
F (x)dx

����� =
�����
Z b

a
f(x)dx�

nX
k=1

f(�k)(tk � tk�1)

����� < �;

where the number
R b
a f(x)dx is taken to be equal to the upper and lower

integrals Z �

f =
Z
�
f:

2.17.3 Simple consequences of the definition

By thinking about integrals de�ned in terms of step functions, we immediately see
that the following theorem is true.

Theorem 2.40. Let f , g : [a; b] ! R be integrable functions, and let � 2 R be
some constant. Then we have:

1. The function f + g is also integrable, andZ b

a
(f + g)(x)dx =

Z b

a
f(x)dx+

Z b

a
g(x)dx:

2. �f is integrable, with Z b

a
�f(x)dx = �

Z b

a
f(x)dx:

3. If f � g then Z b

a
f(x)dx �

Z b

a
g(x)dx:
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4. The functions maxff; gg and minff; gg, given by maxff; gg(x) = maxff(x); g(x)g
and minff; gg(x) = minff(x); g(x)g are both integrable.

5. If f+ is given by f+(x) = maxf0; f(x)g then f+ is integrable. The function
f� can be similarly de�ned to bef�(x) = minf0; f(x)g , and we haveZ b

a
f+(x)dx+

Z b

a
f�(x)dx =

Z b

a
f(x)dx:

Also jf j, given by jf j(x) = jf(x)j for all x is integrable, and we have�����
Z b

a
f(x)dx

����� �
Z b

a
jf(x)jdx:

6. The function fg is integrable.7

2.17.4 Integrals of continuous functions

Theorem 2.41. Let [a; b] � R be a closed interval, and let f : [a; b] ! R be
some continuous function. Then the integralZ b

a
f(x)dx

exists.8

Proof. Since the interval is closed, the function is uniformly continuous (theo-
rem 2.26). The problem is to show that

R � f =
R
� f , or in other words, to show

that for all � > 0, we have
R � f � R

� f � �.
So let some � > 0 be given. Since f is uniformly continuous, there exists some

� > 0 such that we have

jf(u)� f(v)j < �

2(b� a) ;

for all u, v 2 [a; b] with ju�vj < �. Next choose n 2 N to be su�ciently large that
n� > b� a and we de�ne two step functions g and h from [a; b] to R as follows.

g(x) = f

 
a+

m(b� a)
n

!
+

�

2(b� a)
and

h(x) = f

 
a+

m(b� a)
n

!
� �

2(b� a) ;

7But, of course, we do not always have
R
fg =

R
f � R g. For example,

R +1
�1

xdx = 0, yetR +1
�1

x2dx = 2
3 .

8If f is only de�ned on an open interval (a; b) then the integral may not exist, even if f is

continuous. For example, lim�!0

R 1
�

1
x
dx =1.
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when

x 2
"
a+

m(b� a)
n

; a+
(m+ 1)(b� a)

n

!
;

for each m 2 f0; : : : ; n� 1g, and �nally g(b) = h(b) = f(b).
Then we have g(x) � f(x) � h(x) for all x 2 [a; b], and furthermore

g(x)� h(x) � �

b� a:

Therefore we must haveZ �

f �
Z
�
f �

Z b

a
(g(x)� h(x))dx � �

b� a � (b� a) = �:

We also have the following simple analogue of the intermediate value theorem
for continuous functions.

Theorem 2.42 (Mean value theorem for integrals). Let f , g : [a; b] ! R be
continuous functions with g(x) � 0, for all x 2 [a; b]. Then there exists some
� 2 [a; b] with Z b

a
f(x)g(x)dx = f(�)

Z b

a
g(x)dx:

Proof. Let m = infff(x) : x 2 [a; b]g and M = supff(x) : x 2 [a; b]g. Then
mg(x) � f(x)g(x) �Mg(x), for all x 2 [a; b]. Therefore

m
Z b

a
g(x)dx �

Z b

a
f(x)g(x)dx �M

Z b

a
g(x)dx;

and if we write Z b

a
f(x)g(x)dx = �

Z b

a
g(x)dx;

for some � 2 R, we must have m � � � M . But then, according to the in-
termediate value theorem (theorem 2.25), there must exist some � 2 [a; b], with
f(�) = �.

2.18 The fundamental theorem of calculus

Theorem 2.43. Let [a; b] � R be a closed interval, and let f : [a; b] ! R be
some continuous function. Then the function F : [a; b]! R, given by

F (x) =
Z x

a
f(t)dt

is di�erentiable in (a; b), and we have F 0(x) = f(x), for all x 2 (a; b).
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Proof. Theorem 2.41 shows that the function F does exist. So let x 2 (a; b) be
given, and we �rst examine

lim
h!0

F (x+ h)� F (x)
h

= lim
h!0

1

h

 Z a+x

a
f(t)dt�

Z a+x+h

a
f(t)dt

!
= lim

h!0

1

h

Z x+h

x
f(t)dt;

where h > 0. According to theorem 2.42 (and taking the function g to be g(x) = 1,
for all x), there exists some �h 2 [x; x+ h] withZ x+h

x
f(t)dt = hf(�h):

Since f is continuous at x, we have limh!0 f(�h) = f(x), therefore

lim
h!0

F (x+ h)� F (x)
h

= lim
h!0

1

h

Z x+h

x
f(t)dt = lim

h!0

1

h
hf(�h) = f(x):

If h < 0 the argument is analogous. First of all, for a < b we de�ne the integralR a
b f(x)dx to be Z a

b
f(x)dx = �

Z b

a
f(x)dx:

Then one need only observe that

F (x+ h)� F (x) = �
Z x

x+h
f(x)dx = +

Z x+h

x
f(x)dx:

2.18.1 Anti-derivatives, or “Stammfunktionen”

Definition. Let f : (a; b) ! R be a continuous function. A di�erentiable
function G : (a; b) ! R, such that G0(x) = f(x), for all x 2 (a; b) is called an
anti-derivative (Stammfunktion, in German) to f .

Theorem 2.44. Given a continuous function f , then any two anti-derivatives
to f di�er by at most a constant.

Proof. Let G1 and G2 be anti-derivatives to f . Then we have G0
1 = f = G0

2,
which is to say, G0

1 � G0
2 = (G1 � G2)

0 = 0. But then the mean value theorem
(theorem 2.34) shows that we must have G1 � G2 being constant, say G1(x) �
G2(x) = C, for some constant C 2 R.

But we have seen that the integral
R x
a f(t)dt is an anti-derivative. Therefore,

all possible anti-derivatives are of the formZ x

a
f(t)dt+ C;

for various constants C 2 R.
In fact, we can be more speci�c.
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Theorem 2.45. Let f : [a; b] ! R be continuous, and let G be some anti-
derivative to f . Then we haveZ b

a
f(x)dx = G(b)�G(a):

Proof. In order to see this, we need only look at our original anti-derivative F (x) =R x
a f(t)dt. Therefore, we have F (a) = 0 and F (b) =

R b
a f(t)dt. But if F (x)�G(x) =

C, for all x, then we must have in particular

F (a)�G(a) = C = F (b)�G(b);

or

G(b)�G(a) = F (b)� F (a) =
Z b

a
f(x)dx:

Note that people often use the notation

Z b

a
f(x)dx = G(x)

�����
b

a

2.18.2 Another look at the fundamental theorem

Given that

f(x) = F 0(x) =
d

dx

�Z x

a
f(t)dt

�
;

then one can think of the di�erential operator d
dx
, and the integral operator

R
, as

being inverses of one another, in some sense. We have seen that the combination
d
dx

R
, when applied to a continuous function f , simply gives us f back again. How

about the reversed combination
R d
dx
?

For this, we need to have a di�erentiable function f , de�ned on an open interval
containing the interval [a; b]. Then, the assertion is:

Theorem 2.46. Let f : (c; d)! R be a di�erentiable function, and let [a; b] �
(c; d). Then we have Z b

a
f 0(x)dx = f(b)� f(a):

Proof. This is obvious! We need only observe that f is an anti-derivative to f 0.

2.18.3 Partial integration

This is a trivial consequence of what we have done up till now. Let (c; d) be an open
interval with [a; b] � (c; d), and let f , g : (c; d)! R be two di�erentiable functions.
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Then, according to the product rule, we have (fg)0(x) = f 0(x)g(x)+f(x)g0(x), for
all x 2 (c; d). Therefore it follows that

Z b

a
(fg)0(x) = f(x)g(x)

�����
b

a

=
Z b

a
f 0(x)g(x)dx+

Z b

a
f(x)g0(x)dx:

Often, one writes this equation as

Z b

a
f 0(x)g(x)dx = f(x)g(x)

�����
b

a

�
Z b

a
f(x)g0(x)dx:

2.18.4 The substitution rule

Another trivial consequence. Let f : [a; b] ! R be continuous and g : [c; d] ! R
be di�erentiable, with g([c; d]) � [a; b]. (In order to have di�erentiability at the
endpoints, we assume that the functions are de�ned in open intervals containing
the given closed intervals [a; b] and [c; d].) Since f is continuous, it is integrable;
thus there exists some anti-derivative F , with F 0 = f . Then according to the chain
rule of di�erentiation, we have

(F � g)0(x) = g0(x)F 0(g(x)) = g0(x)f(g(x)):

Integrating both sides of the equation gives the substitution rule:

Z d

c
f(g(x))g0(x)dx = (F � g)(x)

�����
d

c

= F (g(d))� F (g(c)) =
Z g(d)

g(c)
f(x)dx:

In particular, let the real-valued function f be de�ned and Riemann integrable
on an appropriate interval of R. Then we have the following simple consequences
of the substitution rule.

Z b

a
f(t+ c)dt =

Z b+c

a+c
f(x)dx

Z b

a
f(ct)dt =

1

c

Z bc

ac
f(x)dx; c 6= 0

Z b

a
tf(t2)dt =

1

2

Z b2

a2
f(x)dx
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2.19 Various examples

2.19.1 xm for m 2 Z
Since (xn)0 = nxn�1, for n 2 N, it follows that 1

n+1
xn+1 is the anti-derivative to

xn. Therefore Z b

a
xn =

1

n+ 1
xn+1

�����
b

a

We have seen that ln0(x) = 1
x
when x > 0. But also, using the chain rule, if

x < 0 we have that

ln0(�x) = � 1

�x =
1

x

Thus ln0(jxj) = 1
x
for all x not equal to zero. It follows that for a < b with 0 62 [a; b]

we have Z b

a

dx

x
= ln(jxj)

�����
b

a

Then, since x�nxn = 1, we di�erentiate both sides of the equation, using the prod-
uct rule, to obtain that (x�n)0 = �nx�n�1, for all n 2 N. Therefore, 1

�n+1
x�n+1 is

the anti-derivative to x�n, for n � 2. Thus if 0 62 [a; b] and m 2 Z with m � �2,
we have Z b

a
xm =

1

m+ 1
xm+1

�����
b

a

So much for the integrals of monomials | and thus polynomials.

2.19.2 The exponential, trigonometric, and logarithm func-
tions

We have exp0(x) = exp(x), sin0(x) = cos(x) and cos0(x) = � sin(x). Therefore

Z b

a
exp(x)dx = exp(x)

�����
b

a

;

Z b

a
cos(x)dx = sin(x)

�����
b

a

; and

Z b

a
sin(x)dx = � cos(x)

�����
b

a

Also for x > 0 we have (x(ln(x)� 1))0 = ln(x). Therefore for 0 < a < b

Z b

a
ln(x)dx = x(ln(x)� 1)

�����
b

a
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There are books containing hundreds of mathematical formulas | and in par-
ticular the integrals of all sorts of functions which might come up in practice.9 But
the more modern seeker after formulas involving integrals will undoubtedly make
use of one of the various computer algebra programs which are widely available
these days.10

Despite this, let us look at a couple further integrals. For example, the tangent
function is de�ned to be

tan(x) =
sin(x)

cos(x)
:

Since cos(x) = 0 when x is �=2 or 3�=2, we must exclude these numbers (and also
�=2+2m� and 3�=2+2m�, for all m 2 Z) when looking at the tangent function.

In any case, one immediately sees that for an interval [a; b] which avoids such
\bad" numbers, we have

Z b

a
tan(x)dx = � ln(j cos(x)j)

�����
b

a

2.19.3 The hyperbolic functions

The hyperbolic sine and hyperbolic cosine functions are de�ned to be

sinh(x) =
ex � e�x

2
and cosh(x) =

ex + e�x

2
:

Looking at the de�ning power series, one can say that

sinh(x) = �i sin(ix) and cosh(x) = cos(ix):

In any case, using the fact that the exponential is its own anti-derivative, we
immediately obtain

Z b

a
sinh(x)dx = cosh(x)

�����
b

a

and
Z b

a
cosh(x)dx = sinh(x)

�����
b

a

:

2.19.4 The inverse trigonometric functions

We have that the sine function has the value -1 at ��=2 and +1 at +�=2. Between
those two numbers, the sine function is strictly monotonically increasing. The
inverse function is called \arcsine". Therefore for ��=2 < � < �=2 and x = sin(�),
we have arcsin(x) = �. In particular,

arcsin(sin(�)) = �; and

sin(arcsin(x)) = x:

9For example, \Formeln der Mathematik", by Dr.-Ing. Dipl.-Math. G. Arnold, herausgegeben
von Prof. Dr.-Ing. H. Netz. (I have this one at home!)

10The open-source program \Maxima" is part of the Ubuntu distribution, and is thus freely
available.
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Remembering theorem 2.29, we have

arcsin0(x) = arcsin0(sin(�)) =
1

sin0(�)
=

1

cos(�)
:

But
cos2(�) + sin2(�) = cos2(�) + x2 = 1:

That is,

arcsin0(x) =
1p

1� x2 :

Therefore, if �1 < a < b < 1 we have

Z b

a

1p
1� x2dx = arcsin(x)

�����
b

a

:

Analogously, one �nds that

arccos0(x) = � 1p
1� x2

and

arctan0(x) = � 1

x2 + 1
:

In particular, in the case of arctan, we have the mapping

arctan : R! (��=2; �=2);

and so for any a < b we have

Z b

a

1

x2 + 1
dx = arctan(x)

�����
b

a

:

Of course the list could be extended almost inde�nitely. For example our \stan-
dard textbook", namely Analysis 1, by Otto Forster, contains many interesting
examples of what can be done with such functions. For example he proves the
Wallis' product formula:

�

2
=

2

1
� 2
3
� 4
3
� 4
5
� 6
5
� 6
7
� � � =

1Y
n=1

4n2

4n2 � 1
;

making use of the integrals of various standard functions.
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2.19.5 The area of a unit circle is �

For �1 < x < 1, let � = arcsin(x). Then for �1 < a < b < 1, we haveZ b

a

p
1� x2dx =

Z arcsin(b)

arcsin(a)

q
1� sin2(�) sin0(�)d� =

Z arcsin(b)

arcsin(a)
cos2(�)d�:

But then

cos2(x) =

 
eix + e�ix

2

!2

=
1

4

�
e2ix + e�2ix + 2

�
=

1

2
(cos(2x) + 1);

so that Z b

a

p
1� x2dx =

 
sin(2�)

4
+
�

2

! �����
arcsin(b)

arcsin(a)

:

But
sin(2�) = 2 sin(�) cos(�) = 2 sin(�)

q
1� sin2(�) = 2x

p
1� x2:

Thus Z b

a

p
1� x2dx =

 
2x
p
1� x2
4

+
arcsin(x)

2

! �����
b

a

:

Taking the limit as a! �1 and b! 1, we have

2x
p
1� x2
4

�����
b

a

! 0;

and
arcsin(x)

2

�����
b

a

! �

2
:

We conclude that Z +1

�1

p
1� x2dx = �

2
;

which represents the area of the half-circle.

2.20 Uniformly convergent sequences of functions

The exponential function is de�ned in terms of the exponential series. But looking
at the partial sums, we see a sequence of functions

fn(x) =
nX
k=0

xk

k!
:

Each fn is simply a polynomial, and for each x 2 R, the sequence of numbers
(fn(x))n2N converges to exp(x). That is to say, we have point-wise convergence
of the sequence of functions

fn ! exp :
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Nevertheless, this convergence is not uniform.11

Definition. Let U � R and fn : U ! R be a function for each n 2 N, giving
a sequence (fn(x))n2N of functions. The sequence will be called uniformly
convergent if there exists some function f : U ! R such that for all � > 0
there exists an N 2 N, such that if m � N then jfm(x) � f(x)j < � for all
x 2 U .

Another way to look at this situation is to imagine that the set of all functions
from U to R is an abstract \space". Within this space it is possible to establish
a sensible idea of the \distance" between pairs of functions. For this we use the
supremum norm.

Definition. Let X be a set, and let f : X ! R be a bounded function on X.
Then the supremum norm of f is

kfkX = supfjf(x)j : x 2 Xg:

It is obvious that the supremum norm satis�es the properties of a norm func-
tion, namely:

� kfkX � 0,

� k�fkX = j�j � kfkX , for all � 2 R, and

� kf + gkX � kfkX + kgkX , for any further bounded function g : X ! R.

Then the distance between any two such bounded functions f , g : X ! R is
given by

d(f; g) = kf � gkX :
With this de�nition, we see that a uniformly convergent sequence of bounded
functions is simply a convergent sequence with respect to the supremum norm.
That is, for all � > 0 there exists some N 2 N with kfm� fkX < �, for all m � N .

Theorem 2.47. Let U � R be an interval, and let fn : U ! R be a continuous
function, for all n 2 N. If the sequence (fn(x))n2N is uniformly convergent,
with fn ! f , then the function f : U ! R is also continuous.

Proof. Let x 2 U and � > 0 be given. Choose N 2 N to be so large that
jfm(y)�f(y)j < �=3, for allm � N and y 2 U . Since the function fN is continuous,

11On the other hand, the series de�ning the exponential function is locally uniformly conver-

gent. That is, for every x 2 R there exists an r > 0 such that fn ! exp uniformly in the interval
[x � r; x + r]. (And of course the analogous statement is also true for the exponential function
applied to complex numbers. Given any z 2 C, there exists an r > 0 such that the series fn ! exp
is uniformly convergent in the disc fw 2 C : jw � zj � rg.
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there exists some � > 0 such that jfN(u) � fN(x)j < �=3 for all u 2 U with
ju� xj < �. Then for all such u we have

jf(u)� f(x)j � jf(u)� fN(u)j+ jfN(u)� fN(x)j+ jfN(x)� f(x)j

<
�

3
+
�

3
+
�

3

= �:

Theorem 2.48. Let a < b and for each n 2 N let fn : U ! R be a Riemann
integrable function. Assume that fn ! f uniformly. Then f is also Riemann
integrable, and we haveZ b

a
f(x)dx =

Z b

a

�
lim
n!1

fn(x)dx
�
dx = lim

n!1

Z b

a
fn(x)dx:

Proof. The fact that f is Riemann integrable is left as an exercise. To show that

lim
n!1

Z b

a
fn(x)dx =

Z b

a
f(x)dx;

let � > 0 be given, and let N 2 N be su�ciently large that

kfm � fk[a;b] < �

b� a
for all m � N . Then we have�����

Z b

a
fm(x)dx�

Z b

a
f(x)dx

����� =

�����
Z b

a
(fm(x)� f(x)dx

�����
�

Z b

a
jfm(x)� f(x)jdx

<
�

b� a � (b� a)
= �:

Remark. All of these results may be generalized to complex-valued functions.
One need only take the absolute-value function in C, rather than simply re-
stricting it to R.

2.21 Taylor series; Taylor formula

2.21.1 The Taylor formula

Theorem 2.49 (Taylor's formula). Let f : [a; b]! R be an (n+1)-times contin-
uously di�erentiable function de�ned on an open interval (c; d) � [a; b]. (That
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is, let f 0(x) = f (1)(x), and then recursively we de�ne f (k+1)(x) =
�
f (k)(x)

�0
.

Then the requirement is that f (n+1)(x) exists for all x in [a; b], and the func-
tion f (n+1) : [a; b] ! R which is so de�ned is continuous.) Then for any x0
and x 2 [a; b] we have

f(x) = f(x0)+
f 0(x0)

1!
(x�x0)+ f 00(x0)

2!
(x�x0)2+ � � �+ f (n)(x0)

n!
(x�x0)n+Rn+1(x);

where

Rn+1(x) =
1

n!

Z x

x0
(x� t)nf (n+1)(t)dt:

Proof. Use induction on n. For n = 0, Taylor's formula is simply the fundamental
theorem

f(x) = f(x0) +
Z x

x0
f 0(t)dt:

So now assume it is true for the case n � 0. In particular, we assume that the
remainder term is

Rn(x) =
1

(n� 1)!

Z x

x0
(x� t)n�1f (n)(t)dt:

Applying partial integration, we obtain

Rn(x) =
1

(n� 1)!

Z x

x0
(x� t)n�1f (n)(t)dt

= �
Z x

x0
f (n)(t)

 
(x� t)n
n!

!0
dt

= �f (n)(t)
(x� t)n
n!

�����
x

x0

+
Z x

x0

(x� t)n
n!

f (n+1)(t)dt

=
f (n)(x0)

n!
(x� x0)n +

Z x

x0

(x� t)n
n!

f (n+1)(t)dt;

which is just the next term in the Taylor formula, with the corresponding remain-
der term.12

We can also express the remainder term in a di�erent way. Since (x�t)n

n!
is

always non-negative, we can use the mean value theorem for integrals to �nd some

12In the case that x < x0 we use the general rule that for integrable functions � : [a; b]! R we

have
R b
a
�(x)dx = � R a

b
�(x)dx, and the proof is then the same as when x0 < x.
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� 2 [x0; x] with

Rn+1(x) =
Z x

x0

(x� t)n
n!

f (n+1)(t)dt

= f (n+1)(�)
Z x

x0

(x� t)n
n!

dt

= �f (n+1)(�)
(x� t)n+1

(n+ 1)!

�����
x

x0

=
f (n+1)(�)

(n+ 1)!
(x� x0)n+1:

Then Taylor's formula takes the simple form

f(x) = f(x0)+
f 0(x0)

1!
(x�x0)+f

00(x0)

2!
(x�x0)2+� � �+f

(n)(x0)

n!
(x�x0)n+f

(n+1)(�)

(n+ 1)!
(x�x0)n+1:

2.21.2 The Taylor series

If f is in�nitely di�erentiable13 then we can consider the series

f(x) =
1X
n=0

f (n)(x0)

n!
(x� x0)n:

In fact, if you think about it, you will see that all of our standard functions are
simply de�ned in terms of their Taylor series.

Back in the \old days", 200 years ago and more, mathematicians thought that
the only sensible way to de�ne the idea of a function was by means of a Taylor
series. Yet, in modern mathematics, we see that there are many in�nitely di�eren-
tiable real functions which are di�erent from their Taylor series. (Assuming that
the series converges in the �rst place!)

On the other hand, things are quite di�erent when we consider di�erentiable
functions of complex numbers. There, all di�erentiable functions are always in-
�nitely often di�erentiable, and furthermore, they are given by their Taylor series.
The subject of complex analysis is called \Funktionentheorie" in German, paying
tribute to this old-fashioned way of looking at functions.

2.21.3 The “standard” functions

At this stage of things, we take these to be: polynomials, the exponential function,
the trigonometrical functions and the logarithm function.

But of these, the �rst three categories are simply de�ned in terms of power
series, which are the Taylor series for the respective functions, taken at the point
x0 = 0.14 Thus we need only look at the logarithm function.

13Of course this is the case with our \standard functions", namely polynomials, the exponential
function, and the things which come out of that: sine, cosine, and so forth.

14polynomials can be thought of as being power series where all but a �nite number of the terms
are zero.
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But since the logarithm is only de�ned for positive numbers, we need to look
at the Taylor series at some point x0 > 0. The natural idea is to take x0 = 1.
Then we have ln(1) = 0, ln0(1) = 1, and in general

ln(n)(1) = (�1)n�1(n� 1)!

This gives the Taylor series

T (x) = 0 + (x� x0)� (x� x0)2
2!

+
2!(x� x0)3

3!
� 3!(x� x0)4

4!
+ � � �

= (x� 1)� (x� 1)2

2
+

(x� 1)3

3
� (x� 1)4

4
+ � � �

It is often written

T (1 + t) = t� t2

2
+
t3

3
� t4

4
+ � � �

Another way to write it is

T (1� t) = �(t+ t2

2
+
t3

3
+
t4

4
+ � � � )

Note however that this series only converges for jtj < 1.
Is it true that the Taylor series for the logarithm does actually equal the loga-

rithm function itself? That is, do we have

T (1 + t) = ln(1 + t)

for all jtj < 1?
To answer this question, the simplest idea is to consider the sequence of func-

tions

fn(x) =
nX
k=1

(�1)k�1xk:

Lemma. For jxj < 1, the series (fn(x))n2N is absolutely convergent. If �1 <
a < b < 1 then the series of functions fn, when restricted to [a; b], converges
uniformly.

Proof.
nX
k=1

���(�1)k�1xk
��� = nX

k=1

jxjk = 1

1� jxj :

Therefore the convergence is absolute, and as a consequence the series of functions
(fn(x))n2N converges point-wise to a function f on the interval (�1;+1). For
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x 2 [a; b], we have

jf(x)� fn(x)j =

������
1X

k=n+1

(�1)k�1xk

������
�

1X
k=n+1

jxjk

= jxjn+1
1X
k=0

jxjk

� Mn+1 1

1�M ;

where M = maxfjaj; jbjg < 1.

This result can be applied to the logarithm function. We have

ln0(1 + x) =
1

1 + x
:

Therefore, using theorem 2.48, we have

ln(1 + x) = ln(1 + t)

�����
x

0

=
Z x

0

 
1X
n=0

(�1)ntn
!
dt

=
1X
n=0

(�1)n x
n+1

n+ 1

=
1X
n=1

(�1)n�1x
n

n

for jxj < 1.
What can we do to represent ln(x) when x � 1? In this case we can �nd some

y with 1 < y < 2, and yk = x, for some k 2 N. Then

ln(x) = ln(yk) = k � ln(y) = k �
 

1X
n=1

(�1)n�1 (y � 1)n

n

!
:

For the special case ln(2), the Taylor series gives

T (2) = 1� 1

2
+

1

3
� 1

4
+ � � �

In order to see that, in fact, T (2) = ln(2), let us examine the remainder term in
the Taylor formula. For this, we �rst observe that

ln(n+1)(1 + �) = (�1)nn!(1 + �)�n:

Then

Rn+1(2) =
ln(n+1)(1 + �)

(n+ 1)!
(2� 1)n+1 =

1

(n+ 1)(1 + �)n
;

where 0 < � < 1, and thus Rn+1(2)! 0 as n!1.
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2.22 Improper integrals

We have only de�ned integrals for functions on closed intervals [a; b], where a < b
are real numbers. This de�nition can be extended to include integrals of the formZ b

a
f(x)dx;

where b = �1 and/or a =1. Namely, if

lim
R!1

Z R

a
f(x)dx

exists, then the limit is taken to be
R1
a f(x)dx. The other cases are de�ned anal-

ogously.
For example Z x

1

dt

t2
= �t�1

�����
x

1

= �1

x
+ 1:

Therefore Z 1

1

dt

t2
= 1:

However, the function 1=t2 !1 as t! 0. Can it be that the integralZ 1

0

dt

t2
= lim

�!0

Z 1

�

dt

t2

exists?
Obviously not, since Z 1

�

dt

t2
= �1 + 1

�
!1

as �! 0.
On the other hand,

Z 1

�

dtp
t
= 2

p
t

�����
1

�

= 2� 2
p
�! 2

as �! 0.
As a matter of fact, we have the following theorem.

Theorem 2.50. The improper integralZ 1

0
tsdt

diverges for all s 2 R.
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Proof. Otherwise, we could writeZ 1

0
tsdt =

Z 1

0
tsdt+

Z 1

1
tsdt:

If s = �1, then the anti-derivative to t�1 is ln(t). AndZ R

1

dt

t
= ln(R)!1

as R!1.
If s 6= �1 then the anti-derivative to ts is

ts+1

s+ 1
:

If s < �1 then Z 1

�
tsdt =

1

s+ 1

�
1� �s+1

�
!1;

since (s+ 1) < 0, and thus �s+1 !1 as �! 0.
If s > �1 then Z R

1
tsdt =

1

s+ 1

�
Rs+1 � 1

�
!1

since s+ 1 > 0, and thus Rs+1 !1 as R!1. In all cases, the integrals do not
converge.

2.23 The integral comparison test for series

Theorem 2.51. Let a < b and f : [a; b] ! R be a monotonic function. Then
the Riemann integral

R b
a f(x)dx exists.

Proof. Assume without loss of generality that f is monotonically increasing; that
is, f(s) � f(t) for all s � t in [a; b]. For each n 2 N, we can take the partition
a = x0 < x1 < � � � < xn = b, where

xk = a+ k
b� a
n

;

k = 0; 1; : : : ; n. Let the step functions g, h : [a; b]! R be given by

g(x) = f(xk�1); for xk�1 � x < xk;

h(x) = f(xk); for xk�1 � x < xk;

and then g(b) = h(b) = f(b). Therefore g � f � h. ButZ b

a
g(x)dx �

Z
�
f �

Z �

f �
Z b

a
h(x)dx
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and Z b

a
h(x)dx�

Z b

a
g(x)dx =

Z b

a
(h(x)� g(x))dx

=
nX
k=1

b� a
n

(f(xk)� f(xk�1))

=
b� a
n

(f(b)� f(a)):

Since both the numbers f(b)�f(a) and b�a are constant, and we can choose n to
be arbitrarily large, it follows that we must have

R
� f =

R � f , so that f is Riemann
integrable.

Theorem 2.52 (Integral comparison test). Let f : [1;1)! R be monotonically
decreasing. Then the improper integral

R1
1 f(x)dx exists if and only if the

series
P1
n=1 f(n) converges.

Proof. Obviously both the sum and the integral can only converge if f(x) � 0,
for all x � 1. For each n 2 N let gn, hn : [1; n]! R be given by

gn(x) = f(k + 1); for k � x < k + 1;

hn(x) = f(k); for k � x < k + 1;

for k = 1; : : : ; n� 1 and gn(n) = hn(n) = f(n). Then

Z n

1
gn(x)dx =

nX
k=2

f(n)

and Z n

1
hn(x)dx =

n�1X
k=1

f(n):

Therefore we see that
P1
n=1 f(n) converges if and only if both

lim
n!1

Z n

1
gn(x)dx

and

lim
n!1

Z n

1
hn(x)dx

exist. But gn � f � hn on [1; n], for each n.

2.23.1 Riemann’s zeta function

Since for each x > 1 we have Z 1

1

dt

tx
=

1

x� 1
;
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it follows from the integral comparison test that

�(x) =
1X
n=1

n�x

de�nes a function � : (1;1) ! R. As an exercise, we see that the series also
converges for all complex numbers z = x + iy with x > 1. Riemann proved
that the zeta function satis�es a certain functional equation which allows it to be
\analytically continued" throughout the whole of the complex plane except for
the obvious singularity at z = 1. This function plays a central role in the subject
of analytic number theory.

There are certain relationships with the Gamma function, which also has a
functional equation, allowing an analytic continuation within the theory of com-
plex analysis.

2.24 The Gamma function

For x > 0, one writes

�(x) =
Z 1

0
tx�1e�tdt:

Theorem 2.53. The integral de�ning the Gamma function converges for all
x > 0.

In order to prove this, let us begin with a simple lemma.

Lemma. For all n 2 N, we have

lim
t!1

et

tn
=1:

Proof. Since

et = 1 + t+ � � �+ tn+1

(n+ 1)!
+ � � � ;

it follows that
et

tn
>

t

(n+ 1)!

for all t > 0, and thus
et

tn
!1 as t!1:

Therefore we must also have

lim
t!1

tn

et
! 0 as t!1:
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Proof of theorem 2.53. Let x > 0 be given, and let t0 > 0 be su�ciently large
that tx+1e�t < 1, for all t � t0. Then

tx�1e�t < t�2 for all t � t0:

Therefore Z 1

t0
tx�1e�tdt <

Z 1

t0

dt

t2
=

1

t0
;

so that the integral from t0 to 1 converges.15

On the other hand we have e�t < 1 for all t > 0, therefore tx�1e�t < tx�1, andZ t0

�
tx�1e�tdt <

Z t0

�
tx�1dt

=
tx

x

�����
t0

�

=
tx0
x
� �x

x

! tx0
x

as �! 0:

Thus also the integral from 0 to t0 converges.

2.24.1 The functional equation for the Gamma function

For 0 < � < R <1, partial integration gives

Z R

�
txe�tdt = �txe�t

�����
R

�

+
Z R

�
xtx�1e�tdt:

However, for x > 0, we have lim�!0 �
xe�� = 0 and limR!0R

xe�R = 0.
Therefore we obtain the functional equation for the Gamma function:

�(x+ 1) =
Z 1

0
txe�tdt = x

Z 1

0
tx�1e�tdt = x�(x):

In particular we have

�(1) =
Z 1

0
t1�1e�tdt =

Z 1

0
e�tdt = �e�t

�����
1

0

= 1:

It follows that
�(n+ 1) = n!;

for all n 2 N.
For n = 0 we have �(0+1) = �(0) = 1. But then the functional equation gives

�(0+ 1) = 1 = 0 ��(0). This is impossible! So the Gamma function is not de�ned
at 0. And therefore it is also not de�ned at all of the negative integers �n, for
n 2 N.

15We have tx�1e�t > 0 for t � t0. Thus
R R
t0
tx�1e�tdt increases as R increases.
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On the other hand, if we take say x = 1=2 then we have �(1=2) being some
positive number. In fact, it turns out that �(1=2) =

p
�. Then, using the func-

tional equation, we �nd that �(�1=2) = �2p�, �(�3=2) = 4
p
�=3, and so forth.

In fact, apart from zero and the negative integers, the Gamma function is de�ned
for all of R.

2.24.2 The Gamma function in complex analysis

For z = x+ iy 2 C, we can write

�(z) =
Z 1

0
tz�1e�tdt:

It can be shown that the integral converges when the real part of z is positive,
namely x > 0. We again obtain the same functional equation, namely �(z + 1) =
z�(z), and this allows us to analytically continue the de�nition of the Gamma
function into the region of the complex plane where the numbers have real part
negative or zero. It turns out that the function can be de�ned everywhere except at
zero and the negative real integers. These are points of singularity of the function.
Apart from these points, the Gamma function is everywhere di�erentiable. There
are various interesting formulas which can be proved. For example, we have

�(z) = lim
n!1

nzn!

z(z + 1) � � � (z + n)
:

In order to get a feel for how such formulas can be proved, let us again look at the
situation for �(x), for x > 0.

2.24.3 Two formulas

Theorem 2.54. For t 2 R, n 2 N we have

lim
n!1

�
1 +

t

n

�n
= et:

Proof.

ln

 
lim
n!1

�
1 +

t

n

�n!
= lim

n!1
ln
�
1 +

t

n

�n
= lim

n!1
n ln

�
1 +

t

n

�
= t lim

n!1

n

t
ln
�
1 +

t

n

�

= t lim
n!1

ln
�
1 + t

n

�
� ln(1)

t
n

= t ln0(1) = t
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The �rst equation follows from the continuity of the logarithm function; the fourth
equation follows since ln(1) = 0, and of course the �fth equation results from
ln0(x) = 1=x = 1, when x = 1.

Therefore

eln((limn!1(1+ t
n)

n
) = lim

n!1

�
1 +

t

n

�n
= et:

Theorem 2.55. For x > 0 we haveZ n

0

�
1� t

n

�n
tx�1dt =

nxn!

x(x+ 1) � � � (x+ n)
:

Proof. Progressively using partial integration, we haveZ n

0

�
1� t

n

�n
tx�1dt =

tx

x

�
1� t

n

�n �����
n

0

�
Z n

0

n

�n
�
1� t

n

�n�1 tx

x
dt

=
n

xn

Z n

0

�
1� t

n

�n�1

txdt

=
n

xn

 
tx+1

x+ 1

�
1� t

n

�n�1
�����
n

0

�
Z n

0

n� 1

�n
�
1� t

n

�n�2 tx+1

x+ 1
dt

!

=
n(n� 1)

x(x+ 1)n2

Z n

0

�
1� t

n

�n�2

tx+1dt

...

=
n(n� 1) � � � (n� (n� 1))

x(x+ 1) � � � (x+ (n� 1))nn

Z n

0
tx+(n�1)dt

=
n(n� 1) � � � (n� (n� 1))

x(x+ 1) � � � (x+ (n� 1))nn

 
tx+n

x+ n

�����
n

0

!

=
nxn!

x(x+ 1) � � � (x+ n)
:

Notice here that we always have the expressions of the form

tx+k

x+ k

�
1� t

n

�n�k �����
n

0

being zero, so that only the integral is carried through from one line to the next.

It is now an exercise to show that the convergence given by theorem 2.54
is uniform, and that the improper integral de�ning the Gamma function also
converges when theorem 2.55 is used. All of this gives us the formula

�(x) = lim
n!1

nxn!

x(x+ 1) � � � (x+ n)
;

for x 2 R with x > 0.
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2.25 Convexity

Definition. Let D � R and f : D ! R be some function. An element x0 2 D,
together with its value f(x0) under f , is called an isolated local minimum of
the function if there exists some � > 0 such that for all x 2 D with jx�x0j < �
and x 6= x0, we have f(x) > f(x0). The idea of an isolated local maximum is
de�ned analogously.

Theorem 2.56. Let f : (a; b) ! R be a di�erentiable function which is twice
di�erentiable at the point x0 2 (a; b), such that f 0(x0) = 0 and f 00(x0) > 0.
Then f(x0) is an isolated local minimum of the function f . If f 00(x0) < 0 then
f(x0) is an isolated local maximum.

Proof. Since

f 00(x0) = lim
�!x0

f 0(�)� f 0(x0)
� � x0 ;

there must exist some � > 0 such that for all � 2 (a; b) with j��x0j < � and � 6= x0
we have

f 0(�)� f 0(x0)
� � x0 > 0:

But f 0(x0) = 0. Therefore we must have f 0(�) < 0 if � < x0 and f
0(�) > 0 if � > x0.

It then follows from the mean value theorem (2.34) that f is strictly monotonically
decreasing for � < x0, and strictly monotonically increasing for � > x0.

The result when f 00(x0) < 0 follows analogously.

Definition. Let D � R be an interval. (Thus if a < b are two points of D,
and x is some point with a < x < b, then we must also have x 2 D as well.)
A function f : D ! R is called convex if for any two points a, b 2 D, and for
any � with 0 � � � 1, we have

f(�a+ (1� �)b) � �f(a) + (1� �)f(b):
Theorem 2.57. Assume that D is an open interval, and let f : D ! R be
twice di�erentiable. Then f is convex , f 00(x) � 0 for all x 2 D.
Proof. \)" In order to produce a contradiction, assume that f is convex and that
there exists some x0 2 D with f 00(x0) < 0. Let g : D ! R be given by

g(x) = f(x)� f 0(x0)(x� x0);
for all x 2 D. Then we have g0(x0) = 0 and g00(x0) = f 00(x0) < 0. Therefore, g(x0)
is an isolated local maximum of the function g. That is, there exists some � > 0
with g(x) < g(x0) for all x 6= x0 in D, with jx� x0j � �. But then

f(x0) = g(x0) >
1

2
(g(x0 � �) + g(x0 + �)) =

1

2
(f(x0 � �) + f(x0 + �));

contradicting the fact that f is convex.
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\(" Since f 00(x) � 0 for all x 2 D, we must have the function f 0 monotonically
increasing. So let a < b be two points of D, and let 0 < � < 1 be given. Take

x = �a+ (1� �)b:
Then, according to the mean value theorem, there exist two further points �1, �2
with a < �1 < x < �2 < b, such that

f(x)� f(a)
x� a = f 0(�1) � f 0(�2) =

f(b)� f(x)
b� x :

But x� a = (1� �)(b� a) and b� x = �(b� a). Thus
f(x)� f(a)
(1� �)(b� a) �

f(b)� f(x)
�(b� a) ;

or
�(f(x)� f(a)) � (1� �)(f(b)� f(x)):

That is,
f(x) = f(�a+ (1� �)b) � �f(a) + (1� �)f(b):

Since a, b and � were chosen arbitrarily, it follows that f must be convex.

Similarly, one proves that f is concave if, and only if, f 00(x) � 0 for all x 2 D.
Theorem 2.58. Let p, q > 1 such that 1=p+1=q = 1. Then for all x, y > 0 we
have

x
1
py

1
q � x

p
+
y

q
:

Proof. Since for all x > 0 we have ln00(x) = �1=x2 < 0, it follows that the
logarithm must be a concave function, and we have

ln(�x+ (1� �)y) � � ln(x) + (1� �) ln(y):
In particular, this is true for � = 1=p, and thus 1 � � = 1=q. The result then
follows by applying the exponential function to both sides and remembering that
the exponential function is monotonically increasing.

Corollary (Young's inequality). For x and y non-negative real numbers and
p > 1 with 1=p+ 1=q = 1, we have

xy � xp

p
+
yq

q
:

Definition. Let K be either the real numbers R, or else the complex numbers
C. For any vector x = (x1; x2; : : : ; xn) 2 Kn, and p � 1, the p-norm of x is

kxkp =
 

nX
k=1

jxkjp
! 1

p

:
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Theorem 2.59. Let x = (x1; x2; : : : ; xn) 2 Kn be a vector (K = R or C), and
p > 1. Then for q > 1 with 1=p + 1=q = 1 and also y = (y1; y2; : : : ; yn) 2 Kn,
we have

nX
k=1

jxkykj � kxkpkykq:

Proof. If kxkp = 0 or kykq = 0 then the result is trivial. Otherwise, for k =
1; : : : ; n let

uk =
jxkjp
kxkpp ; and vk =

ykjq
kykqq :

We have

nX
k=1

uk =
1

kxkpp (jx1j
p + � � �+ jxnjp) = 1Pn

k=1 jxkjp
 

nX
k=1

jxkjp
!
= 1:

Similarly,
Pn
k=1 vk = 1. But

jxkykj
kxkpkykq = u

1
p

k v
1
q

k �
1

p
uk +

1

q
vk:

Therefore
nX
k=1

jxkykj
kxkpkykq �

1

p

nX
k=1

uk +
1

q

nX
k=1

vk =
1

p
+

1

q
= 1:

And �nally,
nX
k=1

jxkykj � kxkpkykq:

In particular, when p = q = 2 we obtain the familiar Cauchy-Schwarz inequality
of linear algebra:

jhx; yij =
�����
nX
k=1

xkyk

����� �
nX
k=1

jxkykj �
 

nX
k=1

x2k

! 1
2
 

nX
k=1

y2k

! 1
2

= kxk � kyk:

Definition. Let a < b and f : [a; b]! R be Riemann integrable. For p � 1, we
de�ne

kfkp =
 Z b

a
jf(x)jpdx

! 1
p

:

Theorem 2.60 (H�older's inequality). Let a < b and f , g : [a; b]! R be Riemann
integrable. For p > 1, we haveZ b

a
jf(x)g(x)jdx � kfkpkgkq;

where 1=p+ 1=q = 1.

90



Proof. For each n 2 N, take the partition a = x0 < x1 < � � � < xn = b of the
interval [a; b] where xk = a+ k(b�a)

n
, for each k, and consider the Riemann sum

nX
k=1

jf(�k)g(�k)j(xk � xk�1) =
b� a
n

nX
k=1

jf(�k)g(�k)j;

where xk�1 < �k < xk, for each k. Then according to theorem 2.59, we have

b� a
n

 
nX
k=1

jf(�k)g(�k)j
!

� b� a
n

 
nX
k=1

jf(�k)jp
! 1

p
 

nX
k=1

jg(�k)jq
! 1

q

=

 
b� a
n

! 1
p
+ 1
q
 

nX
k=1

jf(�k)jp
! 1

p
 

nX
k=1

jg(�k)jq
! 1

q

=

 
b� a
n

nX
k=1

jf(�k)jp
! 1

p
 
b� a
n

nX
k=1

jg(�k)jq
! 1

q

According to the de�nition of the Riemann integral, we have both

nX
k=1

jf(�k)g(�k)j(xk � xk�1) =
b� a
n

nX
k=1

jf(�k)g(�k)j !
Z b

a
jf(x)g(x)jdx

and also

b� a
n

nX
k=1

jf(�k)jp !
Z b

a
jf(x)jpdx and

b� a
n

nX
k=1

jg(�k)jq !
Z b

a
jg(x)jqdx;

for n!1.

Theorem 2.61. Let p � 1 and x, y 2 Kn (where, again, K is either R or C).
Then we have

kx+ ykp � kxkp + kykp:
Proof. If p = 1, then this is just the triangle inequality for the absolute value
function. Therefore assume p > 1, and let 1=p + 1=q = 1. De�ne z 2 Kn by
z = (z1; : : : ; zn), where zk = jxk + ykjp�1 for each k. We have 1

p
+ 1

q
= 1. That is,

q
p
+ 1 = q, or q(p� 1) = p. Therefore

zqk = jxk + ykjq(p�1) = jxk + ykjp;

and so kzkq = kx+ ykp=qp .
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According to theorem 2.59, and using the triangle inequality, we have

kx+ ykpp =
nX
k=1

jxk + ykjp

=
nX
k=1

jxk + ykjjzkj

�
nX
k=1

jxkzkj+
nX
k=1

jykzkj

� (kxkp + kykp) kzkq
= (kxkp + kykp) kx+ ykp=qp

= (kxkp + kykp) kx+ ykp�1
p :

The last equality here follows from the observation that p
q
= p � 1. Finally,

dividing by kx+ ykp�1
p gives the result. (Of course the theorem is trivially true if

kx+ ykp�1
p = 0.)

This shows that the mapping k � kp : Kn ! K is, in fact, a norm. For we
certainly have kxkp � 0 for all x 2 Kn, and x = 0 if and only if kxkp = 0. Also
k�xkp = j�jkxkp is easy to verify. Then �nally, Minkowski's inequality gives us
the triangle inequality for a norm.

In analogy to the proof of theorem 2.60, we can extend theorem 2.61 to inte-
grals.

Theorem 2.62 (Minkowski's inequality). Again let a < b and f , g : [a; b] ! R
be Riemann integrable. For p � 1, we have

kf + gkp � kfkp + kgkp:

It is important to note however, that we can have kfkp = 0 even when f is not
the zero function. For example, take the function f : [�1;+1]! R to be given by

f(x) =

8<:1; if x = 1

0; if x 6= 1:

Then clearly kfkp = 0, for all p � 1, yet f is not the zero function. Thus, strictly
speaking, k � kp is not a norm on the space of integrable functions on a given
interval.

If you continue on to the Analysis 3 lecture, then you will learn more about
such things.
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Chapter 3

Analysis 2

3.1 Metric spaces

Definition. Let M be some arbitrary non-empty set. A mapping

d :M �M ! R

is called a metric on M if it satis�es the following three properties.

� d(x; y) = 0 if, and only if x = y.

� d(x; y) = d(y; x), for all x and y in M . (Symmetry)

� d(x; z) � d(x; y)+d(y; z), for all x, y, and z 2M . (The triangle inequality)

We can think of this function \d" as giving us a sort of abstract \distance" func-
tion within the setM . Obviously the distance function in our usual 3-dimensional
space of everyday experience is a metric.

Theorem 3.1. Given a metric d, de�ned on a set M , then we have d(x; y) � 0,
for all x, y 2M .

Proof. This follows trivially from the fact that

0 = d(x; x) � d(x; y) + d(y; x) = 2d(x; y);

for all x, y 2M .

Examples

� The real numbers R, together with the metric given by d(x; y) = jx� yj.
� The complex numbers C with d(w; z) = jw � zj.
� Let V be any normed vector space, with norm k � k : V ! R. Then d(u; v) =
ku�vk is the corresponding metric on V . Therefore we see that any normed
vector space | for example our usual R3 | is automatically also a metric
space.
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� Let C0([a; b];R) be the set of continuous real-valued functions de�ned on an
interval [a; b] � R. Then, as we have already seen, C0([a; b];R) can be con-
sidered with the norm kfk = supfjf(x)j : a � x � bg. Therefore C0([a; b];R)
is also a metric space.

� The 2-sphere S2 = fx 2 R3 : kxk = 1g, together with the metric given by
d(x; y) = kx� yk, where the norm here is simply the usual Euclidean norm
of R3.

3.1.1 Open sets, closed sets

Definition. Let (M;d) be a set, together with a metric. Given any number
� > 0, and any x 2M , then the open ball around x with radius � is the subset

B(x; �) = fy 2M : d(y; x) < �g:

In general, a subset U � M will be called open, if for all x 2 U , there exists
some �x > 0 (depending on x), such that B(x; �x) � U . A subset A � M will
be called closed if the compliment M n A is open.

Obviously, if �1 < �2 are two positive numbers, then B(x; �1) � B(x; �2).

Examples

� Given any metric space (M;d), then the empty set ; is both open and closed.
Also the whole set M is always both open and closed.

� Within the real numbers R, together with the usual metric, we have that all
open intervals (a; b) are open, and furthermore, all closed intervals [a; b] are
closed. On the other hand, intervals which are half open and half closed,
such as (a; b], are neither open nor closed. But for example (a;1) is open,
while [a;1) is closed.

� If (M;d) is an arbitrary metric space, then any subset consisting of a single
element fxg � M is closed. To see this, it is only necessary to observe that
we have B(y; d(x; y)=2) � (M n fxg), for all y 6= x.

By extension, we have that any �nite subset of M must also be closed.

Theorem 3.2. An arbitrary union of open subsets is open. On the other hand,
we can only say that every �nite union of closed subsets is closed.

Proof. Let (M;d) be a metric space. Let Ui � M be open subsets of M , indexed
by some \index set" I, so that i 2 I for all i. This index set might be in�nitely
large, even of some higher order of in�nity. The problem is then to show thatS
i2I Ui �M is open.
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But given any x 2 S
i2I Ui then, in particular, x 2 Ui for some i 2 I. But

since Ui is open in M , there exists some �x > 0 such that B(x; �x) � Ui � S
i2I Ui.

Therefore, since x was arbitrarily chosen, it follows that
S
i2I Ui is open in M .

Now let A1; : : : ; An be a �nite collection of closed subsets ofM . The problem is
to show thatM nSnk=1Ak is open. So let x 2 (M nSnk=1Ak). However, since each Ak
is closed, it follows that each (M nAk) is open. Furthermore, x 2 (M nAk) for all
k = 1; : : : ; n. Therefore, for each k, there is some �k > 0 with B(x; �k) � (M nAk).
Choose � = minf�k : k = 1; : : : ; ng. Then we have B(x; �) � (M n Snk=1Ak). Since
x was arbitrary, it follows that M n Snk=1Ak is open, hence

Sn
k=1Ak is closed.

Thinking about the basic relationships of set theory leads to the following
corollary.

Corollary. Arbitrary intersections of closed sets are closed. Finite intersec-
tions of open sets are open.

Definition. Let (M;d) be a metric space, and let ; 6= V � M be a subset.
Denote by V the intersection of all closed subsets of M which contain V .
The set V is called the closure of V in M .

Note that since M itself is always closed, this intersection is not empty. Thus
V is a closed set, and it is the smallest closed set containing V . Obviously, if V is
already closed, then we have V = V

Definition. Given some subset V � M , a point x 2 M is said to be on the
boundary of V if for all � > 0, the open ball B(x; �) at x with radius � contains
points of V and also points of M n V . That is

V \B(x; �) 6= ; 6= (M n V ) \B(x; �)

for all �. The set of all boundary points of V is denoted by @V .

Theorem 3.3. Given any V with ; 6= V �M , then we have V = V [ @V .
Proof. Let x 2 M with x 62 V [ @V . Since x 62 @V , there must exist some � > 0
with B(x; �)\V = ;. But also B(x; �=2)\ @V = ;, since for any point y 2 @V , we
have B(y; �=2)\ V 6= ;, and if y 2 B(x; �=2), then we would have B(x; �)\ V 6= ;,
which is impossible. Since x was chosen arbitrarily in M n (V [ @V ), it follows
that M n (V [ @V ) must be open. Thus V [ @V must be closed.

Now take W to be any closed subset of M with V � W . Let y 2 @V be an
arbitrary point of the boundary of V . If y 62W then we would have y 2 (M nW ),
which is an open set, since W is closed. But then there would be an � > 0 such
that B(y; �) � (M nW ) � (M n V ). But this is impossible, since then y would
not be on the boundary of V . Therefore y 2 W , and we must have that V [ @V
is contained within every closed set which contains V . That is, V = V [ @V .
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3.1.2 Compact sets

The ideas of convergence which we have already encountered in Analysis I can be
generalized to the case of arbitrary metric spaces.

Definition. Let (xn)n2N be a sequence of elements in the metric space (M;d).
Then the sequence converges to the element x 2 M if for all � > 0, a su�-
ciently large N 2 N exists, such that d(xn; x) < �, for all n � N .

We will say that x is a cluster point (or \H�aufungspunkt") of the sequence
if for every � > 0, there exist in�nitely many elements of the sequence con-
tained within B(x; �). Thus a cluster point is the limit point of a convergent
subsequence.

Definition. Let K �M be some subset of a metric space (M;d). We will say
that K is sequentially compact if for every sequence in K there exists a cluster
point in K.

Examples

� Any subset consisting of only �nitely many elements must be sequentially
compact.

� In R, any open set such as (a; b) is not sequentially compact. For example,
consider the open interval (0; 2). Then the sequence (1=n)n2N is contained
in (0; 2), yet the only possible cluster point, namely the number 0, is not
contained in (0; 2). Similarly, the entire set R is not sequentially compact.
For example the sequence (n)n2N has no cluster points.

Theorem 3.4 (Heine-Borel: 1-dimensional version). A subset K � R is sequen-
tially compact if and only if it is closed and bounded.

Proof. Let K � R be sequentially compact. If K were not bounded, then for each
n 2 N there would be some xn 2 K with jxnj > n. Clearly the sequence (xn)n2N
has no cluster points. Thus K must be bounded. Assume now that K is not
closed. That is, M nK is not open. Therefore there must be some x 2 (M nK),
such that for all � > 0, B(x; �) 6� (M n K). Or, put another way, for all � > 0,
there exists some y� 2 K with d(x; y�) < �. In particular, there exists a sequence
(zn)n2N with zn 2 K for all n, and d(x; zn) < 1=n.

Could it be that there exists some cluster point v 2 K for this sequence? If
so, then since x 62 K, we must have x 6= v, and so d(x; v) > 0. Since the sequence
(zn)n2N converges to x, there exists some N 2 N with d(zn; x) < d(x; v)=2, for all
n � N . But then for all such n, we must have zn 62 B(v; d(x; v)=2), since otherwise
we would have

d(x; v) � d(x; zn) + d(zn; v) <
d(x; v)

2
+
d(x; v)

2
= d(x; v):

But this is impossible, since d(x; v) > 0.
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On the other hand, assume that K � R is closed and bounded, and let (an)n2N
be some sequence in K. Since the sequence is bounded, there must exist some
convergent subsequence (Bolzano-Weierstra�, theorem 2.4). Therefore there is
some cluster point x 2 R of the sequence. We must show that x 2 K. If not,
then x is in the open set R n K. But then there would exist some � > 0 such
that B(x; �) \ K = ;. However, since all the elements an are contained in K,
it would follow that x could not be a cluster point of the sequence (an)n2N. A
contradiction.

With only a few changes, the same proof also works in the case of Rn. For
this we begin by observing that if typical points of Rn are x = (x1; : : : ; xn) and
y = (y1; : : : ; yn), then

d(x; y) = kx� yk =
q
(x1 � y1)2 + � � �+ (xn � yn)2:

From this, one sees that for each i = 1; : : : ; n we have

jxi � yij � d(x; y):

Therefore let (am)m2N be a sequence of points in Rn. For each m, we have that
am = (am1; : : : ; amn), with aij 2 R for each m 2 N and j 2 f1; : : : ; ng. Then
if the sequence converges to a point x = (x1; : : : ; xn) 2 Rn, it follows that we
have limm!1 amj = xj for each j. Thus it is clear that a sequence (am)m2N in
Rn converges if and only if the n separate sequences of coordinates (amj)m2N each
converge in R, for j = 1; : : : ; n. Slightly more general is the question of convergent
subsequences.

Theorem 3.5. Every bounded sequence in Rn contains a convergent subse-
quence.

Proof. Let (am)m2N be a bounded sequence in Rn. Therefore each of the sequences
of coordinates (amj)m2N is bounded in R. Let (am1(k)1)k2N be a convergent sub-
sequence for the sequence (am1)m2N (Bolzano-Weierstra�, theorem 2.4). But then
(am1(k)2)k2N is another bounded sequence in R. So let (am2(k)2)k2N be a conver-
gent subsequence. Note that then, (am2(k)1)k2N is still a convergent sequence in
R. Again, choose (am3(k)3)k2N to be a convergent subsequence of (am2(k)3)k2N, and
so on. Eventually we obtain the subsequence (amn(k))k2N, such that all of the
sequences of the coordinates converge. Thus (amn(k))k2N converges in Rn.

Theorem 3.6 (Heine-Borel: n-dimensional version). A subset K � Rn is sequen-
tially compact if and only if it is closed and bounded.

Proof. First assume that K is sequentially compact. The proof that K must be
closed and bounded is the same as before.

On the other hand, under the assumption that K is closed and bounded, let
(am)m2N be some sequence in K. According to theorem 3.5, there exists a con-
vergent subsequence (am(k))k2N with limk!1 am(k) = x, say. If x 62 K then since
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K is closed, it follows that Rn n K is open, and so there exists some � > 0 with
B(x; �) � (Rn nK). Yet limk!1 am(k) = x. That means that if we look at the co-
ordinates of the points, then we see that limk!1 am(k)j = xj, for j = 1; : : : ; n.
In particular, there must exist an N 2 N such that for all k � N we have
jam(k)j � xjj < �=

p
n, for all j = 1; : : : ; n. But then we have

kam(k) � xk =
vuut nX
j=1

�
am(k)j � xj

�2
<

vuuut nX
j=1

 
�p
n

!2

=
p
�2 = �:

That would mean that am(k) 2 (R3 n K) for all k � N , a contradiction, since
am 2 K for all m 2 N. Therefore we must have x 2 K.

The usual idea of \compactness" di�ers somewhat from this idea of \sequen-
tial compactness". In 1929, the two mathematicians Pavel Alexandrov and Pavel
Urysohn realized that the following de�nition is more general, and often more
useful.

Definition. Let (M;d) be a metric space, and let K � M . A collection of
open sets Ui � M , with i 2 I some index set, such that K � S

i2I Ui, is called
an open covering of K. The set K is compact if for any open covering of K,
there exists a �nite open sub-covering. That is to say, there exist i1; i2; : : : ; in,
for some n 2 N, and ij 2 I for all j, such that K � Sn

j=1 Uij .

Theorem 3.7. Let (M;d) be a metric space, and let K � M . Then K is
sequentially compact if and only if it is compact.

Proof. Begin by assuming K is compact. Could it be that K is not sequentially
compact? If so, then there exists a sequence (an)n2N in K which has no cluster
points in K. Thus, since each point x 2 K is not a cluster point of the sequence,
there exists an �x > 0 (depending on x), such that there are only �nitely elements
of the sequence in B(x; �x). But

S
x2K B(x; �x) is an open covering of K, and since

K is compact, there exists a �nite sub-covering, say

K � B(x1; �x1) [ � � � [B(xm; �xm):

But then there could only be �nitely many elements in the whole sequence, which
is a contradiction. Therefore K must be sequentially compact.

Now assume that K is sequentially compact. We must show that it is compact.
To start with, for each n 2 N we �nd a �nite collection of points xn1; xn2; : : : ; xnm in
K as follows. Take xn1 2 K to be some arbitrary point. Then if K 6� B(xn1; 1=n),
take xn2 2 KnB(xn1; 1=n). And so on, with xnk 2 KnSk�1

j=1 B(xnj; 1=n). Eventually
we must reach some nm 2 N with K � Snm

j=1B(xnj; 1=n), for otherwise (xnj)j2N
would be a sequence in K containing no convergent subsequence, contradicting
the fact that K is sequentially compact.

Therefore, taken together, there are only countably many possible open balls
of the form B(xnj; 1=n).
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To obtain a contradiction, assume that K is not compact. Assume that there
is an open covering

S
i2I Ui of K such that no �nite sub-covering exists. For each

element x 2 K, one of the open sets Ui contains x. And for a su�ciently large n,
there is an open ball B(xnj; 1=n) containing x, which is also contained within Ui.
For each x 2 K we can take such a ball, and in this way we obtain a countable
open covering, say

S1
k=1 Vk of K, such that each Vk is contained within some Ui of

the original open covering. Therefore, for all m 2 N we have K n Smk=1 Vk 6= ;.
We can construct a sequence (ak)k2N in K by taking

ak 2 K n
k[
j=1

Vj;

for each k 2 N. Since K is assumed to be sequentially compact, the sequence must
have a cluster point, a 2 K. But since

K �
1[
k=1

Vk;

there must be some ka 2 N with a 2 Vka. Thus Vka contains in�nitely many
elements of the sequence, in particular elements of the form aj for j > ka. This is
a contradiction.

Therefore we see that for metric spaces, the ideas of \sequentially compact",
and \compact", are the same. Since Euclidean space Rn is a metric space, it is
usual to state Heine-Borel's theorem by saying that a subset K 2 Rn is compact
if and only if it is closed and bounded.

A counterexample

But remember, Heine-Borel's theorem only applies to Euclidean spaces! In general
it is not true that closed and bounded implies compact. For example, consider the
metric space C0([0; 1];R), consisting of the set of continuous functions f : [0; 1]!
R. Let K � C0([0; 1];R) be the set of functions whose supremum norm is less than
or equal to 1. That is

K = ff 2 C0([0; 1];R) : sup
x2[0;1]

fjf(x)jg � 1g:

It is an exercise to show that K is both closed and bounded, and yet it is not
sequentially compact | therefore also not compact.

Of course, given any metric space (M;d), then the whole set M is also a subset
of itself. Therefore the de�nition of compactness can also apply to the whole space.

Theorem 3.8. If a metric space (M;d) is compact, then any subset V �M is
compact if and only if it is closed in M .
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Proof. Assume that V is closed. Then M n V is open. Let fUi : i 2 Ig be an
open covering of V . Then fUi : i 2 Ig [ fM n V g is an open covering of M .
Since M is compact, there exists a �nite sub-covering fUi1; : : : ; Uin ;M nV g. Then
fUi1; : : : ; Uing must be a �nite sub-covering of V . Thus V is compact.

Now assume that V is compact. We must show that V is closed, that is, that
M n V is open. Choose some x 2 (M n V ). For each v 2 V , take the open set
B(v; d(v; x)=3) around v, and also take the open set B(x; d(v; x)=3) around x. So
we have B(v; d(v; x)=3) \B(x; d(v; x)=3) = ;.1 But then we have

V � [
v2V

B(v; d(v; x)=3);

so that fB(v; d(v; x)=3) : v 2 V g is an open covering of V . Since V is compact,
there exists a �nite sub-covering fB(v1; d(v1; x)=3); : : : ; B(v1; d(vn; x)=3)g. Then
the intersection

n\
j=1

B(x; d(vj; x)=3)

is an open set containing x, and we must have

V \
0@ n\
j=1

B(x; d(vj; x)=3)

1A = ;:

Thus M n V is open, and so V must be closed.

3.1.3 Continuous mappings between metric spaces

Definition. Let (X; dX) and (Y; dY ) be metric spaces. A mapping f : X ! Y
is continuous at the point x0 2 X if for all � > 0, a � > 0 exists, such that
for all x 2 X with dX(x; x0) < � we have dY (f(x); f(x0)) < �. The mapping is
everywhere continuous | that is to say, it is continuous | if it is continuous
at all points of X.

This de�nition is entirely analogous with the de�nition we had last semester
for real-valued functions f : U ! R, where U is some interval along R. Continuity
involved the \distance function", which was given by d(x; y) = jx� yj. But as we
see, the generalization to metric spaces is a natural one.

When considering mappings f : X ! Y , one makes much use of the sets of the
form f�1(V ), for subsets V � Y . That is,

f�1(V ) = fx 2 X : f(x) 2 V g:
Thus, for each subset V � Y , we have that f�1(V ) � X.

Theorem 3.9. The mapping f : X ! Y is continuous if and only if f�1(V ) is
open in X, for every open set V � Y .

1Here we are using the fact that every metric space is a \Hausdor� space". This part of the
theorem is not true for non-Hausdor� topological spaces.
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Proof. Assume �rst that f : X ! Y is continuous. Let V � Y be open and
let x 2 f�1(V ). Since f(x) 2 V and V is open, there exists some � > 0 with
B(f(x); �) � V . Since f is continuous, there is some � > 0 with

f(B(x; �)) � B(f(x); �) � V:

That is, B(x; �) � f�1(V ). Since x was arbitrarily chosen in f�1(V ), it follows
that f�1(V ) must be an open subset of X.

In the other direction, assume that f�1(V ) is open in X, for every open subset
V of Y . Let x 2 X be some arbitrary point. Let � > 0 be given. Then take
the open set B(f(x); �) � V . We must have f�1(B(f(x); �)) � X being open in
X. Since x 2 f�1(B(f(x); �)), there is some open ball B(x; �) around x which is
contained within f�1(B(f(x); �)). That is, we have shown that for all � > 0 there
exists a � > 0 with dY (f(x

0); f(x)) < �, for all x0 2 X with dX(x
0; x) < �. Therefore

f is continuous at x, and since x was arbitrary, it is continuous everywhere.

It is also interesting to see what happens to compact subsets under continuous
mappings.

Theorem 3.10. Let f : X ! Y be a continuous mapping between metric spaces
and let K � X be compact. Then f(K) = ff(x) : x 2 Kg is compact in Y .

Proof. Let fUi : i 2 Ig be an open covering of f(K) in Y . Then since f is
continuous, ff�1(Ui) : i 2 Ig must be an open covering of K in X. Therefore,
since K is compact, there must be a �nite sub-covering ff�1(Ui1); : : : ; f

�1(Uin)g
of K, and so fUi1; : : : ; Uing is a �nite sub-covering of f(K) in V .

The proof of the following theorem follows the proofs of the analogous theorems
which we have seen in the last semester.

Theorem 3.11. Let (M;d) be a metric space and let K � M be compact. If
f :M ! R is continuous, then f(K) is compact (that is, closed and bounded)
in R. Furthermore, there exist points x1 2 K with f(x1) = infff(x) : x 2 Kg
and x2 2 K with f(x2) = supff(x) : x 2 Kg. Also f is uniformly continuous
on K.

Theorem 3.12 (The fundamental theorem of algebra). Let

f(z) = a0 + a1z + � � � anzn

be a polynomial with aj 2 C for all j = 0; : : : ; n, n � 1 and an 6= 0. Then there
exists some z0 2 C with f(z0) = 0.

Proof. For z 6= 0 we have

jf(z)j = janjjzjn
����1 + an�1

anz
+ � � �+ a0

anzn

����
� janjjzjn

�
1�

����an�1

anz

����� � � � � ���� a0anzn

����� :
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Then for z 2 C with

jzj > R = maxf1; 2njaj=anj : 0 � j < ng;
we must have

jf(z)j > janjjzjn
2

> 0:

Furthermore, it is clear that for any C > 0, we can choose an R0 > 0 such that
for all z 2 C with jzj > R0, we have jf(z)j > C. In particular, choose C to be
larger than jf(z)j, for some z 2 C. Therefore, if there exists any solution z0 with
f(z0) = 0, then it must be contained within the closed disc

D = fz 2 C : jzj � R0g:
Furthermore, for all z 62 D, we know that jf(z)j is not minimal.

According to the theorem of Heine-Borel, D must be compact. Also the func-
tion � : D ! R with �(z) = jf(z)j is continuous. Thus there exists some z0 2 D
with

�(z0) = inff�(z) : z 2 Dg = inffjf(z)j : z 2 Cg:
We must show that �(z0) = 0.

To obtain a contradiction, assume that jf(z0)j > 0. We can write

f(z) = a0 + a1z + � � � anzn = c0 + c1(z � z0) + � � �+ cn(z � z0)n

for some particular complex numbers c0; : : : ; cn 2 C. Since jf(z0)j > 0, we must
have jf(z0)j = jc0j 6= 0. Another way to look at this is to take the new function
f1, with f1(z) = f(z + z0), so that

f1(z) = c0 + cmz
m + zm+1g(z);

wherem � 1 is the smallest number such that cm 6= 0, and g is a further polynomial
in C.

Let z1 2 C be such that zm1 = �c0=cm, and for 0 � � � 1, consider

f1(�z1) = c0 � �mc0 + �m+1zm+1
1 g(�z1)

= c0
�
1� �m + �m+1zm+1

1 c�1
0 g(�z1)

�
:

Since the interval [0; 1] is compact, there exists some L > 0 with

jzm+1
1 c�1

0 g(�z1)j � L;

for all 0 � � � 1. Therefore

jf1(�z1)j � jc0j
�
1� �m + L�m+1

�
:

But if we choose � < 1=L, then we have L�m+1 < �m, so that

��m + L�m+1 < 0:

Therefore, for such � we have

jf1(�z1)j = jf(�z1 + z0)j < jc0j = inffjf(z)j : z 2 Cg:
This contradiction proves the theorem.
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3.1.4 Topological spaces

If the idea of metric spaces is a generalization of the \usual" geometry of the real
numbers R, or the Euclidean spaces Rn, then a further generalization is to consider
topological spaces. In fact, the study of topology is one of the major branches of
pure mathematics.

Definition. Let X be any non-empty set. A set O of subsets of X is a topology
on X if

1. Both ; 2 O and also X 2 O.
2. Every �nite intersection of elements of O is also an element of O.
3. Every union of elements of O is also an element of O.
Given a topological space (X;O), that is to say a non-empty set, together with

an appropriate set of subsets, then the elements of O are called the open sets of
X. Furthermore, a set V � X is a closed set if X n V is open.

It is obvious that many of the ideas we have developed for metric spaces can
be generalized into the framework of topological spaces. For example theorem 3.9
shows how the idea of continuous mappings between topological spaces should be
de�ned. Also the de�nition of compact sets can be directly generalized into the
theory of topology. Students who wish to pursue such ideas may enjoy taking part
in the topology lectures which are o�ered each year in the Faculty.

3.2 Convolutions

Definition. Let (M;d) be a metric space and let f : M ! R be a real-valued
function. The support Supp(f) of f is the closure of the subset fx 2 X :
f(x) 6= 0g. If the support is compact, then the function f is said to have
compact support.

A function f : R! R is called \piecewise continuous" if it is continuous at all
points of R except possibly for some �nite set of points fp1; : : : ; png � R where it
might be discontinuous.

Definition. Let f : R ! R be piecewise continuous. Then given a Riemann
integrable function g : R! R of compact support, the convolution g�f : R! R
is the function given by

g � f(x) =
Z 1

�1
f(t)g(x� t)dt:
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3.2.1 Dirac sequences

We will say that a sequence of functions of compact support Kn : R ! R, with
n 2 N, is a Dirac sequence if for all n:

1. Kn(x) � 0, for all x 2 R,

2. Kn is Riemann integrable and we have
R1
�1Kn(x)dt = 1, and

3. for each � > 0, there exists an N 2 N such that Supp(Kn) � [��; �], for all
n � N .

Theorem 3.13. Let f : R ! R be a piecewise continuous, bounded function,
and let (Kn)n2N be a Dirac sequence. For each n we de�ne fn = Kn � f . Then
for each closed interval S = [a; b] � R, such that f is continuous in an open
neighborhood of S, we have that the sequence (fn)n2N converges uniformly to
f on S.

Proof. The substitution rule gives

fn(x) =
Z 1

�1
f(x� t)Kn(t)dt;

and since
R1
�1Kn(x)dt = 1, we have

f(x) = f(x)
Z 1

�1
Kn(t)dt =

Z 1

�1
f(x)Kn(t)dt:

Therefore, for each x 2 R we have

fn(x)� f(x) =
Z 1

�1
(f(x� t)� f(x))Kn(t)dt:

Let S = [a; b] � R be a closed interval such that f is continuous in an open
neighborhood of S. In particular, there exist a0 < a and b0 > b such that f is
continuous in the closed interval [a0; b0]. Then since f is uniformly continuous on
[a0; b0], we have that for all � > 0, some � > 0 exists with � < minfa � a0; b0 � bg,
such that for all t with jtj < � we have

jf(x� t)� f(x)j < �;

for all x 2 S. Now choose N 2 N so large that Supp(Kn) � (��; �). Then we have

jfn(x)� f(x)j �
Z 1

�1
jf(x� t)� f(x)jKn(t)dt

=
Z �

��
jf(x� t)� f(x)jKn(t)dt

< � �
 Z �

��
Kn(t)dt

!
= �:

104



Remark. It is an exercise (using the Intermediate Value Theorem for Inte-
grals, theorem 2.42) to show that the idea of Dirac sequences can be gener-
alized in the following way. Rather than assuming that the functions in the
sequence Kn are of compact support, we assume instead that they satisfy the
condition that for all � > 0 and all � > 0 there exists an N 2 N such that for
all n � N , we have Z ��

�1
Kn(x)dx+

Z 1

�
Kn(x)dx < �:

Therefore we have:

Corollary. With this alternative formulation of Dirac sequences, theorem 3.13
is also true.

3.2.2 Weierstrass’ convergence theorem

Theorem 3.14. Let f : [0; 1] ! R be continuous, with f(0) = f(1) = 0. Then
there exists a sequence of polynomials (Pn)n2N which converges to f uniformly
on [0; 1].

Proof. We can extend f to a function f : R ! R by simply taking f(x) = 0, for
x 62 [0; 1]. Consider the sequence of functions (Kn)n2N with Kn : R ! R for all
n 2 N, such that

Kn(t) =

8<:
(1�t2)n

cn
; jtj � 1;

0; jtj > 1;

where

cn =
Z 1

�1
(1� t2)ndt:

Then, noting that Kn(�t) = Kn(t), for all t 2 R, we have

1. Kn(t) � 0, for all t.

2.
R1
�1Kn(t)dt = 1, since the constant cn was chosen to ensure that this is true.
Note further that

cn
2
=
Z 1

0
(1� t2)ndt =

Z 1

0
(1+ t)n(1� t)ndt �

Z 1

0
(1� t)ndt =

Z 1

0
tndt =

1

n+ 1
:

3. For � > 0 with � < 1 we haveZ ��

�1
Kn(t)dt+

Z 1

�
Kn(t)dt = 2

Z 1

�
Kn(t)dt

= 2
Z 1

�

(1� t2)n
cn

dt

� 2
Z 1

�

(n+ 1)

2
(1� �2)ndt

= (n+ 1)(1� �2)n(1� �):
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But2 since 0 < (1� �2) < 1, we have (n+ 1)(1� �2)n �!
n!1

0:

Therefore, (Kn)n2N is a Dirac sequence. But according to the corollary to theo-
rem 3.13, we must have the sequence (fn)n2N with

fn(x) =
Z 1

�1
f(t)Kn(x� t)dt

converging uniformly to f on [0; 1]. Since f(t) = 0 for t 62 [0; 1], we have

fn(x) =
Z 1

0
f(t)Kn(x� t)dt:

Since Kn is a polynomial of degree 2n, we can write

Kn(x� t) = g0(t) + g1(t)x+ � � �+ g2n(t)x
2n;

where the gj(t) are some polynomials in t. Thus if we write

aj =
Z 1

0
f(t)gj(t)dt

for each j = 0; : : : ; 2n, we obtain

fn(x) = a0 + a1x+ � � �+ a2nx
2n:

Theorem 3.15 (Weierstrass' convergence theorem). Let f : [a; b] ! R be piece-
wise continuous. Then there exists a sequence of polynomials which converges
uniformly to f on compact intervals which contain no points of discontinuity
of f .

Proof. Let [a; b] be an interval where f is continuous. Instead of the function f ,
consider the function

F (x) = f((b� a)x+ a)� f(a)� x(f(b)� f(a)):
This new function ful�lls the requirements of theorem 3.14, so there exits a se-
quence of polynomials (Pn)n2N which converges uniformly to F on [0; 1]. Then the
sequence of polynomials (Qn)n2N with

Qn(x) = Pn

�
x� a
b� a

�
+ f(a) +

x� a
b� a (f(b)� f(a))

converges uniformly to f .

2For n su�ciently large we have n+1
n+2 > (1 � �2), or n+1

(n+1)+1 (1 � �2)n > (1 � �2)n+1. Thus

(n + 1)(1 � �2)n > ((n + 1) + 1)(1 � �2)n+1, and it follows that the sequence is monotonically
decreasing. Since

((n+ 1) + 1)(1� �2)n+1

(n+ 1)(1� �2)n
=
n+ 2

n+ 1
(1� �2) �!

n!1
(1� �2) < 1;

The sequence must converge to zero.
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3.3 Periodic functions

3.3.1 Fourier polynomials

A function f : R ! R with the property that there exists some constant L > 0
such that f(x+L) = f(x) for all x 2 R is called periodic, with period L. The most
obvious examples are the trigonometric functions: sine and cosine. According to
theorem 2.38, both of these functions are periodic, with period 2�.

Of course there are many other possibilities. For example the \sawtooth"
function f(x) = x � [x], where [x] 2 Z is the largest whole number3 which is not
larger than x, is periodic, with period 1.

In the theory of Fourier series we seek to represent periodic functions as sums
of the trigonometric functions. Therefore, given a periodic function with period
L, we �rst need to alter it so that its period becomes 2�. If, namely f : R ! R
has period L, then the new function F : R! R given by

F (x) = f
�
L

2�
x
�

has period 2�. Alternatively, we could change the period of the trigonometric
functions to L by taking instead

sin
�
2�

L
x
�

and cos
�
2�

L
x
�
:

Thus, for the sake of simplicity, and without loosing generality, we will only con-
sider periodic functions with period 2�.

Definition. A Fourier polynomial of order n is a function of the form

�(x) =
nX
k=0

(ak sin(kx) + bk cos(kx)):

Just as is the case with the \usual" polynomials, it is also true that both sums
and products of Fourier polynomials are again Fourier polynomials.4

3This function is called the \
oor function" in English; it is called the \Gauss Klammer" in
German.

4Recall from last semester that we have the following formulas. For k > 1:

sin(kx) = sin(x+ (k � 1)x) = cos(x) sin((k � 1)x) + sin(x) cos((k � 1)x)

cos(kx) = cos(x+ (k � 1)x) = cos(x) cos((k � 1)x)� sin(x) sin((k � 1)x)

Also

sin(kx) sin(lx) =
1

2
(cos((k � l)x)� cos((k + l)x))

cos(kx) cos(lx) =
1

2
(cos((k � l)x) + cos((k + l)x))

sin(kx) cos(lx) =
1

2
(sin((k � l)x) + sin((k + l)x))
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A particular class of Fourier polynomials can be written

Dm(x) =
1

2�

 
1 +

mX
k=1

2 cos(kx)

!
=

1

2�

mX
k=�m

eikx =
1

2�

 
�1 + 2Re

mX
k=0

eikx
!
:

When x 6= 2�l, l 2 Z, we have
mX
k=0

eikx =
1� ei(m+1)x

1� eix =
e�ix=2 � ei(m+1=2)x

e�ix=2 � eix=2 =
e�ix=2 � ei(m+1=2)x

�2i sin(x=2) :

Therefore

�1 + 2Re
mX
k=0

eikx = �1 + 2

 
sin(�x=2)� sin((m+ 1=2)x)

�2 sin(x=2)
!
=

sin((m+ 1=2)x)

sin(x=2)
:

We also have the relation

n�1X
m=0

eimx =
1� einx
1� eix =

1� cos(nx)� i sin(nx)
eix=2(e�ix=2 � eix=2) :

Multiplying both sides with eix=2, we obtain

n�1X
m=0

ei(m+1=2)x =
1� cos(nx)� i sin(nx)

e�ix=2 � eix=2 =
1� cos(nx)� i sin(nx)

�2i sin(x=2) :

Comparing the imaginary parts, we must have

n�1X
m=0

sin((m+ 1=2)x) =
1� cos(nx)

2 sin(x=2)
=

sin2(nx=2)

sin(x=2)
:

For the last equation here, we have used the formula which we found last semester,
namely

cos(a+ b) = cos(a) cos(b)� sin(a) sin(b):

Therefore

1� cos(nx) = 1� (cos2(nx=2)� sin2(nx=2))

= (cos2(nx=2) + sin2(nx=2))� (cos2(nx=2)� sin2(nx=2))

= 2 sin2(nx=2):

Next, we consider the Fourier polynomial

Kn(x) =
1

n

n�1X
m=0

Dm(x) =
1

2�n

n�1X
m=0

sin((m+ 1=2)x)

sin(x=2)
=

1

2�n

sin2(nx=2)

sin2(x=2)
:

For the sequence (Kn)n2N we have

1. Kn(x) � 0 for all x with jxj < �. (For x = 0 we have Dm(0) = (1=2�)(1 +Pm
k=1 2.)
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2. Z �

��
Kn(x)dx = 1

This is true since each of the terms Dm is 1=2� plus a sum of functions of
the form cos(kx), where k 6= 0. But for such functions, the integral from ��
to � is zero.

3. For each 0 � � < � we have

1

n

Z �

�

 
sin(nt=2)

sin(t=2)

!2

dt � 1

n

Z �

�

1

sin2(t=2)
dt:

But the last integral5 gives a constant, independent of n. Therefore, for all
� > 0 and � > 0 there exists an N 2 N, such thatZ ��

��
Kn(x)dx+

Z �

�
Kn(x)dx < �;

for all n � N .

We can now follow the proof of theorem 3.13 of the last section, but con�ning
our function f , and the functions in a Dirac sequence, to the interval [��; �],
rather than (�1;1). That is to say, we alter Kn outside [��; �], so that for all
x 2 R with jxj > �, we take Kn(x) to be zero. Given this, then our sequence
(Kn)n2N is a Dirac sequence, and we follow the proof of theorem 3.14 to obtain

Theorem 3.16. Let f : R ! R be a continuous periodic function with pe-
riod 2�. Then there exists a sequence of trigonometric polynomials which
converges uniformly to f .

Proof. In the proof of theorem 3.14 we used the fact thatKn(x�t) has a particular
form. In the present proof, Kn is a Fourier polynomial, consisting of terms of the
form cos(kx). But then we have

cos(k(x� t)) = cos(kx� kt) = cos(kx) cos(kt) + sin(kx) sin(kt):

Therefore as in the proof of theorem 3.14, the terms with t can be integrated to
obtain the coe�cients of the appropriate Fourier polynomial.

Since both f and also Kn are periodic, with period 2�, it follows that the
restriction to the interval [��; �] can be removed, and so the convergence also
holds throughout R.

Remark. As with Weierstrass' convergence theorem, the present theorem can
be extended to include all piecewise continuous periodic functions with period
2�.

5We have Z �

�

1

sin2(t=2)
dt =

2

tan(�=2)
:
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3.3.2 Fourier series

In the theory of Fourier series it is most convenient to think in terms of complex
valued functions. Let us say that V is the set of all piecewise continuous functions
f : R ! C with f(x) = f(x + 2�), for all x 2 R. Therefore V is a vector space
over the complex numbers with the usual addition and scalar multiplication of
functions. In addition to this, we have the scalar product:

hf; gi = 1

2�

Z 2�

0
f(x)g(x)dx;

for elements f , g 2 V . The following theorem follows trivially from this de�nition.

Theorem 3.17. For f , g, h 2 V and � 2 C we have

� hf + g; hi = hf; hi+ hg; gi,
� hf; g + hi = hf; gi+ hf; hi,
� h�f; gi = �hf; gi,
� hf; �gi = �hf; gi,
� hf; gi = hg; fi.
� hf; fi � 0,

� if kfk2 is de�ned to be kfk2 =
q
hf; fi then k�fk2 = j�jkfk2,

� kf + gk2 � kfk2 + kgk2. (This is theorem 2.62 from last semester.)

The last two properties suggest that the function k � k2 : V ! R might be a
norm. But it isn't. The problem is that we might have f 6= 0, but nevertheless,
kfk2 = 0. If f were assumed to be continuous then kfk2 could only be zero if
f was the zero function. However since we only assumed that f was piecewise
continuous, it might be that f happens to be non-zero at some �nite number of
points, but zero everywhere else. If this were the case then we would still have
kfk2 = 0. Thus one says that k � k2 is a \semi-norm", rather than a norm.

Theorem 3.18. Assume that f and g 2 V with hf; gi = 0. Then

kf + gk22 = kfk22 + kgk22:

Proof.

hf + g; f + gi = hf; fi+ hg; gi+ hf; gi+ hg; fi| {z }
=0

= hf; fi+ hg; gi:
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For each k 2 Z we de�ne
ek(x) = eikx:

Theorem 3.19.

hek; eli =
8<:1; k = l;

0; k 6= l:

Proof.

hek; eki = 1

2�

Z 2�

0
eikxeikxdt =

1

2�

Z 2�

0
1 dt =

1

2�
2� = 1:

For k 6= l

hek; eli =
1

2�

Z 2�

0
eikxeilxdt

=
1

2�

Z 2�

0
ei(l�k)xdt

=
1

2�

Z 2�

0
cos((l� k)x)dt+ 1

2�
i
Z 2�

0
sin((l� k)x)dt = 0:

Given any function f 2 V , then the k-th Fourier coe�cient (for any k 2 Z)
of f is de�ned to be

ck = hek; fi:
Theorem 3.20. Given f 2 V , let Fn =

Pn
k=�n ckek. Then for any P =Pn

k=�n akek, we have
hf � Fn; P i = 0:

Proof. For any k with �n � k � n, we have

hf � Fn; eki = hf; eki � hFn; eki = ck �
nX

j=�n

cjhej; eki = ck � ck = 0:

Therefore

hf � Fn; P i = hf � Fn;
nX

k=�n

akeki =
nX

k=�n

akhf � Fn; eki = 0:

Theorem 3.21. Again take Fn =
Pn
k=�n ckek and P =

Pn
k=�n akek. Then we

have
kf � Fnk2 � kf � Pk2:

Proof. According to theorem 3.20, we have hf � Fn; Fn � P i = 0. Therefore
according to theorem 3.18 we have

kf � Pk22 = k(f � Fn) + (Fn � P )k22 = kf � Fnk22 + kFn � Pk22| {z }
�0

:
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Therefore theorem 3.16 implies:

Theorem 3.22. limn!1 kf � Fnk2 = 0.

One says that the sequence (Fn)n2N converges to f in quadratic mean.

Remark. In theorem 3.16 we were concerned with periodic real functions,
and we approximated them with Fourier polynomials, which were again real-
valued functions consisting of linear combinations of terms of the form sin(kx)
and cos(kx), for various non-negative integer values of k. So let

P (x) = a0 +
nX
k=1

(ak cos(kx) + bk sin(kx))

be such a Fourier polynomial. Then we have

P (x) =
nX

k=�n

cke
ikx =

nX
k=�n

ck(cos(kx) + i sin(kx));

where c0 = a0 and we have ck =
1
2
(ak� ibk) and c�k = 1

2
(ak+ ibk), for all k � 1.

It is now an exercise to show that theorem 3.16 is also true when applied
to complex-valued periodic functions.

Definition. Let f 2 V . The Fourier series of f is

lim
n!1

Fn =
1X

k=�1

ckek:

Theorem 3.23. Let f 2 V and ck be the k-th Fourier coe�cient of f for each
k 2 N. Then 0@





f �

nX
k=�n

ckek








2

1A2

= (kfk2)2 �
nX

k=�n

jckj2:

Proof. Let g =
Pn
k=�n ckek. Then

hf; gi =
nX

k=�n

ckhf; eki =
nX

k=�n

ckck =
nX

k=�n

jckj2:

Also

hg; gi =
nX

k=�n

ckhg; eki =
nX

k=�n

ckck =
nX

k=�n

jckj2:

Therefore

kf � gk22 = hf � g; f � gi
= hf; fi � hf; gi � hg; fi+ hg; gi
= kfk22 �

nX
k=�n

jckj2 �
nX

k=�n

jckj2 +
nX

k=�n

jckj2

= kfk22 �
nX

k=�n

jckj2:
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Theorem 3.24 (Bessel's inequality). For f 2 V with Fourier coe�cients ck we
have the inequality

1X
k=�1

jckj2 � kfk22 =
1

2�

Z 2�

0
jf(x)j2dx:

Proof. This is a direct consequence of theorem 3.23, since we must have0@





f �
nX

k=�n

ckek








2

1A2

� 0:

Theorem 3.25. Let f be a continuous periodic function with period 2� which
is also piecewise continuously di�erentiable with f 0 being bounded. Then the
Fourier series of f converges uniformly to f . Therefore

f(x) =
1X

k=�1

ckek(x);

for all x 2 R.

Proof. With Bessel's inequality, we have6

1X
k=�1

jckj <1:

Since jek(x)j = j exp(ikx)j = 1, it follows that the Fourier series is absolutely
convergent for each x. Let limn!1 Fn(x) = g(x), thus de�ning a function

g : R! C:

For all x 2 R and n 2 N we have

jg(x)� Fn(x)j =
������

1X
jkj=n+1

ckek(x)

������ �
1X

jkj=n+1

jckek(x)j =
1X

jkj=m+1

jckj:

6Partial integration gives

ck =
1

2�

Z 2�

0

f(x)e�ikxdx =
i

2�k
f(x)e�ikx

����2�
0

� i

2�k

Z 2�

0

f 0(x)e�ikxdx =

k
k

say, where


k =
i

2�

Z 2�

0

f 0(x)e�ikxdx:

Then we have

jckj =
����1k
���� � j
kj � 1

2

 ����1k
����2 + j
kj2

!
:

But both
P
1

k=1 1=k
2 and

P
1

k=�1 j
kj2 converge.
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Thus the sequence of continuous functions (Fn)n2N is uniformly convergent. Ac-
cording to theorem 2.47, it follows that the function g must be continuous.

Therefore (remembering theorem 3.22), we have both limn!1 kf � Fnk2 = 0
and limn!1 kFn � gk2 = 0. In other words, for all � > 0 there exists an N 2 N
with both kf � Fnk2 < �=2 and kFn � gk2 < �=2. Using Minkowski's inequality,
we have

kf � gk2 = k(f � Fn) + (Fn � g)k2 � kf � Fnk2 + kFn � gk2 < �

2
+
�

2
= �:

Since this is true for all � > 0 we must have kf � gk2 = 0. That is,

1

2�

Z 2�

0
jf(x)� g(x)j2dx = 0:

This can only be true if f = g. Therefore

Fn �!
n!1

f:

3.3.3 �(2) = �2=6

The Riemann \zeta" function is de�ned to be

�(z) =
1X
n=1

n�z;

for z = x + iy 2 C with x > 1. In section 2.23.1 of these notes (from last
semester), we saw that this series converges for all such z. It diverges for all z
with real part less than or equal to 1. Yet within the theory of complex analysis,
it may be extended to the whole complex plane (except for the isolated singularity
at z = 1). The most famous unsolved problem in present-day mathematics is the
Riemann Hypothesis. That is that all the non-trivial zeros of the zeta function
are con�ned to the line z = x+ iy, with x = 1=2. Anybody who is able to prove
the Riemann Hypothesis will achieve immortal fame!

A far simpler question is that of obtaining the values of �(n), for various integers
greater than 1. In particular we can use the theory of Fourier series to calculate
the value of �(2). For this, we take the function f : R ! R with f(x) = x2, for
jxj � �, and we specify that f(x+2�) = f(x), for all x 2 R. Thus f is a periodic,
continuous function with period 2�. Therefore we must have

f(x) =
1X

k=�1

cke
ikx =

1X
k=�1

ck(cos(kx) + i sin(kx)) = c0 + 2
1X
k=1

ck cos(kx):

Here we use the fact that f is symmetric (f(x) = f(�x) for all x). But

c0 =
1

2�

Z �

��
t2dt =

�2

3
:
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It is an exercise to show that for k � 1 we have

ck =
1

2�

Z �

��
t2 cos(kt)dt = (�1)k 2

k2
:

Thus

x2 =
�2

3
+ 2

1X
k=1

(�1)k 2
k2

cos(kx):

Putting x = � into this equation and noting that cos(k�) = (�1)k, we obtain

�2 =
�2

3
+ 4

1X
k=1

1

k2
:

Therefore
1X
k=1

1

k2
=
�2

6
:

3.4 Partial derivatives

Let G � Rn be some open set, and let the function f : G ! R be given. Then
if we take some arbitrary element x 2 G, we can write x = (x1; : : : ; xn). Take
some j 2 f1; : : : ; ng and consider the elements (x1; : : : ; xj + h; : : : ; xn), for various
values of h 2 R. Since G is open, there must exist some � > 0, such that for
all h with jhj < �, we have (x1; : : : ; xj + h; : : : ; xn) 2 G. Or we can use the
notation of linear algebra: let fe1; : : : ; eng be the canonical basis for Rn, so that
(x1; : : : ; xj + h; : : : ; xn) = x + hej. Then if

lim
h!0
h 6=0

f(x + hej)� f(x)
h

exists, it is called the partial derivative of f with respect to xj, and it is written
@jf(x), or Djf(x). Sometimes it is also written as if it were a fraction, namely

@f(x)

@xj
:

If the partial derivative @jf(x) exists for all x 2 G, then we can further think
about whether or not the partial derivative in the xk direction exists, for some
k 2 f1; : : : ; ng, when applied to the function @jf : G! R. If so, then we obtain a
new function @k@jf : G! R. In particular, we write

@2j f(x)

if k = j.
One also writes

@2f(x)

@xk@xj
;
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or
@2f(x)

@x2j
;

if k = j.
Physicists enjoy using these partial derivatives in order to describe the various

laws of classical physics. For this, they have developed a number of traditional
words to describe certain special combinations of partial derivatives. For example,
if we have the function f : G! R such that all the partial derivatives @jf(x) exist
at some point x 2 G, then the vector

grad f(x) = (@1f(x); : : : ; @nf(x))

is called the \gradient" of f at x. Sometimes people also write \rf(x)" for the
gradient.

A vector �eld is a mapping F : G ! Rn. Then, since F (x) 2 Rn, for each
x 2 G, we can write

F (x) = (F1(x); : : : ; Fn(x));

so that we obtain n new functions Fi : G ! R, for i = 1; : : : ; n. If they all have
partial derivatives, then we can take

div F (x) = @1F1(x) + � � �+ @nFn(x):

This is called the \divergence" of F at x.
These two things can be combined by observing that if we have a twice di�eren-

tiable function f : G! R, then the gradient is a vector �eld, and the divergence of
that is again simply a real function. This is called the \Laplace operator", namely

div grad f(x) = @21f(x) + � � �+ @2nf(x):

It is often written �f(x), and it plays an important role in \potential theory" of
mathematical analysis.

Also, particularly in Maxwell's equations of classical electrodynamics, if we
have the special case of a vector �eld in 3-dimensional Euclidean space R3, then
physicists use another combination of partial derivatives, called the \curl" of the
vector �eld. This is sometimes written \r� F", where F : G! R3 is the vector
�eld. But the curl operator is not really a part of mathematics, so I will simply
ignore it from now on.7

7It is interesting to know that much of this, and particularly the curl operator, arises in a very
natural and elegant way if we consider analysis based on the system of quaternion numbers. This is
a kind of 4-dimensional generalization of the 2-dimensional complex number system which we have
already gotten to know. In the quaternion system, the \imaginary" part has 3-dimensions, while
the \real" part has just one dimension, as with C. When Hamilton discovered the quaternions in
1843, he believed that he had found the true secret behind all of physics. The world consisted
simply of quaternions, with \space" being the imaginary part of the quaternions, and \time"
being the real part. It all seemed quite compelling, but unfortunately, physics has now progressed
beyond such things, and quaternions play no role in modern physics. However, in order to honor
the memory of Sir William Hamilton, today's physicists continuously use something called the
\Hamiltonian" in their descriptions of quantum �eld theory.
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3.4.1 Partial derivatives commute if they are continuous

Theorem 3.26. Let G � Rn be open, and let f : G! R be such that all second
partial derivatives exist and are continuous. Then for all x 2 G, and for all
i, j = 1; : : : ; n we have

@i@jf(x) = @j@if(x):

Proof. Without loss of generality, we prove the theorem in the case n = 2 and
i = 1, j = 2. Let x = (x1; x2). For simplicity, and again without loss of generality,
we also just prove the theorem in the special case x = 0 = (0; 0).

Therefore, since G is open, and x = 0 is contained within G, there exists some
� > 0, such that the square

H = (��;+�)� (��;+�)
is contained in G. In particular, for all h with jhj < �, we have that (h; h) is
contained in G.

Let the function F : (��;+�)! R be de�ned to be

F (h) = (f(h; h)� f(h; 0))� (f(0; h)� f(0; 0)):
We can write this as

F (h) = g(h)� g(0);
where

g(t) = f(t; h)� f(t; 0):
Then the mean value theorem (2.34), shows that there must exist some � between
0 and h (h 6= 0), with

g(h)� g(0)
h

= g0(�) = @1f(�; h)� @1f(�; 0):

Using the mean value theorem again on the continuously di�erentiable function

@1f(�; �) : (��;+�)! R;

we �nd some � between 0 and h with

@1f(�; h)� @1f(�; 0)
h

= @2@1f(�; �):

That is

F (h) = g(h)� g(0) = g0(�)h = (@1f(�; h)� @1f(�; 0))h = @2@1f(�; �) � h2;

or, noting that (�; �)! (0; 0) as h! 0, we see that

lim
h!0
h 6=0

F (h)

h2
= @2@1f(0; 0):
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But we could start the other way around, by observing that

F (h) = k(h)� k(0);

where
k(t) = f(h; t)� f(0; t):

Then there exists some e� between 0 and h, such that

k(h)� k(0)
h

= k0(e�) = @2f(h; e�)� @2f(0; e�):
Arguing as before, we obtain a e� between 0 and h with

F (h) = k(h)� k(0) = k0(e�)h = (@2f(h; e�)� @2f(0; e�))h = @1@2f(e�; e�) � h2:

But then, again, we have

lim
h!0
h 6=0

F (h)

h2
= @1@2f(0; 0):

Since the limit

lim
h!0
h6=0

F (h)

h2

is the same in both cases, we �nally obtain

@1@2f(0) = @2@1f(0):

Corollary. Given that f has su�ciently many continuously di�erentiable par-
tial derivatives, then for a given m, and a given permutation � : f1; : : : ;mg !
f1; : : : ;mg, we have

@i1@i2 � � � @imf(x) = @i�(1)@i�(2) � � � @i�(m)
f(x);

for all x 2 G.

3.4.2 Total derivatives

Let G � Rn be open, and let f : G ! Rm be a function. That is to say, for
each x 2 G, f(x) 2 Rm. Therefore we can write f(x) = (f1(x); : : : ; fm(x)), where
fi : G ! R, for each i = 1; : : : ;m. It may be that each of these functions has
partial derivatives. If so, then we can consider

@jfi(x) = lim
h!0
h6=0

fi(x1; : : : ; xj + h; : : : ; xn)� fi(x1; : : : ; xj; : : : ; xn)
h

;
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for each j = 1; : : : ; n and i = 1; : : : ;m. This gives us an m� n matrix, namely0BB@
@1f1(x) � � � @nf1(x)

...
. . .

...
@1fm(x) � � � @nfm(x)

1CCA ;
which is called the Jacobi matrix for the function f at the point x 2 U . If f is
totally di�erentiable at x, then we write Df(x) to denote its total derivative, and
in fact, the total derivative is the Jacobi matrix. But let's begin with the general
de�nition. First note that since G is an open set, there exists some � > 0, such
that x + � 2 G, for all � 2 Rn with k�k < �.

Definition. Let f : G! Rm be a function, and take some point x 2 G. Then
f is said to be totally di�erentiable at x if there exists an m � n matrix A,
such that if we take � > 0 to be su�ciently small that x+� 2 U , for all � 2 Rn

with k�k < �, then the function ' : B(x; �)! Rm from the ball around x with
radius � to Rm given by

f(x + �) = f(x) + A� + '(�)

is such that

lim
�!0
� 6=0

'(�)

k�k = 0:

Rather than writing the complicated expression lim�!0
� 6=0

'(�)
k�k

= 0, it is usual to

write
'(�) = o(k�k):

Remark. Although this de�nition may look more complicated than the famil-
iar de�nition for the derivative of a function in one dimension, in reality it is
just the same. For if we have the function f : (a; b) ! R being di�erentiable
at the point x 2 (a; b), with derivative f 0(x), then let a new function ' be
de�ned for su�ciently small h to be

'(h) = (f(x+ h)� f(x))� f 0(x)h:
But we have

lim
h!0
h 6=0

f(x+ h)� f(x)
h

= f 0(x);

or, put another way

lim
h!0
h 6=0

'(h)

h
= lim

h!0

f(x+ h)� f(x)� f 0(x)h
h

= 0:

That is to say, also here we have that f is di�erentiable at the point x if there
exists some real number f 0(x), such that

f(x+ h) = f(x) + f 0(x)h+ o(jhj):
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Theorem 3.27. Let G � Rn be open, and let f : G ! Rm be a function.
Assume that f is di�erentiable at the point x 2 G, with matrix A. Then f
is continuous at x, and furthermore, all partial derivatives @jfi(x) exist at x,
and we have aij = @jfi(x).

Proof. Since '(�) = o(k�k), we have lim�!0 '(�) = 0. But also lim�!0A� = 0.
The fact that f is continuous at x then follows, since

lim
�!0

f(x + �) = lim
�!0

(f(x) + A� + '(�)) = f(x):

Given � =

0BB@
�1
...
�n

1CCA 2 Rn, and some i = 1; : : : ;m, let 'i(�) be de�ned to be

'i(�) = fi(x + �)� fi(x)�
nX
k=1

aik�k:

In particular, if we take � = hej, then we have

fi(x + hej) = fi(x) + haij + 'i(hej);

with '(�) = o(k�k), that is 'i(hej) = o(jhj). Therefore

@jfi(x) = lim
h!0
h6=0

fi(x + hej)� fi(x)
h

= lim
h!0
h 6=0

haij + 'i(hej)

h
= aij:

Theorem 3.28. Again, f : G! Rn. This time assume that all partial deriva-
tives @jfi exist and are continuous in some neighborhood of x 2 G. Then f
is totally di�erentiable at x.

Proof. Let � > 0 be su�ciently small that the ball around x with radius � is
contained within G. That is, B(x; �) � G. Let � = (�1; : : : ; �n) 2 B(x; �). Thus,
k�k < �. For each k = 0; 1; : : : ; n, let

pk = x +
kX
l=1

�kek;

where fe1; : : : ; eng is the canonical basis for Rn. So p0 = x and pn = x + �.
According to the intermediate value theorem, for each k, there exists some

�k 2 [0; 1], such that

fi(pk)� fi(pk�1) = @kfi(pk�1 + �k�kek)�k:

That is, if �k 6= 0, then we can write this in the more familiar form

fi(pk�1 + �kek)� fi(pk�1)

�k
= @kfi(pk�1 + �k�kek):
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Therefore, we have

fi(x + �)� fi(x) =
mX
k=1

(fi(pk)� fi(pk�1))

=
mX
k=1

@kfi(pk�1 + �k�kek)�k

=
mX
k=1

@kfi(x)�k + 'i(�);

where

'i(�) =
mX
k=1

(@kfi(pk�1 + �k�kek)� @kfi(x))�k:

Then the fact that the function @kfi is continuous at x means that we must have
'i(�) = o(k�k) for each i. So �nally, if we take A = Df to be the Jacobi matrix
of partial derivatives, we obtain the desired expression:

f(x + �) = f(x) + A� + '(�):

That is 0BB@
f1(x + �)

...
fn(x + �)

1CCA =

0BB@
f1(x)
...

fn(x)

1CCA+ A

0BB@
�1
...
�n

1CCA+

0BB@
'1(�)
...

'n(�)

1CCA ;
with 0BB@

'1(�)
...

'n(�)

1CCA = '(�) = o(k�k):

3.4.3 The chain rule in higher dimensions

Theorem 3.29. Let G � Rn and H � Rm be open subsets, and let g : G! Rm

and f : H ! Rk be functions such that g(G) � H. Therefore, we can consider
the combined function f � g : G! Rk, with (f � g)(x) = f(g(x)) for all x 2 G.
Now let x be some point particular point in G, and assume that g is totally
di�erentiable at x, and furthermore, f is totally di�erentiable at g(x). Thus
the di�erential of g at x is the m� n matrix Dg(x), and the di�erential of f
at g(x) is the k �m matrix Df(g(x)).

Then f � g is totally di�erentiable at x, and we have that D(f � g) is the
k � n matrix

Df(g(x)) �Dg(x):
Proof. Let � 2 Rn be a su�ciently small vector so that

g(x + �) = g(x) +Dg(x)� + '(�)
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with '(�) = o(k�k). Then let

� = g(x + �)� g(x) = Dg(x)� + '(�);

so that f(g(x) + �) = f(g(x)) +Df(g(x))� +  (�), with  (�) = o(k�k).
We obtain

(f � g)(x + �) = f(g(x + �))

= f(g(x) + �)

= f(g(x)) +Df(g(x))� +  (�)

= f(g(x)) +Df(g(x))(Dg(x)� + '(�)) +  (�)

= f(g(x)) +Df(g(x))Dg(x)� +Df(g(x))'(�) +  (�)

= f(g(x)) +Df(g(x))Dg(x)� + �(�)

where

�(�) = Df(g(x))'(�) +  (�)

= Df(g(x))'(�) +  (Dg(x)� + '(�)):

So the problem is to show that �(�) = o(k�k).
To begin with, since Df(g(x)) is a matrix, representing a linear mapping, we

have that for any vector v 2 Rm there is a constant L such that

kDf(g(x))vk � Lkvk:
Therefore since

lim
�!0
� 6=0

'(�)

k�k = 0;

it follows that

lim
�!0
� 6=0

Df(g(x))'(�)

k�k = 0:

The problem now is to show that

lim
�!0
� 6=0

 (Dg(x)� + '(�))

k�k = 0:

For this, we begin by observing that since '(�) = o(k�k), there must exist a con-
stant K with k'(�)k � Kk�k, and also there exists a constant H with kDg(x)�k �
Hk�k, for all � within a given neighborhood of 0. Thus

k�k = kDg(x)� + '(�)k � Hk�k+Kk�k = (H +K)k�k:
On the other hand, since  (�) = o(k�k), if we write

 1(�) =
 (�)

k�k ;
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then  1(�)! 0 as � ! 0.
We can also write  (�) = k�k 1(�), so that k (�)k = k�k � k 1(�)k. We have

k (�)k = k (Dg(x)� + '(�))k � (H +K)k�k � k 1(Dg(x)� + '(�))k;
or k (Dg(x)� + '(�))k

k�k � (H +K)k 1(Dg(x)� + '(�))k:
Therefore k (Dg(x)� + '(�))k

k�k �!
�!0

0:

3.4.4 The directional derivative

This is a simple case of the chain rule. Let G � Rn be an open subset and let
f : G! R be a continuously di�erentiable function. Now take any vector v 2 Rn

with kvk = 1. So v points us in some speci�c direction in the space Rn. The
directional derivative of f in the direction v at the point x 2 G is then de�ned
to be

Dvf(x) = lim
h!0
h 6=0

1

h
(f(x + hv)� f(x)):

Theorem 3.30. Dvf(x) = hgradf(x);vi. That is, it is the scalar product of v
with gradf(x).

Proof. We de�ne the function g : R! Rn to be

g(t) = x + tv:

Then clearly g is totally di�erentiable everywhere, and in particular we have

Dg(0) = v:

Writing it out in coordinates, this is

Dg(0) =

0BB@
g01(0)
...

g0n(0)

1CCA =

0BB@
v1
...
vn

1CCA :
But also we have

Df(y) =
�
@1f(y) � � � @nf(y)

�
;

a 1� n matrix, for arbitrary points y 2 G. The directional derivative of f at x is
given by the derivative of the real function f � g at zero. Therefore we have

Dvf(x) = Df(g(0))Dg(0)

=
�
@1f(g(0)) � � � @nf(g(0))

�
�

0BB@
v1
...
vn

1CCA
= hgradf(x);vi:
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3.5 Taylor’s formula in higher dimensions

Taylor's formula in higher dimensions is really nothing more than a simple appli-
cation of the chain rule. Unfortunately it looks unpleasantly complicated owing
to the fact that everything must be formulated in terms of the messy notation of
linear algebra.

The situation to be described is the following. Let G � Rn be some open set,
and let f : G! R be a function. To say that f is m-times continuously di�eren-

tiable means that at all points of G, all partial derivatives @
i(1)
1 � � � @i(n)n f(x1; : : : ; xn)

exist and are continuous for each combination of partial derivatives such that
0 � i(j) for all j = 1; : : : ; n and i(1) + � � � + i(n) � m. (Of course if we have
i(j) = 0 for some j, then that simply means that the j-th partial derivative is not
taken at all.)

Theorem 3.31. Let f : G ! R be m-times continuously di�erentiable. Let
x 2 G be some given point, and let � = (�1; : : : ; �n) 2 Rn be such that

fx + t� : 0 � t � 1g � G:

A new function g : [0; 1] ! R is now given by the rule g(t) = f(x + t�). We
have that g is m times continuously di�erentiable, and

g(m)(t) =
dm

dtm
g(t) =

X
i(1)+���+i(n)=m

m!

i(1)! � � � i(n)!@
i(1)
1 � � � @i(n)n f(x + t�)�

i(1)
1 � � � �i(n)n :

Proof. Induction on m. For m = 1, the derivative is nothing more than the
directional derivative, namely

g0(t) =
nX
j=1

@jf(x + t�)�j =
X

i(1)+���+i(n)=1

1

1 � � � 1@
i(1)
1 � � � @i(n)n f(x + t�)�

i(1)
1 � � � �i(n)n :

Now assume m � 1 and that the theorem is true for m. Then

g(m+1)(t) =
nX
j=1

@j

0@ X
i(1)+���+i(n)=m

m!

i(1)! � � � i(n)!@
i(1)
1 � � � @i(n)n f(x + t�)�

i(1)
1 � � � �i(n)n

1A �j
=

nX
j=1

0@ X
i(1)+���+i(n)=m

m!

i(1)! � � � i(n)!@j@
i(1)
1 � � � @i(n)n f(x + t�)�j�

i(1)
1 � � � �i(n)n

1A
=

X
i(1)+���+i(n)=m+1

(m+ 1)!

i(1)! � � � i(n)!@
i(1)
1 � � � @i(n)n f(x + t�)�

i(1)
1 � � � �i(n)n :

Here we have used theorem 3.26, and also a standard theorem of combinatorics,
namely the multinomial theorem. At the beginning of the last semester, we saw

124



the binomial theorem. That was that we have

(a+ b)m =
mX
k=0

 
m

k

!
am�kbk =

mX
k=0

m!

(m� k)!k!a
m�kbk:

The multinomial theorem is the appropriate generalization for the expression

(a+ b+ � � �+ c)m:

Or, in other words,

(a1 + � � �+ an)
m =

X
i(1)+���+i(n)=m

m!

i(1)! � � � i(n)!a
i(1)
1 a

i(2)
2 � � � ai(n)n :

In the present instance we have

(@1 + � � �+ @n)
mf(x + �) =

X
i(1)+���+i(n)=m

m!

i(1)! � � � i(n)!@
i(1)
1 @

i(2)
2 � � � @i(n)n f(x + �):

But now the Taylor formula (theorem 2.49) gives, in its alternative formulation

Theorem 3.32. Given the conditions of theorem 3.31, then there exists some
� with 0 � � � 1, such that

f(x + �) = g(1) =
m�1X
k=0

g(k)(0)

k!
� 1k + g(m)(�)

m!
� 1m =

m�1X
k=0

g(k)(0)

k!
+
g(m)(�)

m!
:

Substituting the appropriate expressions from theorem 3.31 for the terms g(k)(0)
gives the complicated-looking formulation of Taylor's formula found in most text-
books.

Note that the last term in this formula can be written

g(m)(�)

m!
=
g(m)(0)

m!
+R(�);

where

R(�) =
g(m)(�)

m!
� g(m)(0)

m!

=
X

i(1)+���+i(n)=m

m!

i(1)! � � � i(n)!@
i(1)
1 � � � @i(n)n (f(x + ��)� f(x)) �i(1)1 � � � �i(n)n

= o(k�km)
since f is taken to be m-times continuously partially di�erentiable.

Therefore we have

f(x + �) =
m�1X
k=0

g(k)(0)

k!
+
g(m)(0)

m!
+R(�);

where R(�) = o(k�km). That is, lim�!1R(�)=k�k = 0.
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3.5.1 The Hessian Matrix

It is often considered interesting to take the Taylor formula for the case m = 2.
So let f : G! R be twice continuously partially di�erentiable at the point x 2 G,
and open subset of Rn. Let � 2 Rn be such that x+ t� 2 G, for all t 2 [0; 1]. Then
writing g(t) = f(x + t�), we obtain a function g : [0; 1] ! R which is continuous,
and twice continuously di�erentiable in (0; 1). According to Taylor's formula, we
then have

f(x + �) = g(1)

= g(0) + g0(0)(1� 0) +
1

2
g00(�)(1� 0)2

= g(0) + g0(0) +
1

2
g00(0) +R(�)

where 0 < � < 1 and R(�) = o(k�k2).
But g0(0) is simply the directional derivative at x in the direction of �. Fur-

thermore, according to theorem 3.31, we must have

g00(0) =
nX
i=1

nX
j=1

@i@jf(x)�i�j:

Therefore, we obtain

f(x + �) = f(x) + hgradf(x); �i+ 1

2
h�; A�i+R(�);

where R(�) = o(k�k2) and A is the Hessian matrix. That is:

Definition. The n� n matrix0BB@
@1@1f(x) � � � @1@nf(x)

...
. . .

...
@n@1f(x) � � � @n@nf(x)

1CCA
is called the Hessian matrix of f at the point x.

Since for all i and j we have @i@jf(x) = @j@if(x), we see that the Hessian
matrix is symmetric. But from linear algebra we know that every real symmetric
matrix is similar to a diagonal matrix. Thus there exists an orthonormal basis for
Rn, with respect to which the Hessian matrix is diagonal.

What this means is that we can �nd a new basis for the vector space Rn, such
that with respect to this new basis, the Hessian matrix is diagonal

A =

0BB@
�1 0 0

0
. . . 0

0 0 �n

1CCA :
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Expressing the vector � as a linear combination of these new basis vectors (and

simply writing � =

0BB@
�1
...
�n

1CCA again), we have

1

2
h�; A�i = 1

2

nX
i=1

�i�
2
i :

If �i > 0 for all i = 1; : : : ; n, then we say that the matrix A is positive de�nite.
If we only have �i � 0 for all i = 1; : : : ; n, then A is called positive semi-de�nite.
Similarly, A is called negative de�nite if �i < 0 for all i, and negative semi-
de�nite if �i � 0 for all i. Otherwise, the matrix A is called inde�nite.

Put another way, if A is positive de�nite, then h�; A�i > 0 for all � 6= 0. Also
if A is negative de�nite, then h�; A�i < 0, for all � 6= 0. This is true regardless of
which basis is chosen for representing vectors in Rn, so we may simply return to
the canonical basis.

All of this is of most interest in the case that gradf(x) = 0. Then we have:

Theorem 3.33. Let G � Rn be open, and let f : G! R be twice continuously
di�erentiable at some point x 2 G, such that gradf(x) = 0. If the Hessian
matrix is positive de�nite, then x is an isolated local minimum of the function.
On the other hand, if the Hessian matrix is negative de�nite, then x is an
isolated local maximum.

Remark. If the Hessian matrix is inde�nite, then one says that x is a saddle-
point of the function.

3.6 Implicit Functions

3.6.1 An example

Let F : R2 ! R be given by

F (x; y) = x2 + y2:

The set of points (x; y) satisfying F (x; y) = 1 is then obviously the unit circle. On
the other hand, we can ask the question: What function g satis�es the relation

F (x; g(x)) = 1 ?

Simply by looking at the circle, we see that the answer is given by taking the
function g : [�1;+1] ! R with either g(x) = �p1� x2 or g(x) = +

p
1� x2.

Thus the function g is given implicitly by the conditions F (x; g(x)) = 1 and
F (x; y) = x2 + y2.

But assuming that we were not able to so easily see what g was, how should
we proceed?
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Assuming that there is some solution g, let h(x) = F (x; g(x)). Since we assume
that g is such that F (x; g(x)) = 1, it follows that h(x) = 1, for all relevant x.
Therefore, h0(x) = 0, or, using the chain rule, we get

h0(x) = @1F (x; g(x))x
0 + @2F (x; g(x))g

0(x) = 2x+ 2g(x)g0(x) = 0:

Or
g0(x) = � x

g(x)
:

Clearly, the functions g(x) = �p1� x2 satisfy this equation.
This little calculation can be generalized to higher dimensional spaces in the

following, rather complicated way.

3.6.2 The same method in higher dimensions

This time, let G1 � Rk and G2 � Rm be open subsets, and let

F : G1 �G2 ! Rm

be a mapping into Rm such that F is totally di�erentiable at some point (a;b) 2
G1 �G2. Thus DF (a;b) is an m� (k +m) matrix.

It is convenient to consider this matrix as consisting of two parts, namely the
�rst k columns, giving an m � k matrix, and then the m columns after that,
giving an m � m matrix. Thus for various points x = (x1; : : : ; xk) 2 G1 and
y = (y1; : : : ; ym) 2 G2, the total derivative of F is

DF =

0BB@
@F1
@x1

� � � @F1
@xk

@F1
@y1

� � � @F1
@ym

...
. . .

...
...

. . .
...

@Fm
@x1

� � � @Fm
@xk

@Fm
@y1

� � � @Fm
@ym

1CCA =
�
@F
@x

@F
@y

�
;

where

@F

@x
(x;y) =

0BBB@
@F1(x;y)
@x1

� � � @F1(x;y)
@xk

...
. . .

...
@Fm(x;y)

@x1
� � � @Fm(x;y)

@xk

1CCCA ; @F

@y
=

0BBB@
@F1(x;y)
@y1

� � � @F1(x;y)
@ym

...
. . .

...
@Fm(x;y)

@y1
� � � @Fm(x;y)

@ym

1CCCA :
Given all this, then we have. . .

Theorem 3.34. Assume g : G1 ! G2 is a mapping, totally di�erentiable8 at a,
with g(a) = b, such that F (x; g(x)) = 0, for all x 2 G1. Assume furthermore

8The proof of this theorem is made somewhat more complicated if we only assume that g is
continuous at (a;b), rather than being totally di�erentiable. However, with this seemingly more
general assumption, we can still prove that g is totally di�erentiable there, so nothing is gained.
In particular, our proof of theorem 3.38 will only be su�cient to show that the function g which
is obtained is continuous. Interested students are referred to the appropriate part of Forster's
Analysis 2 for the relevant proof.
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that @F
@y
(a;b) is a non-singular matrix and that F (x; g(x)) = 0, for all x 2 G1.

Then we have
@g

@x
(a) = �

 
@F

@y
(a;b)

!�1
@F

@x
(a;b);

where

Dg(a) =
@g

@x
(a) =

0BB@
@g1
@x1

(a) � � � @g1
@xk

(a)
...

. . .
...

@gm
@x1

(a) � � � @gm
@xk

(a)

1CCA :
Proof. Despite all these complicated matrices, the situation is really the same as
in the more simple case when k = m = 1, which we have already seen. We can
consider the mapping h : G1 ! G2 given by

h(x) = F (x; g(x)) = 0:

Since h is the constant mapping to 0, we have that Dh(x) exists everywhere, and
it is simply the m �m zero matrix, which we can denote by 0. Therefore, using
the chain rule, we have

0 = h0(a) =
@F

@x
(a;b)

@a

@x
+
@F

@y
(a;b)

@g

@x
(a):

But @x
@x

is the m�m unit matrix. Therefore we have

@F

@x
(a;b) +

@F

@y
(a;b)

@g

@x
(a) = 0:

3.6.3 Finding an implicitly given function

The technique used to �nd an implicitly given function involves �nding a series
of functions which converge to the speci�c function which we are looking for.
The same technique is also used when we prove that certain kinds of di�erential
equations have unique solutions.

The functions are considered to be vectors in a real vector space. From the-
orem 2.47 we know that if the functions are continuous, then the vector space is
complete with respect to the supremum norm.

Theorem 3.35 (Banach's �xed point theorem). Let V be a complete normed
vector space,9 and let f : V ! V be such that there exists some constant
0 � L < 1 with

kf(u)� f(v)k � Lku� vk;
for all u, v 2 V . Then there exists a unique �xed point w 2 V , with f(w) = w.

9That is, all Cauchy sequences converge.
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Proof. Choose some arbitrary vector v0 2 V . Then recursively de�ne vn =
f(vn�1), for all n 2 N. Thus the sequence (vn)n2N is a Cauchy sequence, whose
limit is some particular vector w 2 V . It is now an exercise to show that f(w) = w.

If w0 is some other vector with f(w0) = w0 then we have

kw0 � wk = kf(w0)� f(w)k � Lkw0 � wk:

Since L < 1, this can only be true if kw0 � wk = 0, that is, w0 = w.

The next idea which we need is a generalization of the mean value theorem
(2.34) to higher dimensions. To begin with, recall that the one-dimensional version
of the mean value theorem can be formulated in the following way. Let f : [a; b]!
R be continous and di�erentiable in (a; b). Then there exists some � with 0 < � < 1
such that

f(b)� f(a)
b� a =

f(a+ (b� a))� f(a)
b� a = f 0(a+ �(b� a)):

Or, taking x = a and h = b� a, we have

f(x+ h)� f(x) = f 0(x+ �h) � h:

On the other hand, using the fundamental theorem of calculus, and the substitu-
tion rule for integrals, we have

f(x+ h)� f(x) =
Z x+h

x
f 0(u)du =

Z 1

0
f 0(x+ th)hdt =

�Z 1

0
f 0(x+ th)dt

�
h:

The mean value theorem in higher dimensions will be a generalization of this
formula.

Theorem 3.36 (Mean value theorem for higher dimensions). Let G � Rn be
open, and let f : G ! Rm be continuously di�erentiable. Take some x 2 G
and � 2 Rn such that x + t� 2 G, for all t with t 2 [0; 1]. Then we have

f(x + �)� f(x) =
�Z 1

0
Df(x + t�)dt

�
�:

Proof. To begin with, note that the matrix inside the integral here consists of an
m�n array of real functions, namely the functions @jfi(x+t�). Taking the integral
of this matrix involves integrating each of these individual functions, giving us an
m� n matrix of real numbers, representing a linear mapping Rn ! Rm.

For each i 2 f1; : : : ;mg, let gi(t) = fi(x+ t�), for t 2 [0; 1]. Then for 0 < t < 1
we have

g0i(t) = hgradfi(x + t�); �i =
nX
j=1

@jfi(x + t�)�j:
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Therefore

fi(x + �)� fi(x) = gi(1)� gi(0)
=

Z 1

0
g0(t)dt

=
Z 1

0

0@ nX
j=1

@jfi(x + t�)�j

1A dt
=

nX
j=1

�Z 1

0
@jfi(x + t�)dt

�
�j;

and
R 1
0 @jfi(x + t�)dt is the i; j-th element of the matrix

R 1
0 Df(x + t�)dt,

Theorem 3.37. With the same conditions as in the previous theorem, let

M = sup
0�t�1

fkDf(x + t�) � yk : y 2 Rn with kyk = 1g:

Then
kf(x + �)� f(x)k �Mk�k:

Proof. For each t 2 [0; 1] let us say thatM(t) is the norm of the matrixDf(x+t�).
That is to say, given some linear mapping

 : Rn ! Rm;

the norm of  (or of the matrix representing  ) is de�ned to be

k k = sup
�2Rn
k�k=1

k (�)k:

Then given any non-zero vector y 2 Rn, we have

k (y)k = kyk





 

 
y

kyk
!




 � kykk k:

It is a simple exercise in linear algebra to show that for a linear mapping between
two �nite dimensional normed vector spaces, the norm of the mapping, as de�ned
here, must exist.10

10For example, if the canonical basis vectors of Rn are e1; : : : ; en, then we can write

� = �1e1 + � � �+ �nen:

Since k�k = 1 we must have j�j j � 1 for all j = 1; : : : ; n. Then

k (�)k � j�1jk (e1)k+ � � �+ j�njk (en)k � k (e1)k+ � � �+ k (en)k:
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Since our mapping f : G ! Rm is assumed to be continuously di�erentiable,
it follows that the function t ! M(t) is continuous on [0; 1], thus the supremum
M must exist. Therefore we have

kf(x + �)� f(x)k =




�Z 1

0
Df(x + t�)dt

�
� �






=




Z 1

0
Df(x + t�) � �dt






�

Z 1

0
kDf(x + t�) � �kdt

�
Z 1

0
Mk�kdt

= Mk�k:
(Note that the �rst inequality here follows from the triangle inequality in Rm.)

We are now able to prove the theorem on implicit functions.

Theorem 3.38. Let G1 � Rk and G2 � Rm be open subsets such that the
product G1�G2 contains a particular point (a;b) 2 G1�G2. Let F : G1�G2 !
Rm be a continuously di�erentiable function such that F (a;b) = 0, and such
that @F

@y
(a;b) is an invertible m � m matrix. (We use the same notation

here as in theorem 3.34.) Then there are open neighborhoods V1 � G1 and
V2 � G2 with a 2 V1 and b 2 V2, and a continuous mapping g : V1 ! V2
with F (x; g(x)) = 0 for all x 2 V1. Furthermore, for all points (x;y) with
F (x;y) = 0), we have y = g(x).

Proof. For simplicity, and without loss of generality, we assume that a = 0 2 Rk

and b = 0 2 Rm. And then we will simply denote the matrix @F
@y
(0;0) by B.

A new mapping H : G1 �G2 ! Rm is given by the rule

H(x;y) = y �B�1F (x;y):

Clearly if F (x;y) = 0, then we must have H(x;y) = y. But also if H(x;y) = y
then we must have F (x;y) = 0, since after all, F (x;y) is simply a vector in Rm,
and since B is an invertible matrix, if F (x;y) were non-zero, then also B�1F (x;y)
would be non-zero. Therefore

F (x;y) = 0 , H(x;y) = y;

and so our goal is now to �nd a function g with H(x; g(x)) = g(x).
Because F is continuously di�erentiable, it follows that the same is true of H,

and we have
@H

@y
(x;y) = 1�B�1@F

@y
(x;y):

Here, 1 stands for the m�m identity matrix. So we have

@H

@y
(0;0) = 0;
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where 0 is the m�m zero matrix.
Since F was continuously di�erentiable, it follows that also the functions which

are the elements of the matrix @H
@y
(x;y) are continuous. They are all zero at (0;0),

therefore there exist �1 > 0 and �2 > 0 such that




@H@y
(x;y)






 < 1

2
;

for all kxk < �1 and kyk < �2. Here,



@H
@y
(x;y)




 is the norm of the matrix.
But also, since H is continuous, we may choose �1 su�ciently small that also

kH(x;0)k < �2
2
;

for all kxk < �1.
Let V1 = fx 2 Rk : kxk < �1g and V2 = fy 2 Rm : kyk < �2g. The function

g : V1 ! V2

is then constructed by means of an iteration. To begin, let

g0(x) = 0;

for all x 2 V1. Then for each n 2 N, let

gn(x) = H(x; gn�1(x)):

We obtain

kgn+1(x)� gn(x)k = kH(x; gn(x))�H(x; gn�1(x))k
� 1

2
k(x; gn(x))� (x; gn�1(x))k

=
1

2
kgn(x)� gn�1(x)k

� 1

2n
kg1(x)� g0(x)k

=
1

2n
kg1(x)k

<
1

2n
�2
2
:

Note that the �rst inequality here follows from theorem 3.37, and the further
inequalities follow from the fact that

kg1(x)� g0(x)k = kg1(x)k < �2
2
;

and for each subsequent iteration, the di�erence is halved.
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Therefore, for all x 2 V1 and n 2 N, we have

kgn(x)k = kgn(x)� g0(x)k
=







nX
l=1

(gl(x)� gl�1(x))







�

nX
l=1

kgl(x)� gl�1(x)k

<
nX
l=1

1

2l�1

�2
2

< �2:

Therefore gn(x) 2 V2, for all x 2 V1 and for all n 2 N.
All of the functions gn are continuous, and according to theorem 3.35, they

converge uniformly to the unique continuous function g : V1 ! V2 which must
satisfy H(x; g(x)) = g(x) for all x 2 V1. That is, F (x; g(x)) = 0 for all x 2 V1.

We have only shown that g is continuous. However, as noted in theorem 3.34,
the fact that F (x; g(x)) = 0 can be shown to imply that also g is totally di�eren-
tiable at (a;b), and thus the formula there will also apply. `

3.7 Lagrange Multipliers

Theorem 3.39. Let G � Rn be an open set and let f : G! R be continuously
di�erentiable. Assume that M = fx 2 G : f(x) = 0g 6= ;. Let a 2 M
with rf(a) 6= 0. Assume furthermore that h : G! R is another continuously
di�erentiable function such that in some open neighborhood V � G with a 2 V
we have h(a) � h(x), for all x 2M \ V . Then there exists some � 2 R with

rh(a) = �rf(a):

Remark. The number � in this theorem is called a Lagrange multiplier.

Proof. Since rf(a) 6= 0, we must have @if(a) 6= 0, for some i 2 f1; : : : ; ng.
Without loss of generality, assume that i = n. For a = (a1; : : : ; an), take a0 =
(a1; : : : ; an�1), so that a = (a0; an).

According the the theorem on implicit functions (3.38), there exists a neigh-
borhood V 0 � V 00 of a (so that both V 0 � Rn�1 and V 00 � R are open sets, and
a0 2 V 0 and an 2 V 00) such that there exists a continuously di�erentiable function
g : V 0 ! V 00, with

M \ (V 0 � V 00) = fx 2 V 0 � V 00 : xn = g(x1; : : : ; xn�1)g:

This means that we have
f(x0; g(x0)) = 0;
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for points x0 = (x1; : : : ; xn�1) in an open neighborhood of a0. In particular, for
each i 2 f1; : : : ; n� 1g we must have

@if(a
0; g(a0)) = @if(a) + @nf(a)@ig(a

0) = 0:

Let the function H : V 0 ! R be

H(x0) = h(x0; g(x0)):

Then the condition on h, namely that h(a) � h(x), for all x 2M \V , means that
H(x0) � H(a0), for all x0 in an open neighborhood of a0 in V 0. Therefore we have

@iH(a0) = 0;

for all i 2 f1; : : : ; n� 1g. But
@iH(a0) = @ih(x

0; g(x0)) = @ih(a) + @nh(a)@ig(a
0) = 0:

Therefore, since @nf(a) 6= 0, we can write

@ih(a) = �@nh(a)@ig(a0) = @nh(a)

@nf(a)
(�@nf(a)@ig(a0)) = �@if(a);

with

� =
@nh(a)

@nf(a)
:

Furthermore, we obviously have

@nh(a) =
@nh(a)

@nf(a)
@nf(a) = �@nf(a):

Therefore, taking all the i = 1; : : : ; n together, we have

rh(a) = �rf(a):

The condition f(x) = 0 represents a constraint on the set of possible points
which are to be brought into consideration in the given situation, constraining
things to the set M . Then h is a function whose value we are interested in on the
constrained set M . The point a is \optimal"11 under h with respect to the other
points of M . (Of course the theorem also works just as well if we say that a is
a minimal | rather than a maximal | value under h.) Then the theorem says
that the gradient, rf , which, according to theorem 3.30, gives the direction of the
greatest increase of the function, is the same as the gradient rh.

The proof used a number of theorems which we proved a while ago, and so
you may �nd it di�cult to get a clear picture of what's going on here. Let's think

11That is, it is a (local) maximal value.
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about the function f �rst. Since f(x) = 0 everywhere throughout M , it is obvious
that the gradient of f at a must lie perpendicularly toM . But itM has dimension
n � 1; therefore there is only one single direction perpendicular to M . On the
other hand, thinking about h, consider the set Mh(a) = fx 2 G : h(x) = h(a)g. If
rh(a) 6= 0, then the fact that f(a) is a local extremum in M means that we can't
have Mh(a) crossing through M at a. The two \hyper-planes" must be tangent to
one another at a, and so the perpendicular direction is the same for both. On the
other hand, if rh(a) = 0 then obviously the theorem is true if we simply take the
Lagrange multiplier � to be zero.

All of this gives a method for �nding a necessary condition that a point be a
(locally) extreme point for the function h under the constraint f(x) = 0. It is
namely the case that for such a point, the gradients of h and f must have the
same directions (or opposite directions if the Lagrange multiplier � is a negative
number).

3.8 Ordinary differential equations

The kinds of di�erential equations which we will investigate here are of the form

y0 = f(x; y);

where f : G ! R is some continuous function and G � R2 is an open subset.
A solution to such a di�erential equation is a di�erentiable function ' : I ! R,
where I � R is some open interval and (x; '(x)) 2 G for all x 2 I, such that

'0(x) = f(x; '(x));

for all x 2 I.
The simplest case is that the function f depends only upon x. That is, we

have the di�erential equation
y0 = f(x):

But we already know how to solve this equation. The solution is simply an anti-
derivative to the function f . And we already know that all possible anti-derivatives
are given by the integral of f , plus a constant. That is, the solution to this simple
form of di�erential equation is

'(x) =
Z x

x0
f(t)dt+ y0:

Here, y0 2 R is a constant, and the solution ' has the initial value '(x0) = y0.
Of course if we express the anti-derivative as an integral in this way, we only

obtain values of '(x) for x � x0. But we can also extend the anti-derivative to
values of x less than x0 by considering the integral

�
Z x0

x
f(t)dt:
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But what can we do in the more general case? For example consider the
di�erential equation

y0 = y:

Remembering the properties of the exponential function, we can guess that a
solution is

'(x) = exp(x):

But then, a little further thought convinces us that also k exp(x) is a solution, for
any constant k 2 R. Are there further solutions? And more generally, can we solve
di�erential equations of the form y0 = g(y), where g is any continuous function?

3.8.1 Separation of variables

The natural thing is to investigate di�erential equations of the form

y0 = f(x) � g(y);
where both f and g are continuous functions. This is a di�erential equation which
has separation of its variables.

Theorem 3.40. Let I, J � R be open intervals, f : I ! R and g : J ! R
continuous functions with g(y) 6= 0 for all y 2 J. Let (x0; y0) 2 I � J be some
\initial value", and take

F (x) =
Z x

x0
f(t)dt and G(y) =

Z y

y0

ds

g(s)
;

for x 2 I and y 2 J. Further, assume that I 0 � I is some open interval
contained in I such that x0 2 I 0 and F (I 0) � G(J). Then there exists a unique
continuously di�erentiable function ' : I 0 ! R, such that '(x0) = y0 and

'0(x) = f(x)g('(x));

for all x 2 I 0. And we have G('(x)) = F (x) for all x 2 I 0.
Proof. Assuming such a ' exists, then we have

F (x) =
Z x

x0
f(t)dt =

Z x

x0

'0(t)

g('(t))
dt =

Z '(x)

y0

ds

g(s)
= G('(x)):

That is to say, G('(x)) = F (x). The second equation here follows from the
assumed equation '0(x) = f(x)g('(x)), and the third equation follows from the
substitution rule for integrals.

Next we prove that ' is unique. Since G0(y) = 1
g(y)

6= 0, for all y 2 J , and since

G is continuous, it follows that G is a bijection between J and its image G(J) � R.
Thus there must be an inverse function H : G(J)! J , with H(G(y)) = y, for all
y 2 J . But then

'(x) = H(G('(x))) = H(F (x)) = H
�Z x

x0
f(t)dt

�
;
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and it follows that '(x) is uniquely determined.

So the �nal question is: is '(x) = H
�R x
x0
f(t)dt

�
really a solution of the di�er-

ential equation?
Well, we need only di�erentiate the equation G('(x)) = F (x) in order to obtain

'0(x)G0('(x)) =
'0(x)

g('(x))
= F 0(x) = f(x);

or '0(x) = f(x)g('(x)), as required. Furthermore, we have

'(x0) = H
�Z x0

x0
f(t)dt

�
= H(0):

But G(y0) = 0. Thus

'(x0) = H(0) = H(G(y0)) = y0:

3.8.2 An example: y0 = x � y

The equation y0 = x � y obviously has separation of variables. We take I = R and
J = R+ = fx 2 R : x > 0g. Then we have

F (x) =
Z x

x0
t dt =

x2 � x20
2

;

and

G(y) =
Z y

y0

dt

t
= ln(y)� ln(y0) = ln

 
y

y0

!
:

Since the function G is the logarithm, its inverse function H must be the expo-
nential function. In fact, we have

y0 � exp
 
ln

 
y

y0

!!
= y;

for all y > 0. Therefore the solution with the initial value '(x0) = y0, where
y0 > 0, is

'(x) = H(F (x)) = y0 exp
�Z x

x0
t dt

�
= y0 exp

 
x2 � x20

2

!
:

3.8.3 Another example: homogeneous linear differential equa-
tions

The general �rst order homogeneous linear di�erential equation has the form

y0 = a(x) � y;
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where a is a continuous function. This is again a case of separation of variables,
and so, using the methods we have developed, the general solution

'(x) = y0 � exp
�Z x

x0
a(t)dt

�
is immediately obtained. Note that if '(x0) = y0 6= 0, then since exp(w) is always
positive for all w 2 R, it follows that '(x) 6= 0, for all possible x.

3.8.4 Variation of constants

This is the method used to solve inhomogeneous �rst order linear di�erential
equations. That is, equations of the form

y0 = a(x) � y + b(x):

To begin with, let ' be a solution to the homogeneous linear di�erential equation
y0 = a(x) � y, with initial value '(x0) = 1. Thus

'0(x) = a(x)'(x);

with solution

'(x) = exp
�Z x

x0
a(t)dt

�
:

Next, we assume that the inhomogeneous equation with the extra term b(x) has
some solution  , so that

 0(x) = a(x) �  (x) + b(x):

Given this, then we simply de�ne a new function � to be

�(x) =
 (x)

'(x)
:

That is,  (x) = �(x)'(x); but remember that '0(x) = a(x)'(x). Therefore,
putting it all together, we obtain

 0(x) = � 0(x)'(x) + �(x)'0(x)

= � 0(x)'(x) + �(x)a(x)'(x)

= a(x) (x) + b(x)

= a(x)�(x)'(x) + b(x):

Subtracting the term �(x)a(x)'(x) from both sides, we the obtain

� 0(x)'(x) = b(x);

or

� 0(x) =
b(x)

'(x)
:
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Thus � is simply an anti-derivative of b(x)
'(x)

, that is

�(x) =
Z x

x0

b(t)

'(t)
dt+K;

where K 2 R is some suitable constant. Choosing K = y0 gives us the solution

 (x) = �(x)'(x) = exp
�Z x

x0
a(t)dt

�
�
0@Z x

x0

b(t)

exp
�R t
x0
a(s)ds

�dt+ y0

1A ;
which satis�es the initial value  (x0) = y0.

3.8.5 The equation y0 = f
�
y
x

�
To round o� our discussion of special classes of �rst-order ordinary di�erential
equations, we consider the equation

y0 = f
�
y

x

�
:

We are looking for a solution ' : I ! R with an interval I � R, such that 0 62 I.
Here again, f is taken to be continuous and de�ned on an appropriate open interval
of R. Given this, then we have:

Theorem 3.41. There exists a solution ' : I ! R with

'0(x) = f

 
'(x)

x

!
if and only if

 0(x) =
f( (x))�  (x)

x
;

where  (x) = '(x)
x
.

Proof. Assume �rst that '0(x) = f
�
'(x)
x

�
. Then we have

 0(x) =
'0(x)

x
� '(x)

x2

=
1

x

 
f

 
'(x)

x

!
� '(x)

x

!

=
1

x
(f( (x))�  (x)):

Conversely, if we assume  0(x) = f( (x))� (x)
x

, then since we have '(x) =  (x) � x,
it follows

'0(x) =  0(x) � x+  (x)

=
(f( (x))�  (x))

x
� x+  (x)

= f( (x))

= f

 
'(x)

x

!
:

140



Therefore, in order to solve the equation

y0 = f
�
y

x

�
;

the �rst thing to do is to solve the equation

z0 =
1

x
(f(z)� z):

The equation with z is a case of separation of variables, and we have already seen
how to solve such equations. Therefore we obtain a solution z, and the solution y
for the original equation becomes y = x � z.

3.9 The theorem of Picard and Lindelöf

In our discussion of the method of the variation of constants, we simply assumed
that some solution to the di�erential equation must exist. But how do we know
if this assumption is a reasonable one? To answer this question we need to give
some thought to the general theory of di�erential equations.

3.9.1 Systems of first order differential equations

In the discussion so far, we have considered single equations of the form y0 =
f(x; y), where we are looking for a solution of the form ' : I ! R. More generally,
we can look at a set of n equations which are all linked together.

y01 = f1(x; y1; : : : ; yn)

y02 = f2(x; y1; : : : ; yn)
...

y01 = f1(x; y1; : : : ; yn)

We can think of these n components y1; : : : ; yn as being the coordinates of a vector
y 2 Rn, and so the di�erential equation can be written as if it were a kind of vector
equation: y0 = f(x;y), or in other words0BB@

y01
...
y0n

1CCA =

0BB@
f1(x;y)

...
fn(x;y)

1CCA :
This di�erential equation is determined by the function f , so it is necessary to say
what it is.

Let G � R � Rn be an open subset (of Rn+1), and f : G ! Rn a continuous
function. Given some x0 2 R and y0 2 Rn with (x0;y0) 2 G, then a solution to
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the di�erential equation y0 = f(x;y), with initial value (x0;y0), is a di�erentiable
function ' : I ! Rn, for some open interval I � R, such that x0 2 I, '(x0) = y0,
and (x; '(x)) 2 G for all x 2 I, and �nally, the function ' satis�es the di�erential
equation. That is,

'0(x) = f(x; '(x));

for all x 2 I.

3.9.2 The Lipschitz condition

Definition. Again, let G � R�Rn be an open subset, and let f : G! Rn be a
function. The function f is said to satisfy a Lipschitz condition with Lipschitz
constant L � 0 if for all (x;y), (x; ey) 2 G, we have kf(x;y)�f(x; ey)k � Lky�eyk.

In the theory of di�erential equations, we usually generalize things somewhat,
assuming that the function f only satis�es a local Lipschitz condition. That is to
say, the function satis�es a local Lipschitz condition if for every (x;y) 2 G, there
exists some open neighborhood U � G with (x;y) 2 U , such that f satis�es a
Lipschitz condition in U .

For simplicity in the discussion here, let us assume that we have a global
Lipschitz condition, and furthermore it will be assumed that we have just a single
�rst order ordinary di�erential equation. Thus G � R2.

3.9.3 Uniqueness of solutions

Theorem 3.42. Let G � R2 be an open subset and let f : G! R be a contin-
uous function satisfying a Lipschitz condition with Lipschitz constant L > 0.
Assume (x0; y0) 2 G, I � R is an open interval with x0 2 I, and we have two
functions ',  : I ! R which are both solutions of the di�erential equation
y0 = f(x; y), with initial value (x0; y0). That is, '(x0) =  (x0) = y0. Then we
have '(x) =  (x) for all x 2 I.
Proof. We have '0(x) = f(x; '(x)). Therefore '(x) =

R x
x0
f(t; '(t))dt + y0, and

the same is true of the function  . Thus for each x � x0 we have

j'(x)�  (x)j =
����Z x

x0

�
f(t; '(t))� f(t;  (t))

�
dt
����

�
Z x

x0

����f(t; '(t))� f(t;  (t))����dt
� L �

Z x

x0
j'(t))�  (t)jdt

For each x 2 I with x � x0, let

M(x) = supfj'(t)�  (t)j : x0 � t � xg:
In particular, for all t between x0 and x, we have

j'0(t)�  0(t)j = jf(t; '(t))� f(t;  (t))j � L � j'(t)�  (t)j � L �M(x):
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Therefore
j'(t)�  (t)j0 � L �M(x):

Then, using the intermediate value theorem and noting that '(x0) =  (x0), we
see that

j'(t)�  (t)j � jt� x0j � L �M(x);

for all t between x0 and x. In particular, this implies that

M(x) � jx� x0j � L �M(x):

But if we choose x to be su�ciently close to x0 so that

jx� x0j < 1

2L
;

then we obtain

M(x) � 1

2
M(x):

This can only be true if M(x) = 0, or in other words, '(t) =  (t) for all t � x0,
with jt� x0j < 1=2L.

Now take x1 = supf� 2 I : '(t) =  (t);8t 2 [x0; �]g. There cannot be any
elements of I greater than x1 since for all points t of I nearer than 1=2L to x1, we
must have '(t) =  (t). Thus, for all elements of I greater than x0, we must have
' and  being equal.

The argument can also be extended to show that for all elements of I less than
x0, the two functions are equal. For this we need only note that we would have

'(x) = �
Z x0

x
f(t; '(t))dt+ y0;

and the analogous expression for  (x).

Examples

� Linear di�erential equations y0 = a(x) � y + b(x) obviously satisfy a local
Lipschitz condition. For let x be an element of the open interval I where
the equation is de�ned. Then let I 0 � I be a �nite closed interval such
that x is contained in the interior of I 0. Since the function a is assumed to
be continuous, it is uniformly continuous on I 0. Let L > 0 be chosen with
L > a(x0), for all x0 2 I 0. Then we have

j(a(x) � y + b(x))� (a(x) � ~y + b(x))j � Ljy � ~yj:

� The standard example of a di�erential equation which does not satisfy a
Lipschitz condition is

y0 =
q
jyj:
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For example, if we take ~y = 0, then in order to have����qjyj �q
j~yj
���� = q

jyj � Ljy � ~yj = Ljyj;

we would have to have

L � 1q
jyj
:

Yet, as y ! 0, the fraction 1=
q
jyj ! 1.

Speci�cally, we can think of a number of di�erent solutions. For example

the function '0(x) = 0 obviously satis�es the equation y0 =
q
jyj. Another

solution is '1(x) = x2=4. Obviously we have '0(0) = '1(0) = 0. That is
to say, given the initial value (x0; y0) = (0; 0), then we have two di�erent
solutions of the di�erential equation, starting from the same initial value.
More generally, for all k 2 R, the function

'(x) =

8<:0; x < �k
(x+k)2

4
; x � �k

is a solution to the di�erential equation y0 =
q
jyj. (But note that this

di�erential equation is of the form \seperation of variables". Thus, according
to theorem 3.40, the solution is unique if we start with an initial value such
that y 6= 0, and con�ne the solution to a region where it remains not equal
to zero.)

3.9.4 Existence of solutions

Theorem 3.43. Again, G � R2 open; f : G ! R continuous, satisfying a
Lipschitz condition with constant L > 0. Let (x0; y0) 2 G. Then there exists
an open interval I � R with x0 2 I, and a continuously di�erentiable function
' : I ! R, such that '(x0) = y0, (x; '(x)) 2 G and '0(x) = f(x; '(x)), for all
x 2 I.
Proof. We show how to �nd '(x), for x > x0. The procedure for x < x0 is
analogous.

To begin, since G is open, there must exist some � > 0 such that the square

S(x0;y0)(�) = f(x; y) : jx� x0j � � and jy � y0j � �g � G:

Since f is continuous, there must exist some M > 0, such that jf(x; y)j � M , for
all (x; y) 2 S(x0;y0)(�).) So let

� = min

(
�;
�

M
;
1

2L

)
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and then take
I = (x0 � �; x0 + �):

The next thing to do is to de�ne recursively a sequence of functions 'n : I ! R
as follows. We start with the constant function

'0(x) = y0:

Then, for each n 2 N, we take

'n(x) =
Z x

x0
f(t; 'n�1(t))dt+ y0:

Obviously 'n(x0) = y0, for all n. Furthermore, we also have

(x; 'n(x)) 2 S(x0;y0)(�) � G;

for all n. In order to see this, we begin by observing that (x; '0(x)) = (x; y0) 2
S(x0;y0)(�) for all x 2 I, since we must have jx� x0j < � � �.

So now let n 2 N be given, and we assume inductively that (x; 'n�1(x)) 2
S(x0;y0)(�) for all x 2 I. Then we have

j'n(x)� y0j =
����Z x

x0
f(t; 'n�1(t))dt

����
�

Z x

x0
jf(t; 'n�1(t))jdt

� jx� x0j �M
� �

M
�M

= �:

Therefore (x; 'n(x)) 2 G, for all n.
The next step is to show that the sequence of functions 'n converges uniformly

to a function ' : I ! R which is a solution to the di�erential equation y0 = f(x; y).
Writing k � k for the supremum norm, we have

j'n+1(x)� 'n(x)j =
����Z x

x0
(f(t; 'n(t))� f(t; 'n�1(t)))dt

����
�

Z x

x0
Lj'n(t)� 'n�1(t)jdt

� L � jx� x0j � k'n � 'n�1k
� L � 1

2L
� k'n � 'n�1k

=
1

2
k'n � 'n�1k:

Since this is true for all x 2 I with x > x0, we have

k'n+1 � 'nk � 1

2
k'n � 'n�1k:
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Thus we see that the sequence of continuous functions 'n is a Cauchy sequence
with respect to the supremum norm. Therefore it converges uniformly to a function
' : I ! R. We have '(x0) = y0 and (x; '(x)) 2 G, for all x 2 I. Furthermore,
using theorem 2.48, we obtain

'(x) = lim
n!1

'n(x) = lim
n!1

Z x

x0
f(t; 'n�1(t))dt =

Z x

x0
f(t; '(t))dt;

and so we must have
'0(x) = f(x; '(x))

for all x 2 I.

Remarks

� In this proof, we have assumed that x > x0, but as has been repeatedly
remarked, it is a simple matter to alter the proof in order to deal with the
values of x in I which are less than x0.

� Since we con�ned things to the small square S(x0;y0)(�) around the point
(x0; y0) 2 G, it is clear that we only needed to have a Lipschitz condition in
that square. That is, the theorem is also true if the function f only satis�es
a local Lipschitz condition.

� Our interval I, which contains the initial value x0, is taken to be small in
order to ensure that the sequence of functions 'n do not bring us out of
the region G. Also I must be su�ciently small to ensure that we have the
contraction k'n+1 � 'nk � 1

2
k'n � 'n�1k: But then, given that the solution

' is de�ned along the interval I, we can take a point near the end of I and
use that as the initial value, constructing an extension of the domain os '.
In general this procedure allows us to extend the interval along which ' is
de�ned, in fact going out to the edge of the region G. Such ideas are dealt
with more fully in the many books on di�erential equations in the library,
and also in the lecture devoted to di�erential equations in our faculty.

� The method of proof describes a practical method for �nding solutions of
di�erential equations. Given an initial value (x0; y0) 2 G, we take the �rst
approximation to be simply the constant function '0(x) = y0, for all x 2 I.
Then the sequence 'n, for n 2 N should converge to a solution. This is called
the Picard-Lindel�of iteration method.

� When dealing with systems of �rst order di�erential equations, we have vec-
tors in Rn, rather than just numbers in R. The iteration step is then a vector
equation

'n(x) =
Z x

x0
f(t; 'n�1(t))dt+ y0:
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Here x 2 I � R, but f(t; 'n�1(t)) 2 Rn and y0 2 Rn. The integral becomes
an integral over a vector-valued function.

Z x

x0
f(t; 'n�1(t))dt =

Z x

x0

0BB@
f1(t; 'n�1(t))

...
fn(t; 'n�1(t))

1CCA dt;
and each of the components fi(t; 'n�1(t)) is just a function fi : I ! R. So
we integrate each of the components separately.

3.10 Ordinary differential equations of higher or-

der

These are equations of the form

y(n) = f(x; y; y0; : : : ; y(n�1));

where y(n) is the n-th derivative. That is, given an initial value (x0; y0), then we
are looking for a solution ' : I ! R, with '(x0) = y0 and

'(n)(x) = f(x; '(x); '0(x); : : : ; '(n�1)(x));

for all x 2 I.
The method is to convert this into a system of n �rst-order di�erential equa-

tions in the variables y1; : : : ; yn. To begin with, let y1 = y. then take

y01 = y2

y02 = y3
...

y0n�1 = yn

y0n = f(x; y1; : : : ; yn):

This reduces the problem to that of solving systems of �rst order equations. And
given a solution

'(x) =

0BBBB@
'1(x)
'2(x)
...

'n(x)

1CCCCA ;
then '1 : I ! R is clearly a solution to the original equation

y(n) = f(x; y; y0; : : : ; y(n�1)):
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Example

Consider the simple equation y00 = �y. This describes (without bothering about
additional constants) the harmonic oscillator. In order to solve the equation, we
reduce it to a system of two �rst order equations, namely

y01 = y2

y02 = �y1
But we have already seen in an exercise that the solution (with the initial value
'(0) = 1) is '(x) = cos(x).

3.11 Partial differential equations

Ordinary di�erential equations depend on one parameter, x. The most general
form for such an equation would be

F (x; y; y0; : : : ; y(n)) = 0:

Thus, for example if we have an equation of the form

y0 = f(x; y);

this becomes
F (x; y; y0) = y0 � f(x; y) = 0:

Perhaps is is natural to think of such equations as describing the movement of a
particle through space, where the parameter x describes the time. For example,
Gauss spent huge amounts of time, involving hundreds of thousands | even mil-
lions | of arithmetical operations, trying to calculate the paths of various astroids
in their movements about the sun.

It is also possible to consider di�erential equations which depend on more than
one parameter, say x1; x2; : : : ; xn. We then have the theory of partial di�erential
equations. Such an equation will be of the form

F (x1; x2; : : : ; xn;y; @1y; : : : ; @ny; @1@1y; @1@2y; : : : ; @n@ny; : : : ) = 0:

Here, a solution to the equation is a function ' : G ! Rm, where G � Rn is
some open subset, and the function F has some �nite number of possible partial
derivatives.

Special classes of partial di�erential equations, such as the Laplace equation

@21'(x1; : : : ; xn) + � � �+ @2n'(x1; : : : ; xn) = 0;

with given boundary values, have been studied theoretically. But in general, it is
impossible to �nd exact solutions. Instead, people use numerical methods to �nd
approximate solutions.
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Such things are very important in many practical situations. For example when
people design an airplane, then it is necessary to calculate the 
ow of air over the
wings using the partial di�erential equations of 
uid dynamics. And then, of course
the stresses within the wing itself must be calculated in order to determine what
strengths the various components must have. For this, one uses the method of
\�nite element analysis", which again is a way of �nding an approximate solution
to a system of partial di�erential equations. In the early 1800s, when Gauss was
active, such calculations were hardly feasible, at least for \normal" people. But
these days, such methods are applied all the time, using computers and standard
software libraries.

All of this is beyond the scope of the Analysis 2 lectures. Still, it may be
interesting to have a quick look at some methods which are used for dealing with
ordinary di�erential equations.

3.12 Numerical methods for solving ordinary dif-

ferential equations

3.12.1 Euler’s method

Given the di�erential equation y0 = f(x; y), and the initial value (x0; y0), then
Euler's method for �nding an approximate solution is to look at things in a discrete
sequence of steps

x0; x0 +�x; x0 + 2�x; x0 + 3�x; : : :

That is to say, things are calculated at the points

x0; x1; x2; x3; : : :

where
xn = xn�1 +�x;

and �x is some �xed distance between one calculation and the next.
But what are the corresponding values of y for each of these xn? The rule is:

yn = yn�1 +�x � f(xn�1; yn�1);

progressing through increasing values of n in N. In this way we obtain a sequence
of points

(x0; y0); (x1; y1); (x2; y2); : : :

and then connecting the points with straight line segments, we hope to get some
sort of approximation to the correct solution.
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A simple example: y0 = x

If the initial value is (0; 0), then we are looking for the function ' : R ! R with
'(0) = 0 and '0(x) = x, for all x 2 R. Obviously, the correct solution is

'(x) =
1

2
x2

as can be seen by observing that this is the anti-derivative of the function x.
So what does Euler's method make of this problem if we take the discrete step

length to be �x = 1? We obtain the sequence of points

(0; 0)
(1; 0)
(2; 1)
(3; 3)
(4; 6)
etc:

But the correct solution '(x) = 1
2
x2 goes through the points

(0; 0)
(1; 1

2
)

(2; 2)
(3; 41

2
)

(4; 8)
etc:

So we see that Euler's method is not particularly good in this case.

3.12.2 The Runga-Kutta method

The simplest version of the Runga-Kutta method is to use the rule

yn = yn�1 +
�x

2

�
f(xn�1; yn�1) + f(xn�1 +�x; yn�1 +�xf(xn�1; yn�1))

�
:

This gives the sequence of points

(0; 0)
(1; 1

2
)

(2; 2)
(3; 41

2
)

(4; 8)
etc:

And we see that this is gives us precisely the points of the correct solution!
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Of course this example is rather special. Experimenting with more general
examples, one usually �nds that this simple Runga-Kutta method is superior to
the Cauchy method, but it is also not particularly e�cient.

There are various possibilities for obtaining a better calculation, depending on
the details of the given equation which is to be solved. One such method uses a
4-step iteration.

Given the equation y0 = f(x; y), with initial value (x0; y0), let ' be a solution.
In particular, we have that the initial value is satis�ed: '(x0) = y0.

Now let h > 0 be the discrete step length. The problem is to calculate a
sensible approximation to the number k, such that '(x0 + h) = y0 + k. Then, of
course we can set x1 = x0 + h and y1 = y0 + k and continue the calculation from
there. By taking h to be small, and using the fastest computer obtainable, one
hopes to piece together a reasonably good solution to the given equation.

The method for �nding k, given f and (x0; y0), is given by the following scheme.
Begin by setting x = x0 and y = y0. Then we have

yI = y + kI=2; kI = f(x; y)h

yII = y + kII=2; kII = f(x+ h=2; yI)h

yIII = y + kIII ; kIII = f(x+ h=2; yII)h

kIV = f(x+ h; yIII)h

and then �nally,

k =
1

6
(kI + 2kII + 2kIII + kIV );

so that we have the starting point for the next step in the calculation, namely

x1 = x+ h; and y1 = y + k:

3.13 The variational calculus: a sketch

The most general way to think about the variational calculus is to imagine that
we have some abstract set X, together with a real-valued function F : X ! R
which is bounded below. The problem is then: �nd some x0 2 X (if such a thing
exists!) such that F (x0) � F (x), for all possible x 2 X. That is, x0 is an element
with the minimal possible value.

If we are looking for an element with the maximal value, then that is the same
as looking for some x0 such that �F (x0) has a minimal value.

For example, in the theory of economics, it might be imagined that we have a
factory which produces various things which can be sold at various prices. Should
more workers be employed, or should some be made redundant? Which combina-
tions of raw materials at what prices should be bought? And so on and so forth.
Each of the possible combinations is an element of the set X of di�erent possible
ways of running the factory. In the end, the amount of pro�t the factory makes
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is some number F (x), which might be calculated for each of the possible elements
of X. Economists then imagine that the factory manager will choose to run the
factory according to the method x0 2 X, which gives the greatest pro�t.

But such a level of generality brings us away from practical mathematics. Let
us therefore restrict ourselves to the kind of variational calculus which describes
practical situations in the physical world, and which are described in terms of
di�erential equations.

Examples

� The problem which was posed by the mathematician Johann Bernoulli in the
journal Acta Eruditorum in June 1696, and which led to the formulation
of the theory of the variational calculus, was the Problem of the Brachys-
tochrone. He wrote:

\I, Johann Bernoulli, address the most brilliant mathematicians in the world.
Nothing is more attractive to intelligent people than an honest, challenging
problem, whose possible solution will bestow fame and remain as a lasting
monument. Following the example set by Pascal, Fermat, etc., I hope to gain
the gratitude of the whole scienti�c community by placing before the �nest
mathematicians of our time a problem which will test their methods and the
strength of their intellect. If someone communicates to me the solution of
the proposed problem, I shall publicly declare him worthy of praise."

The problem was the following:

\Given two points A and B in a vertical plane, what is the curve traced out
by a point acted on only by gravity, which starts at A and reaches B in the
shortest time."

Many mathematicians accepted the challenge. For example it is said that
Newton (who at that time was the Director of the Royal Mint)

\in the midst of the hurry of the great recoinage, did not come home till four
(in the afternoon) from the Tower very much tired, but did not sleep till he
had solved it, which was by four in the morning."

� Another problem, which is perhaps more practical, is the following: What
is the shape of a telephone wire which hangs steadily, in equilibrium under
gravity between two points A and B?

The general form of such problems is: �nd some function y of x such that the
value of

F (y) =
Z
f(x; y; y0)dx

is as small as possible.

For example, looking at Bernoulli's problem, imagine that the point A has the
coordinates (x1; y1) in the Euclidean plane R2, and the point B has the coordinates
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(x2; y2). It is natural to imagine that x1 < x2 and that y1 > y2. Furthermore, it
seems clear that the optimal curve would not switch directions, or loop around
itself. Thus it could be described as a function ' : [x1; x2] ! R, presumably
su�ciently smooth to be di�erentiable to any desired degree, such that '(x1) = y1
and '(x2) = y2. Then for each x, the value of the function '(x) gives the point
(x; y) through which the curve passes, where y = '(x). If y < y1, then the speed
at the point y0 = '0(x) is given by equating the potential energy which has been
lost with the kinetic energy which the point would have in its passage through
(x; y). Since the problem is to �nd the curve giving the shortest time from x1 to
x2, the function f should measure the speed in the horizontal direction.

Returning to the more general problem, let G � R3 be some open subset,
and let f : G ! R be a function which is at least twice continuously partially
di�erentiable. Then the problem is to �nd a function ' : I ! R such that
(x; '(x); '0(x)) 2 G, for all x 2 I with I = [a; b], such that

F (') =
Z b

a
f(x; '(x); '0(x))dx

is as small as possible.
One way to do this is to think of other possible functions e' : I ! R, and

compute the values of F ( e'), checking to see if they are always greater than, or
equal to F ('). Writing

 = e'� ';
we obtain a new function  : I ! R which is such that  (a) =  (b) = 0. (It is
assumed that all of these functions are at least continuously di�erentiable.)

Generalizing things slightly, let us take (��;+�) to be a small open interval
around zero. Then we can examine the functions ' + s , for various values of
s 2 (��;+�). This gives us a new function

� : (��;+�)! R;

such that

�(s) = F ('+ s ) =
Z b

a
f
�
x; '(x) + s (x); '0(x) + s 0(x)

�
dx:

Since f is continuous, it follows that � is di�erentiable, and if ' is a solution to
our variational problem then it must be that

�0(0) = 0:
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We then have

�0(0) =
d

ds

����
s=0

Z b

a
f
�
x; '(x) + s (x); '0(x) + s 0(x)

�
dx

=
Z b

a

d

ds

����
s=0
f
�
x; '(x) + s (x); '0(x) + s 0(x)

�
dx

=
Z b

a

 
 (x)

@

@y
f(x; '(x); '0(x)) +  0(x)

@

@y0
f(x; '(x); '0(x))

!
dx

=
Z b

a

 
 (x)

@

@y
f(x; '(x); '0(x))

!
dx+

Z b

a

 
 0(x)

@

@y0
f(x; '(x); '0(x))

!
dx

=
Z b

a

 
 (x)

@

@y
f(x; '(x); '0(x))

!
dx�

Z b

a

 
 (x)

d

dx

@

@y0
f(x; '(x); '0(x))

!
dx

=
Z b

a
 (x)

 
@

@y
f(x; '(x); '0(x))� d

dx

@

@y0
f(x; '(x); '0(x))

!
dx

= 0

Here:

� The �rst equation is just the de�nition of the function �.

� The second equation follows by observing that if we have a function g which
depends on two variables, x and s, then

d

ds

Z b

a
g(x; s)dx = lim

h!0

1

h

Z b

a

�
g(x; s+ h)� g(x; s)

�
dx

= lim
h!0

Z b

a

g(x; s+ h)� g(x; s)
h

dx:

And if g is continuously partially di�erentiable, then as h ! 0 we have
uniform convergence of the fraction

g(x; s+ h)� g(x; s)
h

to
@

@s
g(x; s):

� In the third equation, the notation @
@y
f(x; '(x); '0(x)) means the partial

derivative with respect to the second component of f , and @
@y0

is the partial
derivative with respect to the third component. The fact that the third
equation is true is a consequence of the chain rule for derivatives.

� The fourth equation is trivial.

� The �fth equation follows using partial integration and the fact that  (a) =
 (b) = 0.
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� Finally, the sixth equation is trivial.

Since this must hold for all possible variational functions  , we conclude that the
Euler-Lagrange di�erential equation

@

@y
f(x; '(x); '0(x))� d

dx

@

@y0
f(x; '(x); '0(x)) = 0

must hold for a solution ' to our variational problem. (This follows from the
so-called Fundamental Lemma of the variational calculus, which is an exercise.)

How do we evaluate the expression

d

dx

@

@y0
f(x; '(x); '0(x)) ?

For this we can think of @
@y0
f as de�ning a function of three variables, let's call it

g for simplicity. Then we have

@

@y0
f(x; '(x); '0(x)) = g(x; '(x); '0(x)):

We use the chain rule to obtain that

d

dx
g(x; '(x); '0(x)) =

@

@x
g(x; '(x); '0(x)) + '0(x)

@

@y
g(x; '(x); '0(x))

+ '00(x)
@

@y0
g(x; '(x); '0(x)):

So the Euler-Lagrange equation becomes

@

@y
f(x; y; y0)� @2

@x@y0
f(x; y; y0)� y0 @2

@y@y0
f(x; y; y0)� y00 @

2

@y02
f(x; y; y0) = 0:

This still looks rather complicated. Things become simpler if our function f
does not depend explicitly upon x. In this case @2

@x@y0
f(x; y; y0) = 0, and we can

simply write f(y; y0), rather than f(x; y; y0). Therefore

@

@y
f(y; y0)� y0 @2

@y@y0
f(y; y0)� y00 @

2

@y02
f(y; y0) = 0:

Since

d

dx

�
f(y; y0)�y0 @

@y0
f(y; y0)

�
= y0

�
@

@y
f(y; y0)�y0 @2

@y@y0
f(y; y0)�y00 @

2

@y02
f(y; y0)

�
= 0;

it follows that

f(y; y0)� y0 @
@y0

f(y; y0) = k;

for some constant k 2 R. That is, substituting '(x) for y, we obtain the equation

f('(x); '(x)0)� '(x)0 @
@y0

f('(x); '(x)0) = k:

(Of course we must maintain the notation @
@y0
f to indicate the partial derivative

with respect to the second term in f .)
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Examples

� We begin with the brachystochrone. Let A = (x1; y1) and B = (x2; y2).
In order to simplify the notation, let us say that x1 = 0 and y1 = 0, and
furthermore, y increases as we go downwards. According to the principles
of classical physics, the velocity v of the particle will be

v =
q
2gy;

where g is the gravitational constant.12 But the velocity v is a function of
time t. Let us consider the velocity vx in the horizontal direction, and vy in

the vertical direction. Then we have v =
q
v2x + v2y. Writing

vx =
dx

dt
and vy =

dy

dt
;

we obtain
vy
vx

=
dy

dx
= y0(x):

Thus

v =
q
2gy = vx

q
1 + y02 =

dx

dt

q
1 + y02:

This leads to the equation

T =
Z T

0
dt =

1p
2g

Z x2

0

p
1 + y02p
y

dx;

where T is the time it takes for the particle to travel horizontally to x2.

Therefore we can write

f(x; y; y0) =

p
1 + y02p
y

;

and we see that x does not speci�cally occur in f . Using the equation

f(y; y0)� y0 @
@y0

f(y; y0) = k;

we obtain
1q

y(1 + y02)
= k;

which �nally gives us the di�erential equation

y0 =

s
1

k2y
� 1:

12If the mass of the particle ism then the change in the potential energy when falling the distance
y is given by the product gmy. The kinetic energy which the particle then has is 1

2mv
2, and since

we assume that v is zero when y is zero, it follows that 1
2mv

2 = gmy.
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A substitution now shows that the solution is a cycloid:

x = r(� � sin �); y = r(1� cos �);

where � can be considered to be a function of x, and r is some appropriate
constant.

� As far as calculating the shape of a freely hanging telephone wire is con-
cerned, the idea is that a solution must be such that the potential energy of
the wire must be as small as possible. If the wire has a weight ofm kilograms
per meter, and if the wire follows the curve ' : [a; b]! R, then the potential
energy is given by Z b

a
mg'(x)

q
1 + ('0(x))2dx;

where g is the gravitational constant. Setting both of the constants g and m
to 1, we obtain the variational problem

F (') =
Z b

a
'(x)

q
1 + ('0(x))2dx:

But there is a further complication, owing to the fact that we assume the
length of the wire to be �xed.13 So let the length be L, a number greater
than the distance between the two endpoints A and B. This gives us the
further condition Z b

a

q
1 + ('0(x))2dx = L:

In order to solve this problem, we use the method of Lagrange multipliers.

The idea is that since L remains the same for all the possible functions '
which come into question, it must be that a solution will satisfy the varia-
tional problem given by the integral

eF (') = Z b

a
('(x) + �)

q
1 + ('0(x))2dx;

for some constant � 2 R. That is, if e�(s) = eF ('+s ), for possible variations
 , then we will have e�0(s) = 0.

So here, the Euler-Lagrange equation is

f(y; y0)� y0 @
@y0

f(y; y0) = k;

with
f(y; y0) = (y + �)

q
1 + y02:

13Of course one could make things even more complicated by assuming that the weight of the
wire varies along its length, and that it is elastic, like a rubber band. But for our present purposes,
a �xed weight and a �xed length will be assumed.
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Therefore

(y + �)
q
1 + y02 � (y + �)y02p

1 + y02
= k;

or
y + � = k

q
1 + y02:

The solution has the form

y = k cosh

 
x� k�
k

!
� �;

where k� 2 R is another constant.
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