Analysis I + 1II

Literature

These lecture notes!

Various books in the library with the word “Analysis” in the title. In par-
ticular the books by Forster.

Some standard logical symbols commonly used in mathemat-

1CS

“a € X” means, X is a set, and a is an element of X.
“Q” is the empty set, which contains no elements.

“X UY?” is the union of the sets X and Y. It is the set which contains the
elements of X and also the elements of Y.

“XNY?" is the intersection. It is the set consisting of the elements which are
in both X and Y.

“X\Y?” is the set difference. It is the set containing the elements of X which
arenot in Y.

“X C Y” means that X is a subset of Y. All the elements of X are also
elements of Y. Note that many people use the notation X C Y to expressly
say that equality X =Y is also possible. But I will assume that when writing
X CY, the case X =Y is also possible.

“v” means “for all”, as for example: “Vz, £ > 0”. That means: “for all z,
we have the condition z > 0”.

“3? means “there exists”.

“P = )" means that P and @ are logical statements, and if P is true, then
Q@ must also be true. (If P is false, then the combined statement “P = Q”
is true, regardless of whether or not @ is true.)

“P & @" means that both P = @ and also @ = P are true. That is, P
and @ are logically equivalent; they are simply different ways of saying the
same thing. (Although often it is not immediately clear that this is the case.
Thus we need to think about why it is true, constructing a proof.)
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Chapter 1

Numbers, Arithmetic, Basic
Concepts of Mathematics

In some branches of mathematics — for example geometry, or graph theory —
numbers are only used as a tool for describing things which are not really nu-
merical in themselves. On the other hand, one can say that the subject of these
lectures — Analysis — is purely and simply the study of numbers. Thus it is pure
mathematics, rather than applied mathematics.

But what are numbers?

Surely everybody will agree that the numbers we use to count things: 1,2,3,...,
are the numbers which are “naturally” given to us by nature. So we use the
symbol N to denote the set of all such “natural” numbers. When thinking about
physical objects which we count using the natural numbers, it is useful to have the
standard arithmetical operations: addition, subtraction, and multiplication. The
other standard operation, namely division, is often not so natural. For example
if an odd number of people are in a lecture, and there are two tutorial groups,
then it is impossible that they be of equal size (assuming that all students are
active participants!). But it is equally true that subtraction has its limitations.
For example if there are 50 students in a given lecture, then it is not possible to
have 51 of those students deciding that it is not worthwile to continue attending
the lecture, and thus withdrawing.

Despite these sensible objections, some hundreds of years ago people decided to
expand our system of natural numbers with various kinds of “imaginary”, or non-
natural numbers. For example the number zero, and the negative whole numbers:
-1,-2,..., were considered to be sensible things to think about. Modern mathe-
maticians use the symbol Z to denote the set of both positive and negative whole
numbers, together with 0. One says that Z is the set of (real) integers. Then, of
course, in order to allow division, we also have the set of rational numbers Q.

To summarize then, we have the “usual” systems of numbers:

e The natural numbers N = {1,2,3,4,...}

e The whole numbers, or integers Z = {...,-3,—-2,-1,0,1,2,3,...}



e The rational numbers Q = {$ :a € Z,b € N}

But often other systems of numbers are used as well, perhaps without even
realizing that they are different from those dealt with above. For example if we
look at a clock, we see that there are 60 minutes in an hour.! Thus if a lecture
starts at 15 minutes, and the lecture lasts for 90 minutes, then it is obvious that
there are not enough minutes on the clock to describe the situation completely.
The clock counts up the minutes to 60, but then when reaching 60 it suddenly
jumps back to the number 0. Therefore we see that as far as the clock is concerned,
we have the equation

15 4 90 = 45.

In mathematics we write
45 = 15 4+ 90 mod 60.

Perhaps the reason for using the strange symbol “=", which has three horizontal
lines, rather than the more usual “=", is to avoid having all those overly smart
people constantly telling us that the equation 15 + 90 = 45 is “wrong”.?

More generally, let n € N, and z, y € Z be given. Then the expression
z=ymodn

is defined to mean that the number z — y is divisible by n. One writes n|(z — y).
That is to say, there exists some number m € Z with m - n = (z — y).

For example we have that (154+-90)—45 is 1 times 60, so that 15+90 = 45 mod 60
is true. Also 15 — 90 = 45 mod 60, since 60|(15 — 90) — 45. On the other hand
15 + 90 # 46 mod 60, since 60 1 (15 + 90) — 46.

If we do arithmetic according to the 60 minutes of the clock, then it can be said
that we are doing “modular arithmetic”, modulo 60. One writes Z/60Z to denote
this system of arithmetic with just 60 different numbers. It is usual to consider
these 60 numbers to be the whole numbers from 0 to 59. In fact for any n € N,
we can consider the system Z/nZ. Then, using the same convention, we could say
that Z/nZ ={0,1,2,...,n — 1}.

!This convention is due to the ancient Babylonians, whose number system was based on the
number 60.

?Being even more overly smart, we could say that the expression 15490 = 105 is also “wrong”,
owing to the fact that the expression on the left-hand side, namely “15 + 90”, is the description
of two numbers and an arithmetical operation, whereas “105” is a pure number. And these are
two different things. On the other hand, if — as in the usual convention — we agree to say that
“15490” is the number given by the result of the operation, then the expression is true. But then
equally well, we could say that “15 + 90 mod 60” is also an arithmetical operation, and in this
case it would make sense to say that the expression 45 = 15 + 90 mod 60 is true. But then the
expression 15 + 90 = 45 mod 60 would be false.



1.1 The system Z/nZ for n = 60

We have seen that in the system of modular arithmetic modulo 60, we have the
equation
15 490 = 45.

Another way to think about this is to say that in the usual integer arithmetic of
Z we have
15+ 90 = 105 =1 x 60 + 45.

In fact, given any integer z, and any natural number n, then we have two unique
integers a and b, such that
T=an+b,

where 0 < b < n. The number a is the result of the whole number division of
by n, and b is the remainder which results from this whole number division. The
operation of finding the remainder when z is divided by n is denoted “z mod n”.
In particular then, we have the equation

45 = 105 mod 60.

Arithmetic generally has four operations: addition, subtraction, multiplication,
and division. So let us say we have two numbers, z and y in our system Z/nZ.
That is, we can assume that 0 < z,y < n. Then in Z/nZ we can simply define
the sum of £ and y to be

(z + y) mod n.

Similarly, the difference is
(z — y) mod n,

and the product is
(z X y) mod n.

All of this is easy, since z +y and z x y are always integers. However, what about
division? The number 3 is only occasionally an integer. And what do we do when
y =07

The solution to this problem is to think of division as being the problem of
solving a simple equation. Thus the number % is really the solution z of the
equation

ZXYy=z.

For example, what is % in our modular arithmetic modulo 607 That is, the problem
is to find some number 2z with 0 < z < 60, such that

1 = (z x 7) mod 60.

The answer? It is z = 43, since 43 x 7 = 301, and 1 = 301 mod 60.
On the other hand, what is % modulo 607 That is, let z be such that

1 = (z x 2) mod 60.
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What is 27 The answer is that there is no answer! That is to say, the number %
does not exist in the modular arithmetic modulo 60. The reason for this is that
for all z we always have z x 2 being an even number, yet since 60 is also an even
number, it must be that the equation 1 = y mod 60 can only have a solution when

y is an odd number.

1.2 Equivalence relations, equivalence classes

Definition. Let M be a set. The set of all pairs of elements of M 1is denoted
by M x M. Thus
MxM={(a,b):a,bec M}.

This 1s called the Cartesian product of M with itself.> An equivalence relation
“~” on M 15 a subset of M x M. Given two elementsa, b e M, we writea ~ b
to denote that the pair (a,b) is in the subset. For an equivalence relation, we
must have:

1. a~a, for alla € M (reflectivity)
2. ifa~b, then we also have b ~ a (symmetry)
3. ifa~Db and b~ c the we also have a ~ ¢ (transitivity)

If a ~ b, then we say that “a is equivalent to b”.

Examples

1. Given any set M, the most trivial possible equivalence relation is simply
equality. Namely a ~ b only when a = b.

2. In Z, the set of integers, let us say that for two integers a and b, we have
a ~ b if and only if a — b is an even number. Then this is an equivalence
relation on Z.

3. Again in Z, this time take some natural number n € N. Now we define a to
be equivalent to b if and only if there exists some further number z € Z with

a—b=zn.

That is, the difference a—b is divisible by n. And again, this is an equivalence
relation on Z.

(Obviously, the example 2 is just a special case of example 3. In fact, it is
the equivalence relation which results when we take n = 2.)

3More generally, if X and Y are two different sets, then the Cartesian product X x Y is the set
of all pairs (z,y), withz € X andy €Y.



Definition. Given a set M with an equivalence relation ~, then we have M
being split up into equivalence classes. For each a € M, the equivalence class
containing a 1s the set of all elements of M which are equivalent to a. The
equivalence class containing a ts usually denoted by [a]. Therefore

a]={z € M:z ~a}.

Note that if we have two equivalence classes [a] and [b] such that their inter-
section is not empty

[a] N [b] # O,

then we must have [a] = [b]. To see this, assume that z € [a]N[b]. Then z ~ a and
z ~b. But £ ~ a means that a ~ z, since the equivalence relation is symmetric.
Then a ~ b since it is transitive. If then y € [b], then we have y ~ b. But also
b ~ a, and so using the transitivity of the equivalence relation again, we have
y ~ a. Thus y € [a]. So this shows that [b] is contained in [a]. i.e. [b] C [a]. A
similar argument shows that also [a] C [b]. Therefore we have shown that:

Theorem 1.1. Gwen an equivalence relation ~ on a set M, then the equiva-
lence relation splits M into a set of disjoint equivalence classes.

1.3 The system Z/nZ revisited

In fact, rather than thinking about Z/nZ as the set of numbers {0,...,n — 1}, it
is more usual to say that Z/nZ is the set of equivalence classes with respect to the
equivalence relation given by z ~ y if and only if z — y is divisible by n. Thus

Z/nZ ={[0],...,[n —1]}.
As we have seen, it is more usual to write
Tz =y mod n,

rather than z ~ y when describing this equivalence relation. One says that “z is
congruent to y modulo n”. It is easy to see that if two numbers z, y € Z are given,
then we have £ = y mod n if, and only if, the remainder when z is divided by n
is equal to the remainder when y is divided by n. That is, thinking of “mod” as
an operation in the arithmetic of Z, then we have £ = y mod n if, and only if,

z mod n = y mod n.
Addition and multiplication in Z/nZ are given by the simple rules
[z] + [y] = [z + 9]

and
[z] x [y] = [z x y],

5



for any two numbers z, y € Z.

But we must be careful! It is necessary to check that these operations are
well-defined. What does this mean?

Let us say that we have two different numbers z and 2’ in Z which are equivalent
to one another. That is, we have £ = 2’ mod n. But then, since both z and z’ are
in the same equivalance class, we must have

To say that the addition operation, as we have defined it above, is well-defined,
means that we must show that for arbitrary such z, z’, y, and 1/, we always have

[zl + ] =lz+y]=["+y] =[]+ V]
But this is clear, since
z]=[z'] = z=2'modn = n|(z—-2)

and
W=Fk] = y=ymodn = n|(y—y).
Therefore
nl(z—2)+y-vy) = nllz+y)-(z"+7)
= (z+y)=(z'+y) modn
= [z+yl=["+v¢]

It is now a simple exercise to show that multiplication is also well-defined in
the arithmetic of Z/nZ.

But we are still left with the problem of division in Z/nZ. That is, given a,
b € Z, does there exist an z € Z such that az = b mod n?

1.4 The greatest common divisor function

To solve this equation, we first need to think about greatest common divisors.

Definition. Let z, y € Z. Then we say that ¢ 1s a divisor of y if there exists
z € Z with y = zz. Gwen two numbers a, b € Z, the number d 1s a common
divisor of a and b i1f d 1s a divisor of both a and b. The greatest common divisor
of a and b, is denoted by gcd(a,b).



Obviously, every integer is a divisor of the number zero. Furthermore, if z
divides y, then obviously z also divides —y. Thus we can restrict our thinking to
the integers which are either zero, or else positive. Given two integers a and b,
not both zero, then obviously the number 1 is a common divisor. Therefore we
always have gcd(a,b) > 1.

Theorem 1.2. Given any two integers a and b, not both zero, then there exist
two further integers x and y, such that

za + yb = gcd(a, b).

Proof. If one of the integers is zero, say a = 0, then obviously ged(a,b) = b (we
assume here that b is positive). So we have*

ged(a,b)=b=0-a+1-b,

and the theorem is true in this case.

Let us therefore assume that a and b are both positive integers. If the theorem
were to be false, then it must be false for some pair of integers a, b € N. Assume
that a < b, and that this pair is the smallest possible counterexample to the
theorem, in the sense that the theorem is true for all pairs of integers a’ < b/, with
b < b.

But we can immediately rule out the possibility that a = b, since in that case
we would have gcd(a,b) = b, and again we would have the solution

gcd(a,b)=b=0-a+1-b.

Thus the pair a, b would not be a counterexample to the theorem. Therefore we
must have a < b

Solet c = b—a. Then c € N and the theorem must be true for the smaller pair
¢, a. Thus there exist z’, ¥’ € Z with

ged(a,c) =z'a+y'c=2'a+y'(b—a)= (' —y)a+ b

But what is ged(a, c) = ged(a,b — a)? Obviously, any common divisor of a and b
is also a common divisor of @ and b — a. Also any common divisor of @ and b — a
must be a common divisor of both a and b. Therefore ged(a,c) = ged(a,b), and
so we have

ged(a,b) = (z' — y')a + y'd,

which contradicts the assumption that the pair a, b is a counterexample to the
theorem. It follows that there can be no counterexample, and the theorem must
always be true. O

“From now on I will use the more usual notation a- b, or even just ab, for multiplication, rather
than the notation a x b, which I have been using up till now.



Solving the equation az = b mod n

So let a, b € Z be given, together with a natural number n € N. The question is,
does there exist some z € Z with az = b mod n? That is to say, does n divide the
number az — b7 Or put another way, does there exist some y € Z with

ar—b=yn?

That is the same as
b=za+ (—y)n.

Therefore, we see that the equation az = b mod n can only have a solution if every
common divisor of @ and n is also a divisor of . That is, we must have gcd(a,n)
being a divisor of b.
On the other hand, assume that ged(a,n) does, in fact, divide b. Say b =
z - gcd(a,n). Then, according to the previous theorem, there must exist u, v € Z
with
gcd(a,n) = ua + vn.

Therefore, we have
b=2z-gcd(a,n) = z(ua + vn) = (zu)a + (zv)n = za + (—y)n,

when we take z = 2u and y = —zv.
To summarize:

Theorem 1.3. The equation az = bmodn has a solution if and only if
gcd(a,n) s a diwvisor of b. If b = z - gcd(a,n) then a solution is T = zu,
where ged(a,n) = ua + vn.

1.5 The system Z/pZ, when p is a prime number

The prime numbers are 2,3,5,7,11,13,17,19,23,.... A prime number p € N is
such that it has no divisors in N other than itself and 1. Or put another way, for
all 1 < a < p we have ged(a,p) = 1. Therefore, according to the previous theorem,
for all [a] € Z/pZ with [a] # [0] there must exist some [b] € Z/pZ with [a][b] = [1].
That is to say,

ab=1modp

so that in the modular arithmetic modulo p, we have that % is b. Therefore it is
always possible to divide numbers by a. In fact, dividing by a is simply the same
as multiplying by b.
On the other hand, if n is not a prime number, then there exists some a with
1 < a < nand gcd(a,n) > 1. In this case, according to the theorem, there can be
no solution to the equation
az = 1 mod n.

Therefore it is impossible to divide numbers by a in modular arithmetic modulo
n when n is not a prime number and gcd(a,n) > 1.
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1.6 Mathematical induction

An example

The formula
n 1 n

,;k(k+1):n+1

is true for all n € N. How do we know that this is true??

Well, first of all, we know that it is true in the simple case n = 1. For here we
just have
L 1 1 1

,;k(k+1):1(1+1):1+1'

But then we know it’s true for n = 2 as well, since

2 1 1 ! 1
> = Y D
Pt k(k+ 1) 2(2+1) Pt k(k+ 1)
B 1 N 1
22+ 1)  1+1
2
o241

Note that the second equation follows, since we already know that the formula is
true for the case n = 1.

More generally, assume that we know that the formula is true for the case n,
for some particular n € N. Then, exactly as before, we can write

n+1 1 1 n 1
o D
= k(k+1) (n+1)((n+1)+1) = k(k+1)
_ 1 n n
C (n+)(n+1)+1) n+1
. (n+1)
(n+1)+1
Therefore, the proof that the formula is true progresses stepwise through the
numbers 1,2, 3, ..., and so we conclude that the formula is true for all n € N.

This is the principle of mathematical induction (or vollstandige Induktion
in German). Let P(n) be some statement which depends on the number n, for
arbitrary n € N. Then P(n) is true for all n € N if:

e First of all, the special case P(1) can be proved, and

e then it can be proved that if P(n) is true for some arbitrarily given n € N,
then also P(n + 1) must be true.

We will be using mathematical induction very often here in these lectures! It
is one of the most basic principles of mathematics.
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1.7 The binomial theorem: using mathematical
induction

The binomial theorem is concerned with what happens when the expression (a+b)"
is multiplied out. For example, we have

1 a+b

2 a’® + 2a + b?

3: a® + 3a%b + 3ab® + b?

4 a* + 4a%b + 6a%b? + 4ab® + b*

5: a®+ 5a*b+ 10a®b? + 10a%b® + 5ab* + b°
etc.

Gradually we see a pattern emerging, namely Pascal’s triangle:

1
11
1 2 1
1 3 3 1
1 4 6 41
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 3 3 21 7 1

and so on...
Writing out the expression (a+b)™ as a sum, one uses the btnomial coefficients,

(Z) Thus one writes
(a+ b)n _ Z <n>an—kbk.
i—o \k

So looking at Pascal’s triangle, we see that (3) =1, (Z) = 35, and so forth. The

binomial theorem is the formula that says that for alln € N and 0 < k < n, we

have o i

But for the moment, let us simply define the number (Z) to be k‘(%k)" and then
see if these are truly the binomial coefficients.
The expression n! is called “n-factorial”. For n € N it is defined to be

nl=n-(n-1)-(n—-2)-----3-2-1.

That is, just the product of all the numbers from 1 up to n. In the special case
that n = 0, we define
ol =1.

10



So let’s see how this works out in the case (D We have

7 m 7.6-5-4-3.2-1
<4>:4!(7—4)!:(4.3_2,1),(3,2.1):35,

in agreement with Pascal’s triangle.
But how do we prove it in general?

Theorem 1.4. As wn Pascal’s triangle, we have

S AW}

(n+ 1) B n! n!

M(nt1) -k (h—Dlin—(k-1)  B(n-k)"
forallneNand 1<k <mn.

that 1s

Proof.
n! n! B k-n! (n—k+1)-n!

Gk—Dln—(-1)  kn—k)  kn—k+1)  kn—k+1)
B k-mn! (n+1)-n!'—k-n!
T KM k+D) T B(n_k+1)
~ (n+1)-n!
 kl(n—k+ 1))
B (n+1)!
T k((n+1)— k)

Theorem 1.5. For alln € N and 0 < k < n, we have

(@b =3 <Z> ",

k=0

(k)= m o

Proof. Induction on n. For the case n = 1, the theorem is trivially true. Therefore
we assume that the theorem is true in the case n, and so our task is to prove that

with

11



under this assumption, the theorem must also be true in the case n 4+ 1. We have:

(a + b)n+1

Here we have:

(a+b)-(a+b)"

k=0 k=0
n n+1

N\ n—k+ik n n—(k—1)pk
(™) anrrige 4 5 < >a b
k=0 <k> k=1 k—1

e A

n+1 1
Z <'n + )a(nJrl)kbk
k=0 k

e the first equation is trivial,

the second equation is the inductive hypothesis,
the third and fourth equations are trivial,
the fifth equation involves substituting £ — 1 for k£ in the second term,

the sixth equation is trivial, and

the fact that (}) = (7) =1, for all n € N.

the seventh equation uses the theorem which we have just proved and, also

]

1.8 The basic structures of algebra: groups, fields

Now that we have gotten the binomial theorem out of the way, let us return to
thinking about numbers. We have N C Z C Q. The set of natural numbers N has
addition and multiplication, but not subtraction and division.® The set of integers
7 has addition, subtraction and multiplication, but division fails. However, in the

5Subtraction fails in N: for example 1 — 2 = —1, but —1 is not an element of N. Also division
obviously fails: for example 1/2 is also not an element of N.
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set of rational numbers Q, all of these four basic operations can be carried out.
(Of course, we exclude the special number zero when thinking about division.)

Furthermore, in the arithmetical system 7Z/nZ we have addition, subtraction
and multiplication. If (and only if) n is a prime number, then we also have division.

Arithmetical systems in which these four operations can be sensibly carried
out are called fields. (In German, Korper.) In order to define the concept of a
field, it is best to start by defining what we mean in mathematics when we speak
of a group. But in order to do that, we should first say what is meant when we
speak of a function, or mapping.

Definition. Let X and Y be non-empty sets. A function f: X — Y 1s a rule

which assigns to each element £ € X a unique element f(z) €Y.

Examples

e For example, f : N — N with f(n) = n? is a function.
e But f(n) = —n is not a function from N to N, since —n ¢ N, for all n € N.

e On the other hand, f(n) = —n is a function from N to Z. That is, f : N — Z.

Definition. A group is a set G, together with a mapping f : G x G — G
satisfying the following three conditions:

e 7(((a,8),0)) = f((a, f(5,0))), for alla, b and c in G.
e There exists an element e € G with f((e,g)) = f((g,e)) =g, forallg € G.

e For all g € G there exists a element, usually denoted by g ' € G, such
that f((97,9)) = f((9,97")) =e.

Actually, this mapping f : GXG — G 15 usually thought of as being an abstract
kind of “multiplication”. Therefore, we usually write ab or a - b, rather than
this cumbersome f((a,b)). With this notation, the group azioms become

e (ab)c = a(be), for all a, b and ¢ in G (The Associative Law).

e There exists a spectal element (the “unit element”) e € G, with eg =
ge =g, for all g € G (The existence of the unit, or “neutral” element).

e For all g € G there exists an inverse g-' € G with g9 = g9 ' =e. (The
ezistence of inverses).

If, wn addition to this, the Commutative Law holds:
e ab=ba, for alla and b in G,

then the group G 1s called an “Abelian group”.

13



Remark. When thinking about numbers, you might think that it 1s entirely
natural that all groups are Abelian groups. However this is certainly not true/
Many commonly used groups are definitely not Abelian. For example the
matriz groups — which a computer uses to calculate 3-dimensional graphics
— are non-Abelian groups.

But now we can define the idea of a field.

Definition. A field s a set F, together with two operations, which are called
“addition” and “multiplication”. They are mappings

+:FxF—F
- FXF — F

satisfying the following conditions (or “azioms”).

e [ 15 an Abelian group with respect to addition. The neutral element of
F under addition 1s called “zero”, denoted by the symbol 0. For each
element a € F, 1its inverse under addition 1s denoted by —a. Thus, for
each a, we have a + (—a) = 0.

e Let F\{0} denote the set of elements of F which are not the zero element.
That is, we remove 0 from F. Then F \ {0} is an Abelian group with
respect to multiplication. The neutral element of multiplication s called
“one”, denoted by the symbol 1. For each a € F with a # 0, the inverse
1s denoted by a™'. Thusa-a™ ! =1.

e The “Distributive Law” holds: For all a, b and ¢ in F' we have both

a(lb+c) = ab+ac, and
(a+b)c = ac+bc.

Examples

1. The set of rational numbers QQ, together with the usual addition and multi-
plication operations, is a field.

2. The set of integers Z is not a field, since Z \ {0} is not a group with respect
to multiplication.

3. The sets Z/nZ, together with the addition and multiplication operations we
have described, are fields if n is a prime number. However, if n is not prime,
then Z/nZ is not a field.

Remark. A set R, having an addition and a multiplication operation which
satisfies all the azioms for a field except that the elements of R\ {0} do not
necessarily have inverses under multiplication, is called a “ring”. Thus Z/nZ,
when n 1s not a prime 1s a ring, but not a field. Another standard example
of a ring is the set of all polynomials Q[z] in one variable z, with coefficients
in the field Q. Finally of course, Z itself is a ring.
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Some simple consequences of the definition are the following.

Theorem 1.6. Let F' be a field. Then the following statements are true for
alla and b in F.

1.

8.

NS o D

Both —a and a™' (for a #0) are unique.
a-0=0-a=0,
a-(=b)=—(a-b)=(-a)-b

—(-a)=a,

(@) =a, ifa#0,

(-1)-a=—q,

(—a)(=b) = ab,

ab=0=a=0o0rb=0.

Proof. This involves a few simple exercises in fiddling with the definition.

1.

Ifa+a =0and a+a” =0 then o' + (a + a”) = a’ + 0. Therefore
a"=0+ad"=(@+a)+a"=ad +(a+ad")=a +0=24d"
The fact that a ! is unique is proved similarly.
Since 04+ 0 =0, we have a(0+0) =a-0+a-0=a-0. Then
0 = a-0+(—(a-0))
(a-0+a-0)+(—(a-0))
a-0+(a-0+(—(a-0)))

= a-0+4+0
= a-0.

The fact that 0-a = 0 is proved similarly.

0=a-0=a(b+(-b)) = ab+ a(—b). Therefore we must have —ab = a(-b).
The other cases are similar.

. —a+(—(—a)) = 0. But also —a+a = 0, and from (1) we know that additive

inverses are unique. Therefore a = —(—a).

(a™1)~! = a is similar.

. We have

0=0-a=a(l+(-1)=1-a+(-1)-a=a+(-1a.
Therefore (—1)a = —a.
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0=0- (1) =(1+ (~1))(~1) = ~1+ (~1)(-1)

Therefore
140=1=1+(-1)+(-1)(-1) = (-1)(-1).

Then
(=a)(=b) = ((-1)a)((-1)b) = ((—1)(=1))ab = 1 - ab = ab.
8. If a # 0 then

b=1-b=(ata)b=a'(ab)=a"'-0=0.

1.9 How numbers are represented

Before proceeding with the usual definitions of analysis, it might be useful to have
a quick look at a different way of representing numbers.
In the usual decimal notation we have for example:

2009 =2-10°+0-102+0-10' +9-10°,

or

22 0 -1 -2 -3

T =3142.=3-1004 1107 +4- 107 42107 4 o,
or

V2=1414--.=1-10°4+4-10714+1-10724+4-1073 4+ ... .

Continued fractions (Kettenbruchzahlen)

Here we have again simply the integer 2009 as its own continued fraction ex-
pression. In fact each integer n € Z is simply itself in the continued fraction
representation.

But then we have

%:34_}
7 7
and
V2a=1+ 11
2+ 1
2+ 5
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In fact, in general, using the Euclidean algorithm, we see that any rational number
can be represented as a finite continued fraction

1

ag +

a; +
as +

1
a3_|_...7
Qg

where ap € Z and a; € N, for 2 = 1,...,k. On the other hand, if a number is
irrational then its continued fraction representation must be infinite.
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Chapter 2

Analysis 1

2.1 Injections, Surjections, Bijections

The subject of mathematical analysis has much to do with functions, or map-
pings.! We have already seen that a function is a rule f, which assigns to each
element z € X of a set X, a unique element f(z) € Y of a set Y. One writes

f: X-—>Y.

Given such a function f from X to Y, one says that X is the domain of f.
Furthermore, the set {f(z) :z € X} C Y is the range of f. One writes f(X) for
the range of X. Thus,

f(X)={f(z):z € X}.
Given any element y € Y, one writes f *(y) to denote the subset of X consisting
of all the elements which are mapped onto y. That is,

fiy)={zeX: f(z) =1y}

Of course, if f is not a surjection, then f!(y) must be the empty set, for some
of the elements of Y.

Definition. Let X and Y be sets, and let f : X — Y be a function. Then we
say that:

e f 15 an injection if, gwen any two different elements z,, zo € X with
Ty # T, we must have f(z;) # f(z2). Or put another way, the only way
we can have f(z1) = f(z2) ts when z; = z,.

e f is a surjection if, for ally € Y, there exists some z € X with f(z) =y.
That s, if f: X — Y s a surjection, then we must have f(X) =Y.

e f 1s a bijection if it 1s both an injection, and also a surjection.

'That is, “Funktionen” and “Abbildungen” in German. The words function and mapping both
mean the same thing in mathematics. Perhaps some people would say that a mapping f: X - Y
is a function if the set Y is some sort of system of “numbers”, otherwise it is a mapping. But we
certainly needn’t make this distinction here.
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Examples

Consider the following functions f : Z — Z:

e f(a) = 2a, for all a € Z. This is an injection, but it is not a surjection since
only even numbers are of the form 2a, for a € Z. For example, the number
—3 is in 7Z, yet there exists no integer a with 2a = —3.

a/2, if a is even,

e f(a) = {(a_|_ 1)/2, if ais odd,

is a surjection, but it is not an injection. For example, f(0) = 0= f(-1).

o f(a) = —a, for all a € Z, is a bijection.

Theorem 2.1. Let f : X — Y be an injection. Then there exists a surjection
g:Y — X. Conversely, if there exists a surjection f : X — Y, then there
exists an injection g: Y — X.

Proof. Assume that there exists an injection f: X — Y. A surjectiong:Y — X
can be constructed in the following way. First choose some particular element
zo € X. Then a surjection g : Y — X is given by the rule

_ |z, where f(z)=yifyc f(X),
o) = {mo, ify ¢ £(X),

forallye?.

Going the other way, assume that there exists a surjection f: X — Y. Then
an injection g : Y — X can be constructed in the following way. Since f is
a surjection, we know that the set f~'(y) C X is not empty, for each y € Y.
Therefore, for each y € Y, choose some particular element z, € f~!(y). Then the
injection g : Y — X is given by the rule g(y) =z,, forally € Y.

Remark: This procedure of choosing elements from a collection of sets is only
valid if we use the “axiom of choice” in the theory of sets. This is certainly the
usual kind of mathematics which almost all mathematicians pursue. However it
is perfectly possible to develop an alternative theory of mathematics in which the
axiom of choice is not true. In this alternative mathematics, this proof would not
be valid. [

Furthermore, we have the following theorem about bijections.

Theorem 2.2 (Schroder-Bernstein). Let X and Y be sets. Assume that there
exists an wnjection f : X — Y, and also there exists a surjection g : X — Y.
Then there exists a byection h: X — Y.

Proof. An exercise. O
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2.2 Constructing the set of real numbers R

2.2.1 Dedekind cuts

The simplest method for defining real numbers is to use the technique of Dedekind
cuts.

Definition. A Dedekind cut of the rational numbers Q s a pair of non-empty
subsets A, B C Q, such that if a € A and =z < a, then z € A as well.
Furthermore, if b€ B andy > b, then y € B as well. Also AUB = Q and
AN B =0. Finally, we require that the subset A has no greatest element.

Then the set of real numbers R can be defined to be the set of Dedekind cuts of
the rational numbers. One may think of each real number as the “point” between
the “upper” set B and the “lower” set A. If the given real number happens to be
a rational number, then it is the smallest number in the set B.

For example, it is well known that the number /2 is irrational.?

2
Theorem 2.3. There exists no rational number ¥ with (%) = 2.

Proof. Assume to the contrary that there does indeed exist such a rational number
7. Perhaps there exist many such rational square roots of 2. If so, choose the
smallest one in the sense that if 2, is also a square root of 2, then we must
have b < ¥'.

Now, since 2 is a square root of 2, we must have
) b )

3 -2

a® = 2b°.

a
b/

a
1 B

Therefore,

But this can only be true if a is an even number. So let us write a = 2¢, with
¢ € Z. Then we have
a? = 4c* = 2p%.

Or
b’ = 2%
Therefore b is also an even number, say b = 2d. But in this case we must have

S = %, 80 3 is also a square root of 2. But this is impossible, since d < b and we

have assumed that 7 was a smallest possible square root of 2. O

Given any rational number ¢ € Q, we have ¢* being also a rational number.
So we can make a Dedekind cut by taking the pair (A4, B), with B being all the
positive rational numbers b with 5> > 2. Then A is the rest of the rational numbers.

2We have seen that this must be true, owing to the fact that the continued fraction represen-
tation of v/2 is infinite.
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That is, A is the set of rational numbers less than \/5, and B is the set of rational
numbers greater than v/2. So this Dedekind cut defines the real number /2.

Of course the rational numbers themselves can also be represented in terms
of Dedekind cuts. For example the number 2 is simply the Dedekind cut (A, B),
with A={¢g€Q:¢<2}and B={q€ Q:q> 2} So here, the number 2 is the
smallest number in the set B.

The reason Dedekind brought in this definition in the 19th century is that with
it, it is possible to define the real numbers without, having to use the axiom of
choice.

2.2.2 Decimal expansions

Written as a decimal number, we have

1
5 = 0.333333333333333 ...
Also
V2 = 1.414213562373095 . . . .

Another well-known irrational number is
7 = 3.141592653589793 . . ..

As we know, a rational number has a repeating decimal expansion. On the other
hand, irrational numbers do not repeat when written out as decimal expansions.
One might say that, for example, the number

0.999999999999999999.. . .
is the same as the number
1.000000000000000000.. .,

which, of course, is really just the number one. But if we exclude decimal ex-
pansions which end in a never-ending sequence of 9s, then the decimal expansion
for each real number is unique. Therefore, an alternative way to define the real
numbers is to say that they are nothing more than the set of all possible decimal
expansions which do not end with an infinite sequence of 9s.

2.2.3 Convergent sequences

But the most usual method of defining the real numbers is as equivalence classes
of convergent sequences. We need the idea of convergent sequences in any case,
so let us take the set of real numbers R as given (using either of the previous
definitions), and consider the theory of sequences, either in Q or in R itself.?

3 Again — and this is the last time I will mention this fact — the theory of convergent sequences
requires the axiom of choice.
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2.3 Convergent sequences
A sequence is simply an infinite list of numbers. For example, the sequence
1,2,3,4,5,6,7,...

is certainly easy to think about, but obviously it doesn’t converge. The numbers

in the sequence get larger and larger, increasing beyond all possible finite bounds.

Another example is the sequence
1,-1,1,-1,1,—-1,1,-1

4 1 1 1 r

This sequence remains bounded, just jumping back and forth between the two
numbers 1 and —1. But it never converges to anything; it always keeps jumping
back and forth.

An example of a convergent sequence is

111111

7273747576777"'
This sequence obviously converges down to zero.
In general, when thinking about abstract sequences of numbers, we write

a;,as,qas,...

So a; is the first number in the sequence. a, is the second number, and so forth.
A shorter notation, for representing the whole sequence is

(@n)nen.

But when thinking about the concept of “convergence”, it is clear that we also
need an idea of the distance between two numbers.

Definition. Given a real (or rational) number z, the absolute value of z is
gien by

2] = z, if ¢ >0,
|-z, fz<o.

So one can think of |z| as being either zero, if z is zero, otherwise |z| is the
distance of = from zero. More generally, given two numbers a and b, the distance
between them is |a — b|.

It is a simple matter to verify that the triangle inequality always holds. That
is, for all z, y € R, we always have

lz +y| < l|z|+ |yl
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Definition. The sequence (a,)necn converges to the number a if, for all positive
numbers € > 0, there exists some sufficiently large natural number N, € N,
such that |a — a,| < €, for all m > N,.. In this case, we write

lim a, = a.
n—oo

If the sequence does not converge, then one says that it diverges.

This definition is rather abstract. But, for example, it doesn’t really tell us
what is happening with the simple sequence 1,—-1,1,—1,1,—1,... Although this
sequence does not converge — according to our definition — still, in a way it
“really” converges to the two different points 1 and —1.

2.3.1 Bounded sets

Given the set of all real numbers R, let us consider some arbitrarily given subset
ACR

Definition. We will say that A C R 1s bounded above, if there erists some
K € R, such that a < K, for all a € A. The number K 1is called an upper
bound for A. Simailarly, A is bounded below if there exists some L € R with
a> L, for alla € A. Then L 1s a lower bound for A. If A 1s bounded both
above and below, then we say that A i1s bounded. In this case, clearly there
ezists some M > 0 with |a| < M, for all a € A.

If A+ 0, and if A is bounded above, then the smallest upper bound is called
the least upper bound, written lub(A). Similarly, glb(A) is the greatest lower
bound. The least upper bound s also called the Supremum, that s, sup(A).
The greatest lower bound is called the Infimum, written inf(A).

Examples

e Let [0,1] ={z € R:0< 2z <1}. Then [0,1] is bounded, and the least upper
bound is 1; the greatest lower bound is 0.

e This time, take [0,1) = {z € R: 0 < z < 1}. This is of course also bounded,
and the least upper bound is again 1, even though 1 is not contained in the
subset [0, 1).

e N C R is bounded below (with greatest lower bound 1), but it is not bounded
above.

e 7 C R is not bounded below, and also not bounded above.
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2.3.2 Subsequences

Definition. Let 1 : N — N be a mapping such that for all n, m € N with
m < n, we have i((m) < ¢(n). Then giwen a sequence (a,)ncn, a Subsequence,
with respect to the mapping 1, is the sequence (Qi(n))nen-

For example, let’s look again at the sequence ((—1)"),cn. Then take the map-
ping 7 : N — N with ¢(n) = 2n. In this case, we have the subsequence

(=1 ner = (=1 men = (((-1%)")__ = 0"nere = (Dnen-

neN -

But this is just the trivially convergent constant sequence of 1s, which obviously
converges to 1.

So we see that in this example, the sequence really consists of two convergent
subsequences, one of them converges to the number 1, and the other converges to
the number —1.

On the other hand, the sequence (n),cn has no convergent subsequences. All
subsequences simply diverge to “infinity”. The problem is that it just keeps get-
ting bigger, increasing beyond all bounds. To avoid this, we have the following
definition.

Definition. The sequence (a,)nen S called bounded if the set {a, : n € A} is
bounded in R. (Similarly, we say the sequence is bounded above, or below, if
those conditions apply to this set.)

We also have an interesting refinement of this definition.

Definition. Let (a,)nen be a sequence. Then

lim supa, = le sup{am, : m > n},
n O

n—o0

assuming this limit exists. Simailarly

lim infa, = lim inf{a, : m > n},

n—oo
if it exists. One says “limit superior” and “limit inferior”.

Theorem 2.4 (Bolzano-Weierstrafl). Let (a,)ncn be a bounded sequence in R.
Then there exists a convergent subsequence, converging to a number in R.

Proof. Since the sequence is bounded, there must exist two real numbers z < v,
such that
T < an, <Y,

for all n € N. Let 2 = (z + y)/2. That is, z is the point half way between z
and y. So now the original interval from z to y has been split into two equal
subintervals, namely the lower one from z to z, and the upper one from z to y.
Since our sequence contains infinitely many elements, it must be that there are
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infinitely many in one of these two subintervals. For example, let’s say there are
infinitely many elements of the sequence in the lower subinterval. In this case, we
set z; = = and y; = 2. If only finitely many elements of the sequence are in the
lower subinterval, then there must be infinitely many in the upper subinterval. In
this case, we set ; = z and y; = ¥.

Then the interval from z; to y; is divided in half as before, and a subinterval
Zo to Yy, is chosen which contains infinitely many elements of the sequence. And
so on. By this method, we construct two new sequences, (Z,)nen and (Yn)nen, and
we have

TS ST T3 < T4 < S YUSYs<YP<y Y
We have
Yy—z
TR

Therefore the two sequences approach each other more and more nearly as n gets
larger.

Now take (A, B) to be the following Dedekind cut of the rational numbers Q.

Yn — Tn =

B={qg€Q:q>z,n}.

Then set A = Q\ B. Let us say that a € R is the real number which is given by
the Dedekind cut (A4, B). Then clearly there is a subsequence (a;(»))nen With

lim Qi(n) = Q.
n—oo

]

Definition. The sequence (a,)nen 28 called monotonically increasing if a, <
Gni1, for all n; 1t 1s monotonically decreasing if a, > ani1, for all n; finally,
one stmply says that 1t 1s monotonic f it 1s either monotonically increasing,
or monotonically decreasing.

It is a simple exercise to show that theorem 2.4 implies that the following
theorem is also true.

Theorem 2.5. Every bounded, monotonic sequence in R converges.
Conversely, we have that
Theorem 2.6. Every convergent sequence s bounded.

Proof. This is really rather obvious. Let the sequence (a,),cny converge to the
point @ € R. Choose € = 1. Then there exists some N(1) € N with |a — a,| < 1,
for all n > N(1). We have the numbers |a,|, |az|,...,|anq)|- Let M be either the
largest of these numbers, or else |a| + 1, whichever is larger. Then we must have
la,| < M, for all n € N. Thus the sequence is bounded below by —M, and above
by M. O
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2.3.3 Cauchy sequences

Definition. A sequence (a,)ncn tS called a Cauchy sequence if for all € > 0,
there exists a number N(e) € N such that |a, — an| <€, for all m, n > N(e).

It is again an exercise to show that:
Theorem 2.7. Every convergent sequence 1s a Cauchy sequence.

The alternative, and more usual way to define the real numbers is as equivalence
classes of Cauchy sequences of rational numbers. The equivalence relation is the
following.

Let (an)nen and (by,)nen be two Cauchy sequences, with a, and b, € Q, for all
n. Then we will say that the they are equivalent to one another if — and only if —
for all € > 0, there exists some N(e) € N, with |a, —b,| < ¢, for all n > N(¢). The
fact that this is, in fact, an equivalence relation is also left as an exercise. Then R
is defined to be the set of equivalence classes in the set of Cauchy sequences in Q.

But not all Cauchy sequences converge!!

If we always think about the set of real numbers R, then of course every Cauchy
sequence converges. As we have seen, this is simply a way of defining the set of
real numbers!

But if we think about other sets which are not simply all of R, then it is defi-
nitely not true that all Cauchy sequences converge. For example, let us consider
the set

(0,1]={zeR:0<z <1}

Within this set, the sequence (1/n),cy is a Cauchy sequence. Considered in R, it
converges to the number 0. But considered within (0, 1] alone, it doesn’t converge,
since 0 is not an element of (0, 1].

Similarly, if we consider the set of rational numbers Q, then there are many
Cauchy sequences which converge to irrational numbers, when considered in R.
Yet those irrational numbers do not belong to Q. Therefore they do not converge

in Q.

On the other hand, all Cauchy sequences do converge in R.

To begin with, it is a simple matter to show that all Cauchy sequences are bounded.
Therefore lim,, ,nysupa, exists. Let B be the set of all rational numbers greater
than or equal to lim, .ysupa,, and let A = Q\ B. Then the pair (A4,B) is a
Dedekind cut of QQ, representing the real number a € R say, and we must have the
Cauchy sequence (a, )ncn converging to a.

To see this, let € > 0 be chosen. The problem is to show that there exists some
N(e) € N, such that |a — a,| <€, for all n > N(e).

Let us start by choosing some rational number g € A with |a — ¢| < €/6. Then
there must exist some other rational number p € B, with p > a and |p — ¢| < €/3.
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Looking at the definition of lim,, .ysupa,, we see that there exists some N; € N
such that a, < p, for all n > N;.

Since the sequence (a, ).en is a Cauchy sequence, there exists a number N, € N
such that for all n, m > N,, we have |a,—a.,| < €/3. Furthermore, looking again at
the definition of lim,_,ysupa,, we see that there exist arbitrarily large numbers
m, with ¢ < a,,. Then setting N(¢) = max{Ny, N>}, and taking m > N with
g < G, we have for all n > N(e)

a—a.| = |(a—q)+(q—am)+(am — an)]
< la—ql+ g — am| + [am — an]
_eL e €
3 3 3
= €.

Therefore we have the theorem:

Theorem 2.8. All Cauchy sequences converge in R.

2.3.4 Sums, products, and quotients of convergent sequences
Let (an)nen and (by,)nen be two convergent sequences in R with

lim a, =a and lim b, = b.
n— 00 n—00

Then the sequence (a, + b, )nen also converges, and
lim (a, + b,) =a + 0.
n—oo

To see this, let € > 0 be given, and let N,(¢), Ny(€) € N with |[a—a,| < ¢/2 and |b—
byn| < €/2,foralln > N,(e) and m > Ny(e). Then take N(e) = max{N,(e), Ny(¢)},
that is, the larger of the two numbers. For any k¥ > N(¢) we then have

(@ +0) —(ax —be)| = (@ —ax)+(b—b)
< [(a—aw)[+[(b—b)|
< %—F%:e.

Here, we have used the triangle inequality for the absolute value function. Obvi-
ously, the difference of two sequences also converges to the difference of their limit
points.

As for multiplication, again take the convergent sequences (a,)nen and (b, )nen
as before. We have lim,_.,, a, = a and lim, .., b, = b. Now let M, > 0 be such
that |a| and |a,| < M,, for all n € N. Also let M, > 0 be such that |b| and
|bm| < My, for all m € N. (These numbers must exist, since convergent sequences
are bounded.) Then, given ¢ > 0, choose N,(¢) such that for all n > N,(¢) we
have

€

la —a,| < YT
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Similarly, N,(e) is chosen such that for all m > N,(e) we have

€
2M,

|b—b,| <

Then take N(e) = max{N,(e), Ny(¢)}. So again, For any k > N(e) we have

|a-b—ak-bk| = |a-b—a-bk—|—a-bk—akbk|
]a-b—a-bkl+\a-bk—akbk\
|al[b — be| + [bxla — ax|

IN

A
E)

Finally, assume that (a,).cn is @ convergent sequence such that the limit a
is not zero. Then the sequence (1/a,)ncn (at most finitely many elements of the
sequence can be zero, and so we disregard these zero elements) converges to 1/a.
In order to see this, let M > 0 be a lower bound of the sequence of absolute values
(|an|)nen, together with |a|. Given e > 0, this time choose N(e) € N to be so large
that for all n > N(e), we have |a — a,| < eM?. Then

1 1 _ |la—an
a a, | aa,
B 1
- |aan|| - n|
< eM? <.
|al|an|

Then, in order to divide a convergent sequence by a convergent sequence which
does not converge to zero, we first take the convergent sequence of the inverses,
then multiply with that.

In summary, we have

Theorem 2.9. Convergent series can be added, subtracted, multiplied and
divided (as long as they do mot converge to zero), to obtain mew convergent
sequences which converge to the sum, difference, product, and quotient of the
limits of the given sequences.

2.4 Convergent series

Given a sequence (a, )ncn, We can imagine trying to find the sum of all the numbers
in the sequence. Thus writing

0
D Gn,
n=1
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we have the series given by the sequence (a,),cn. Obviously, many series do not
converge. For example the series

> n=1+2+3+4+5+6+7+"--
n=1
does not converge. Also the series

S(-1)"=-1+41-1+4+1-1+1—-1+--

n=1
does not converge. Why is this?

Definition. Given the series > a,, the n-th partial sum (for each n € N)
18 the finite sum

n
Sp=">_ an.
=1

The series 3., a, converges, if the sequence of its partial sums (S,)nen cON-
verges. If the series does not converge, then one says that it diverges.

So what are the partial sums for the series Y ;> ,(—1)"? Clearly, we have

g _ —1, if n is odd,
"o, if n is even.

Therefore, the partial sums jump back and forth between -1 and 0, never converg-
ing.

A delicate case: the series ¥ ,1/n

But what about the series

1 ) 1 1 1 1 1 1
nzz:ln_ Tetstits e T
Obviously the partial sums get larger and larger: S,.; > S,, for all n € N. But
the growth of the sequence of partial sums keeps slowing down. So one might
think that this series could converge. But does it?

In fact, it actually diverges. We can see this by looking at the sum split into

blocks of ever increasing length.

S E-EPTNIE S TS S S S SN
n 2 3 4 5 6 7 8
N———

>1/2 >1/2

n=1

That is to say, for each n € N, we have

A 2
1 1 1
2 > X Ty
k=2rn—141 k k=2rn—141 2 2

so we have an infinite series of blocks, each greater than 1/2. Therefore it must
diverge.
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The geometric series

This is the series
[oe]
>_a”,
n=0

for various possible numbers a € R. (Note that it is sometimes convenient to
take the sum from O to infinity, rather than from 1 to infinity. Also note that by
convention, we always define a® = 1, even in the case that a = 0.)

Theorem 2.10. For all real numbers a with |a| < 1, the sequence (a")nen
converges to zero. For |a| > 1, the sequence diverges.

Proof. Without loss of generality, we may assume that a > 0. If a < 1 then the
sequence (a™)ncy i a strictly decreasing sequence. That is, a™™ < a™, for all
n € N. This follows, since a®! =a-a", and 0 < a < 1.

So the sequence (a"),cn gets smaller and smaller, as n gets bigger. And of
course, it starts with a, so it is confined to the interval between 0 and a. We can
define a Dedekind cut (A4, B) of Q as follows.

A*={z€Q:z<a",Vn €N},

and B* = Q\ A* (the set difference). Finally, if A* has a greatest element, say zo,
then take A = A*\ {zo} and B = B* U {z,}. Otherwise simply take A = A* and
B = B*. The pair (A, B) is then a Dedekind cut.

So let £ be the real number represented by this Dedekind cut. Then we must
have 0 < ¢ < 1. If £ = 0 then the sequence converges to zero, and we are finished.
Otherwise, we must have £ > 0. Now since 0 < a < 1, it must be that the number
1/a is greater than 1. Thus

E<t

But from the definition of £, there must be some m € N with
m 1
E<am <€ —.
a
However, then we have
m+1 m 1
a =a-a <a-§-5:£,

and this contradicts the definition of £. Therefore the idea that we might have
¢ > 0 simply leads to a contradiction. The only conclusion is that £ = 0, and so
the sequence converges.

If a > 1, then, using what we have just proved, we see that the sequence
(ain)nEN converges to zero. Clearly, this implies that (a™),cy diverges (or, in this

case, “converges to infinity”). O

Theorem 2.11. The geometric series converges for |a| < 1, and it diverges
for |a| > 1.

30



Proof. We have
(@ —1) <Z ak> =a"t - 1.
k=0
Therefore, if a # 1, we have

n an+1 -1

Y=t
a—1
for all n € N.
For |a| < 1, we know that the sequence (a™),cn converges to zero. Thus }.>° ; a”
is a convergent series for 0 < a < 1, and we have

| 1
Pare
=0 a—1 1-a
If la] > 1, then the series diverges since 7, a* = @°"-1 and the sequence
(a™)nen diverges. O

2.5 The standard tests for convergence of a series

2.5.1 The Leibniz test

Theorem 2.12. Let (a,)neny be a decreasing sequence of numbers, that 1is,
Gni1 < @y, for all n, such that the sequence converges, with lim, ., a, = 0.
Then the alternating series

Z (=1)"an
n=1
converges.

Proof. Consider the partial sums S, for this series. If a; # 0, then S; = (—1)a; is
a negative number. But then S; = —a; + (a2 — a3), and we see that we must have
S1 < S3 since a, > as, and therefore a; — a3 is a positive number or zero. More
generally, if n is an odd number, say n = 2m + 1, then we must have S,,,5 > S,.
This follows, since

Spiz = Spt (=1)"ap +(=1)"ans
= Sy (-1, + (—1)B I, L,
- Sn + (a'n+1 - a'n+2);
and a,1 — apio > 0. Therefore the sequence of odd partial sums is an increasing

sequence.
S1 <83 <85 <SS < -

On the other hand, we have that the sequence of even partial sums is a decreasing

sequence.
Sy > 8y > 56> Sg > -
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This is proved analogously to the situation with the odd partial sums. Further-
more, it is easy to see that
SQm Z S2m+1)

and
SZm—i—l S 32m+2)

for all m € N. Therefore the even partial sums are always greater than, or equal
to, the odd partial sums. On the other hand, the distance between adjacent partial

sums is |Spy1 — Sn| = |@ny1|, and we know that lim, , |a,| = 0. Thus the even
and the odd sums must converge from above and below to some common limit
point, which is then the limit of the series. O

An example

We have already seen that the series Y52, = diverges. But according to Leibniz
test, the alternating series

& e

n=1 n

must converge. In fact, if we write T = >7° ; %, then we know from the proof of
theorem 2.12 that T must lie somewhere between the first and the second partial

sums. That is ) )
S;=-1<T<——===-14+-=5,.
1 < < 9 —+ 9 2
In other words, the sum of the whole series is a negative number lying somewhere

between —1 and —%.

Reordering the terms in the series

While all of what has been said above is true, there is a strange twist to the story
which makes one realize that it is important to be careful.
To begin with, note that we have the following.

1 < 1+1

4 2 4

111

4 6 8

1< 1+1+1+1

4 10 12 14 16

1o 1,11 1 1 1 11
4 18 20 22 24 26 28 30 32

etc.
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Therefore, if we rearrange the terms in the sum, we get

i(_l)n = 1+(1+1>

— n 2 4
1+<1+1>
3 \6 8
1+<1+1+1+1)
5 \10 12 14 16
ly(lpl 1,1, 1,1, 1,1
7 \18 20 22 24 26 28 30 32
1
—— etc.
9

Obviously the sum is getting bigger and bigger. It suddenly doesn’t converge!
The problem is that our original sum is convergent, but not absolutely convergent.
It is only conditionally convergent. Conditionally convergent series can be made
to converge to practically anything — or else they can be made to diverge — if
we allow ourselves to rearrange the order of the terms in the sum in any way we
want.

But let’s look at the other convergence tests, before coming back to this prob-
lem.

2.5.2 The comparison test

Theorem 2.13. Let -
D Cn
n=1

be a series which 1s known to be convergent, where c, > 0, for all n. Further-
more, let

0o
Sa,
n=1

be some other series, where 0 < a,, < c¢,, for all n. Then the series >, ,an,
15 convergent, and the limit of the series 1s no greater than the limit of the
series Y0 | Cp.

Proof. This is obvious. Let S, be the n-th partial sum of the series }°,° , a,, and
let

say. Then we have that the sequence of partial sums (S,)ncn is monotonically
increasing, and it is bounded below by zero, and above by C. Thus it must
converge to a number between zero and C. [
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2.5.3 Absolute convergence

Definition. The series
o0
> an
n=1

15 called absolutely convergent if the series consisting of the absolute values of
the indwidual terms -

Z |ay|

n=1

converges.
Theorem 2.14. Each series which 1s absolutely convergent is also convergent.

Proof. Assume that the series >2° ; |a,| converges, where a,, € R for all n. Let

o0
> lan] =C,
n=1

say, and let S* be the partial sums of this series. Since |a,| > 0 for all n, it must be
that the sequence (S¥),cn is monotonically increasing. Therefore, for each € > 0,
there exists some N(€) € N such that |[C — S*| < ¢, for all n > N(e). But then, in
particular, we must have |S} — S}, | <€, for all n, m > N(¢). But (assuming that
m < n), we have

n

5, - Shl= O Jasl <e.
k=m-+1
So now we can show that the sequence of partial sums S, for the original series
> , G, is a Cauchy sequence. For all n, m > N(e) (and again, we assume without
loss of generality that m < n) we have

n
> G
k=m+1
n
< Z |ak|
k=m+1
< €.

’Sn - Sm‘ =

The first inequality here is simply the triangle inequality for the absolute-value
function, and the second inequality is |S} — S| < €, which we have already
found. [

Corollary (Majorantenkriterium). Let (c,)nen be sequence with ¢, > 0, for all
n, such that

oo
2 Cn
n=1
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converges. Then given another sequence (@n)nen, With |a,| < ¢, for all n, we
must have the series

(o)

D an

n=1

also converging.

Theorem 2.15. Let }>,° ; a, be an absolutely convergent series, and let >°;° | b,
be the same series, but with the terms possibly rearranged in some way. Then
Yomo 1 by 15 also absolutely convergent, and we have

o 0o
doan=> by
n=1 n=1

But first we prove the following lemma.

o0

Lemma. Let } ;> ; ¢, be a convergent sertes with c, > 0 for allm. If Y2, d, 1s
the same series, but perhaps with the terms rearranged in some other order,

then we still have >-,° , d, being convergent, and

[eS) [eS)
Y en=)_ dy.
n=1 n=1

Proof. In both cases, the sequence of partial sums is monotonically increasing.
Given the partial sum > ¢c,, for some N; € N, then we can find some N, >
N; which is sufficiently large that all the numbers ci,...,cy, appear in the list
di,...,dy,. Therefore we must have

N1 N>
Yo <> dy.
n=1 n=1

But we can just as easily show that for all N; € N, there exists some N, > N3
with

Ny N3
doCn> ) dn
n=1 n=1

Therefore we must have the limits of the sequences of partial sums being equal. [

Proof. (Of theorem 2.15)

Let
o0 [0} o0
D200 =) 05— ) 0,
n=1 n=1 n=1
where

+ _ Jan, ifa, >0,
" 0, otherwise,

— —0Qn, if an S 07
0, otherwise.

35



Similarly,
an: Zb:zr_ Zb;
n=1 n=1 n=1
But, according to the lemma, we must have
> ay =) by
n=1 n=1
and

Ya,=> by

n=1 n=1

2.5.4 The quotient test

Theorem 2.16. Assume that the series >_,> | a, 15 such that there ezxists some
real number £ € R with 0 < ¢ < 1, such that

Onit1
Qn

<¢,

for alln € N. Then the series 1s absolutely convergent, hence also convergent.

Proof. We have already seen that the geometric series
2 €
n=1

converges. So if we simply multiply each term by the number |a,|, we see that

also the series
o0
Z lay|€™
n=1

converges. In fact it converges to the number

o0
(Ee)
n=1
Now since |ay/a;| < &, we must have |as| < |a;|€. Also, since |as/as| < £, we must

have |as| < |as|€. That is, |as| < |as|é < |a;|€%. Similarly, we have |as| < |a|€3,
and in general, for each n, we have

|an] < lazl€"

Therefore, using the comparison test, we see that the series

00
Z |ay|
n=1

converges. O
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Corollary. Let N € N be giwven, and we assume that the series )., a, 1S such
that there exists some real number £ € R with 0 < £ < 1, such that

an+1
Qn,

<&,

for allm > N. Then the series i1s absolutely convergent, hence also convergent.

Proof. This follows, since the argument in the proof of the previous theorem can
be applied to the numbers greater than or equal to N. So the series

[e o)

2 an

n=N

is absolutely convergent. However we can then simply add in the finitely many
terms
ar+ax+---+ay_i,

and this cannot change the fact that the whole infinite series is absolutely conver-
gent. [

Example: the exponential series is convergent everywhere

Rather than always taking the sum in a series from 1 to oo, it is often convenient
to sum from 0 to oco. In particular, for each z € R we have the famous exponential

series

(e n

T
—
n—o N

Using the quotient test, it is easy to see that the exponential series is absolutely
convergent, for all z € R.

For let some arbitrary = € R be given. Now if we happen to have z = 0, then
the exponential series is obviously absolutely convergent. Therefore we assume
that £ # 0. Then let N € N be the smallest integer with N > |z|. We have

$n+l
(n+1)!
Z‘n,
nt

e T
< 1
‘ +1‘—‘N+1‘< ’

for all n > N, and it follows that the exponential series must be absolutely con-
vergent in this case as well.

2.6 Continuous functions

Let A C R be some interval. For example we might have A = [a,b], for a < b.

That is the closed interval from a to b. The open interval from a to b is (a,b) =
{z € R:a < z < b}. Then we have the half closed, and half open intervals [a, b)
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and (a,b]. We can also consider the whole of R to be the interval (—o0, 00). That
is also an open interval. For most of the time, we will consider functions

f:A—R
from some open interval A C R into R.

Definition. The function f : A — R 1s continuous in the point o € A if for
all € > 0, there exists some § > 0 such that |f(z) — f(zo)| <€, forallz € A
with |z — zo| < 8. If the function f is continuous in zo for all zq € A, then
one simply says that f is continuous.

Examples

For these examples, we consider in each case a function f : R — R. That is, our
open interval is A = R. We will specify f by specifying what f(z) is, for each
zc R

e If there exists some constant number ¢ € R, such that f(z) = ¢, for all z € R,
then f is a constant function. Obviously, f is then continuous.

e If f(z) = z for all z, then f is continuous. For let o € R be some arbitrary
real number. Let € > 0 be given. Then choose § = €. With this choice, if
we have z € R with |z — zo| < § = €, then we must have |f(z) — f(zo)| =
|z — zo| < 8§ = €. Therefore f is continuous in zy, and since z, was arbitrary,
f is continuous everywhere.

e If f(z) = z”, for some n € N larger than one, then f is also continuous. This
is not quite as trivial to prove, so we will put off the proof till later.

1, ifz >0,
Tr) =
/(=) {O, ifz <O0.

e This time let

Then f is continuous for all o # 0, but f is not continuous at the point 0.

An alternative way to describe continuity

Theorem 2.17. The function f : A — R 1s continuous wn the point o € A
if and only if for all convergent sequences (an)neny with a, € A for all n,
and lim, ., a, = Zo, we have that (f(a,))nen 1S a convergent sequence with

Proof. Assume first that f is continuous at zo € A. Let (a,).cny be a sequence
with a, € A for all n, and lim,_,,, a, = z,. That means that for all § > 0, there
exists some N(§) € N with |z — a,| < ¢ for all n > N(6). Now let € > 0 be
given. Since f is assumed to be continuous at z,, there must exist some é > 0
with | f(z) — f(zo)| <€, for all z € A with |z —z,| < §. Therefore, given our N(4),
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we must have |zo — a,| < 6 for all » > N(§). That means that for all n > N(0)
we have |f(z) — f(zo)| < €. Therefore lim,, ,o f(a,) = f(zo)-

Now assume that lim, .., f(an) = f(zo) for all convergent sequences (a,)nen
in A with lim,,_,. a, = zo. In order to obtain a contradiction, assume furthermore
that f is mot continuous at z,. That would mean that there must exist some
€o > 0, such that for all 6 > 0 some us € A must exist with |zo — us| < 9,
yet |f(zo) — f(us)| > €. In particular, we can progressively take § = 1/n, for
n=1,23,....

That is, we take the sequence (a,)neny With a, = w1, for all n. Then we have
lim,, ;o @n = Zo, yet | f(zo) — f(an)| > €o, for all n. Therefore the series (f(an))nen
cannot possibly converge to f(z,). This contradicts our assumption. [

2.6.1 Sums, products, and quotients of continuous functions
are continuous

Theorem 2.18. Assume that f,g: A — R are two continuous functions from
A to R. Then f + g is also continuous. Here, f + g is the function whose
value at each z € A 1s simply (f + g)(z) = f(z) + g9(z).

Proof. Let zq € A be given. The problem then is to show that the function f + g
is continuous at z,. For this we will use theorem 2.17. Let (a,)nen be some
convergent sequence in A with lim, .., a, = zo. Then, since f is continuous at
Zo, we have lim,, ,o, f(a,) = f(zo). Similarly, we have lim, .. g(a,) = g(zo). But
then, according to theorem 2.9, the series

(f(a’n) + g(a’n))nEN
converges to f(zo) + g(zo) = (f + g)(zo). Therefore, again according to theo-
rem 2.17, the function f 4+ g must be continuous at z,. [

Of course, this also means that the difference of two continuous functions f —g
is also continuous.

Theorem 2.19. The functions f and g are giwen as before. Then also their
product f - g 1s continuous. Here, the product 1s simply the function whose
value at ¢ € A s giwen by (f - g)(z) = f(z) - 9(z), for all such z.

Proof. The same as for theorem 2.18 ]
Similarly we have

Theorem 2.20. The functions f and g are given as before, where we assume
that g(z) # 0, for all z € A. Then the quotient f/g is continuous, where the
quotient is the function whose value at ¢ € A s given by (f/9)(z) = f(z)/9(z),
forallz € A.
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Theorem 2.21. Assume that A C R and B C R, and we have two functions
f:A— R and g: B — R such that f(A) C B. We can consider the function
fog:A—R, where fog(z) = g(f(z)), for allz € A. Then if f 1s continuous
at o € A, and g is continuous at f(zo), @t follows that f o g is continuous at
Zyg.

Proof. Let (a,)nen be a sequence in A, converging to z,. Then, since f is
continuous at zo, the sequence (f(a,))nen must converge to f(zo) in B. But
then since g is continuous at f(z,), the sequence (g(f(an)))nen must converge to

9(f(20)) = f o g(20)- 0
All polynomials are continuous

This is now obvious. Let
f(@) =co+ iz + oz’ + -+ coz”

be some polynomial. Then, as we have seen, the constant function cq is continuous.
Also the identity function x — z is continuous. Therefore the product c;z gives a
continuous function. Also the product z -z = z2 is a product of two continuous
functions, therefore continuous. So c¢;z? is continuous. And so forth. Finally
the polynomial is seen to be just a sum of continuous functions, therefore itself
continuous.

2.7 The exponential function

We have already seen that the series

converges for all z € R. This gives the exponential function

Definition. The ezponential function exp(z), often written e®, is defined for

real numbers T € R to be exp(z) = 272, Z;. The defining series here is called
the exponential series.

Obviously, by looking at the exponential series, we see that exp(0) = 1. But
what is exp(z) for other values of z? Let us take another look at the exponential
series and then think about the following points.

e As already seen, we have exp(0) = 1.

e For z > 0 we must have exp(z) > 0 since all terms in the exponential series
are positive.
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e In fact, if we have two positive numbers 0 < z < y, then we must have
1 < exp(z) < exp(y). This follows, since we must have z" < y”, for all n;
therefore the exponential series for y dominates the exponential series for
z. Therefore, for non-negative real numbers, we see that the exponential
function is a strictly monotonically increasing function.

e But for negative numbers z < 0, the situation remains unclear.

Theorem 2.22. For all z and y € R we have exp(z + y) = exp(z) - exp(y).

Proof.

Note here that:

exp(z + y)

i (z+y)"

S (i)
i i! Z (n —nl!c>'k'””
I
S(Gam k)
(E5)(E%)

e The second equation is our Binomial theorem (theorem 1.4).

e The sixth equation is our Exercise 7.1.

e The other equations are nothing but the definitions of the various things,
and simple arithmetic operations.

]

Consequences of this “functional equation” for the exponential function

e Let £ < 0 be a negative number. Then we know that —z is a positive number,
and thus exp(—z) > 0. But also

Therefore it follows that

exp(z) exp(—z) = exp(z — z) = exp(0) = 1.

exp(z) =

1

— >0
exp(—z) ~

and we see that exp(z) > 0 for all real numbers z € R.
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e In fact, if z < y < 0 then we have

1 1 exp(—z)—exp(-y)
exp(—y) exp(-z)  exp(—y)exp(—z)

exp(y) — exp(z) = > 0,
since the exponential function is strictly monotonically increasing, and —z >
_y.

Therefore, the exponential function is strictly monotonically increasing for
all R.

e Let £ € R be a real number with 0 < z < 1. Then the sequence

xn
( n! >n€N

is a strictly decreasing sequence of positive real numbers. Therefore, looking
at the proof of Leibniz test (theorem 2.12), we see that the exponential series
for —z must converge to some real number between 1 — z and 1 — z + z2/2.
That is, we must have

2
1—m<exp(—:z:)<1—:z:+%<1,
or
0<1—exp(—-z)<z.

In particular, given any real number y € (—1,0), then we must have
| exp(y) — exp(0)] < |y|.

e On the other hand, if z is a positive number with z € (0,1/2), then we must
have

— exp(0)| = - = 2|z|.
| exp(z) — exp(0)] . - |z]

z
_1‘<\ -1 =15«
T

v 8

exp(—z)

e Putting these two things together, we have that if [z| < 1/2, that is |z —0| <
1/2, then | exp(z)—exp(0)| < 2|z|. Therefore, the exponential function must
be continuous at the point 0 € R.

e Finally, take any other element y € R. Let (yn)nen be some convergent
sequence, with lim, ,, ¥, = y. Then if we take 2, = y, — y for all n, we
must have that (z,),cn is @ convergent sequence, with

lim 2z, = 0.
n—oo

Therefore, since the exponential function is continuous at 0, we must have
(exp(z,))nen being a convergent sequence, with

Jim exp(z,) = exp(0) = 1.

42



But

1= lim exp(z,) = Jim exp(yn — ¥)
= lim exp(yn) - exp(-y)
exp(yn)

m
n—00 exp(y)

L Jim exp(yn)
— X n)s

since exp(y) is constant (that is, independent of the number n). Therefore,
in the end we have

1im exp(y,) = exp(y),

and it follows that the exponential function is also continuous at y.

So to summarize all of this, we have shown that:

Theorem 2.23. The exponential function 1s strictly monotonically increasing,
positive, continuous, with exp(—z) = expl(m), for all £ € R. Therefore, also
exp(0) = 1.

2.8 Some general theorems concerning continu-
ous functions

So now that we have seen the standard examples of continuous functions — namely
the polynomials and the exponential function® — it is time to look at some of the
theorems which show us why the idea of continuity is so important.

Theorem 2.24. Let [a,b] C R be a closed interval, and let f : [a,b] = R be
continuous. Then f is bounded (that is, the set f([a,b]) = {f(z) : z € [a,b]}
1s bounded), and in fact, there exists both an z. € [a,b] such that f(z,) =
sup{f([a,b])}, and also there exists y. € [a,b] such that f(y.) = inf{f([a,b])}.

Proof. If f were not bounded, then it is either unbounded above, or below. Let
us assume that it is unbounded above, so that for every n € N, there exists some
z, € [a,b], such that f(z,) > n. Therefore, (f(z,))nen is a sequence in R which
can have no convergent subsequences. On the other hand, (z,),cn is @ bounded
sequence in R, therefore it contains a convergent subsequence (theorem 2.4). So
let (Zi(n))nen be such a convergent subsequence, with

lim z;,) = z. € [a,b],

n— 00

4The other “standard functions” like sin, cos, In, and so forth, are simply defined in terms of
the exponential function. So, at least in principle, we now have all of them.
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say. Then, since f is continuous at z,, we must have that the subsequence
(f(zi(n)))nen is also convergent, with

lim f(zin)) = f(2s).

n—oo

This is a contradiction, and so we must conclude that f is bounded.
Next, let us consider the number sup{f([a,b])}. Since it is the least upper
bound, it must be that for each n € N, we can choose some z,, € [a,b] with

[sup{([a, B)} ~ f(z)| < .

Therefore, not only does the sequence (f(z,))nen converge to sup{f([a,?d])}, in
fact, every subsequence must also converge to sup{f([a,b])}. But, considered in
[a, b], we have that (z,).cn is @ bounded sequence; therefore there is a convergent
subsequence (Zi(n))nen, With

lim z;) = z. € [a,b],

n— 00

say. Then since f is continuous at z,, we must have
f(z.) = lim f(zi(n)) = sup{f([a,d])}.

The proof with regard to inf{ f([a, b])} is analogous. O

But be careful! Here is almost a counterexample.
The function f:(0,1) — R, with

_1
oz

f(z)

is obviously continuous everywhere in (0,1). Yet it is unbounded! Why can’t
we apply our theorem 2.24 here? The answer is that we can indeed construct a
sequence (Z,)ncn such that the sequence (f(z,))nen increases without bound. But
in this case, we will simply have

lim z, = 0,

n—o0

but 0 ¢ (0, 1), therefore the sequence does not converge when considered as a
sequence taken within the set (0, 1).

Theorem 2.25 (Intermediate value theorem, or “Zwischenwertsatz”). Let f :
[a,b] — R be a continuous function, such that f(a)f(b) < 0. (That is, both
f(a) # 0 and f(b) # 0, and furthermore one s positive and the other is
negative.) Then there exists some point z € (a,b), such that f(z) = 0.
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Proof. Let z; = (b — a)/2 be the half-way point between a and b. If f(z;) = 0,
then we have a solution. Otherwise, f(z;) # 0, and so either f(a) and f(z;) have
opposite signs, or else f(z;) and f(b) have opposite signs. In any case, the original
interval [a, b] can be divided into two smaller sub-intervals [a,z;]| and [z1, b], both
of which are only half as big as the original interval. Choose the sub-interval
which is such that the endpoints have opposite signs under f. Then subdivide
that subinterval in half. And so on.

In the end, either we end up with a solution, or else, by taking say the up-
per endpoint of each sub-interval, we obtain a convergent sequence (y,)nen. Let
lim, 00 Y» = Y. Then there are both positive, as well as negative values of f
arbitrarily near to f(y). Since f is continuous, we must then have f(y) =0. O

Definition. Let W C R be some subset of R. The function f : W — R 15 called
uniformly continuous if for all € > 0, there exists some § > 0 such that for all
T,y €W with |z — y| < d we have |f(z) — f(y)| <e.

Theorem 2.26. Let a < b in R, and let f : [a,b] — R be continuous. Then f
18 uniformly continuous.

Proof. Assume that f is not uniformly continuous. That would mean that there
exists some €, > 0 such that for all § > 0, two points ps, g5 € [a,b] must exist,
with the property that |ps — ¢s| < d, and yet |f(ps) — f(gs)| > €o. In particular,
for each n € N, we can find z,, y, € [a, b] with

T — ] <
n yn n’

yet
[f(@n) — fyn)l = €o.

But, as we know (theorem 2.4), there must be a convergent subsequence (T;(»))nen,
with say

lim Ti(n) = te [a, b].

n—oo

But then the corresponding subsequence (yi(n))nen must also converge, and we
have

I8, Tin) = 1 Yal) = -
Since f is continuous, we must also have

lim f(a:i(n)) = 7}1_>Ilglo f(yi(n)) = f(2).

But this is a contradiction, since |f(zin)) — f(¥in))| > €o, for all n. O

Remark. Again, the important property of closed, bounded intervals like [a, b
18 that they are compact. Thus the more general formulation of theorem 2.26
would be:

Let K C R be compact and let f : K — R be continuous; then f is uniformly
continuous.
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2.9 Differentiability

In this section, it is convenient to consider functions f : U — R, where U is an
open subset of R. In particular, we will take U = (a, b), with a < b, or else simply
U=R.

Definition. The function f : U — R 1s differentiable at the point zq € U if
there exists some number f'(zo) € R, such that for alle > 0, a § > 0 exists

with
f(z) — f(@0o)

_ !
T — 1z, f(illo) <€,
for all z € U with z # zo and |z — zo| < 4.

Another way of saying the same thing is to say that

lim f(@o +h) — f(@o)
h—0 h

= f'(z0)-

But when writing this, we must always be careful to say that we do not allow A
to be zero (after all, you can’t divide by zero!), and also we must ensure that the
point o + h is always an element of U.

That is, the function f is differentiable at z, if for any convergent sequence
(Un)nen, With u, € U, lim,,_,o Un = o, but u, # z, for all n, we have

lim fun) — f(zo) _

n—00 u?’L — xo

f'(20)-

Theorem 2.27. If f : U — R 1s differentiable at the point zo € U, then f 1s
also continuous at z.

Proof. Obvious! O

We also have the following theorem, which you have undoubtedly seen at
school.

Theorem 2.28. Let f, g : U — R be differentiable at the point zo € U. Then

e (f+9g) : U — R is differentiable at z,, and we have (f + g)'(zo) =
f'(@o) + g (o).

e (f-9):U — R is differentiable at o, and we have
(f - 9)'(z0) = f'(z0)g(0) + f(20)g'(z0)-
e If g(zo) # 0 then (f/g)' : U — R 1s differentiable at z,, and we have

f I 7o) — f'(@0)g(z0) — f(20)g'(20)
(5) GE?
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o Assuming g is differentiable at f(zo), with g : f(U) — R, then (fog):
U — R 1s differentiable at zo, and we have (f o g)'(zo) = f'(20)g'(f(z0)).

Proof. A simple exercise, using the results for convergent sequences which we have
already studied. But perhaps it might be worthwhile to look at the proof for the
chain rule.

Given the function f o g, that is, (f o g)(z) = g(f(z)), let us define

{g(z@—;((f())) if y # f(zo),
g(f@a)), iy =f(z0)

Since g is differentiable at f(z,), we have

lim h(y) = g'(f(z0))-

y— f(zo)

h(y) =

(That is, given any sequence (Y, )nen of points in f(U) with lim, . ¥y = f(20),
then we must have lim, .o, A(y,.) = 9'(f(z0)).)
Therefore, we have

9(y) — 9(f(20)) = h(y)(y — F(0)),

for all y € U, and so

(Fog)(ze) = lim J°9@) =(f09)(@)
e 90(2)) — 9(f(20)
lim h(f(z))(f(z) — f(zo)

— <1im h(f(:r))) <lim M)

z—T0 z—T0 T — Zg

= g’(f(:z:o))f'(azo).

O

Theorem 2.29. Let f : (a,b) — R be a strictly monotonic, continuous function
with f((a,b)) = (c¢,d), say, such that the mapping f : (a,b) — (c,d) s a
bijection whose inverse is the mapping ¢ : (c,d) — (a,b). Assume that f
1s differentiable at the point zo € (a,b), such that f'(zq) # 0. Then ¢ 1s
differentiable at the point f(zo), and we have

; 1
¢ (f(xo)) - f/(xo)'

Proof. Let (yn)nen be any convergent sequence in (c, d), with lim, o ¥» = f(20),
such that y, # f(zo), for all n. Then, taking 2z, = ¢(y,) for each n € N (that
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means that f(z,) = y,), we have that lim, ,, 2, = o, since ¢ is continuous.
Therefore

, L ()~ 8 (20))
¢ (f(mO)) - r}ﬂoo Yn — f(mO)

— lim %0
n=e f(z,) — f(Zo)
= M o6y
Zp—2o
1
f(zo)

]

2.10 Taking another look at the exponential func-
tion

Theorem 2.30. Let (un)nen be a convergent sequence of real numbers, with
U, # 0, for all n, and furthermore, lim, ,. U, = 0. Then we have

n)—1
i P(un) 1

n=3c U,
In order to prove this theorem, we first prove the following

Lemma. For all z € R with |z| <1 we have |exp(z) — (1 + z)| < |z|?.

Proof. We have

2 3 It
lexp(z) — (1+z)| = 2!+3!+4!+~-‘

1 |z z|?
< |m|2<2|+’3|‘+’4l+ >
el 11
= ‘$’<!+3!+4l+ )
= |$|2<1+2+2+ )
2 3t 4!

‘$’2 [ee] 171,
< 520
_ =P
o2 \1-1
= |zf
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Proof. (of theorem 2.30)

exp(u,) — 1 1l = exp(un) — (1 + uy) ||
Un, - Us, ni
for |u,| < 1. And this converges to zero as the sequence converges to zero. [

Theorem 2.31. The exponential function is everywhere differentiable, with
exp’(z) = exp(z), for all z € R.

Proof. Let (u,)nen be a convergent sequence of real numbers, with u, # 0, for all
n, and furthermore, lim, ., 4, = 0. Then we have

exp(z + u,) — exp(z)

exp(e) = Jim TEEL
. nJ) O
 exp(a) sy XPU) = exP(0)
o . eXp(un)_l
= exp(e) Jim o)
exp(z) - 1
exp(z).

2.11 The logarithm function

Definition. From the properties of the exponential function (continuous, strictly
monotonic, positive, etc.), we see that the mapping exp : R — (0,00) s a bi-
jection. The inverse mapping from (0,00) back to R is called the logarithm,
denoted by

In: (0,00) — R.

Remark. This 1s the natural logarithm. The logarithm to the base 10, some-
times written log,,, which you might encounter in practical computer appli-
cations, plays no role in mathematics. How do we convert natural logarithms
into logarithms to the base 10?2 The answer: by means of the formula

Since we know that exp(z + y) = exp(z) - exp(y), for all z, y € R, it follows
that

z +y = In(exp(z + y)) = In(exp(z) - exp(y))-
Now let a = exp(z), and b = exp(y). Then we have z = In(a) and y = In(d).
All of this gives the functional equation for the logarithm function:

In(a - b) =1n(a) + In(d),
for all a, b > 0.
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Identifying the exponential function with powers and roots: the number
e

But thinking about this leads to the more general question: given z, y € R, what
is z¥. After all, every pocket calculator these days has a button marked “z¥”.

Well, to begin with, given a, then we all know that a? = a - a. More generally,
given m, n € N, we write a™*t" = a™ - a". This is beginning to look like the
functional equation for the exponential function!

Following this additive business, if a > 0, then the square root of a is the
number which, when multiplied with itself gives a = a'. Therefore, it is natural
to write \/a = a’/2. Also & =a™", for n € N. And in general, following this plan,

we have the rule ) »
at = (Va)’,
foralla >0,p€ Z and g € N.

But looking at the functional equations for both the exponential and the log-
arithm functions, we see that for a > 0 we have

a" = exp(In(a™)) = exp(n - In(a)),

for n € N. But then also

aln =a " =exp(In(a ")) = exp(—n - In(a)),

since a” - - = 1 = exp(0). Similarly,

1

1
n =exp(— -1 .
a* = exp( - In(a))
Therefore, by extension we have

% = exp(__ - n(a)),

for all rational numbers p/q. Finally, since exp and In are continuous, we must
have
a® = exp(b - In(a)),

for all b € R.

At this stage, mathematicians become interested in the special number exp(1),
which we call “e”, for short. It is an important mathematical constant, similar to
that other special number 7. People have worked out that

e ~ 2.718281828459045.

Now, given any n € N, we have

n = In(exp(n)) = In(exp(1) - - - exp(1)) = In(e™).

n times
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Therefore
exp(n) = exp(In(e™)) = €,
and so on. Following our reasoning from before, we conclude that

exp(z) = €%,

for all z € R. Thus, in general we have

for alla > 0 and b € R.
Theorem 2.32. For all z € (0,00), we have

1
In'(z) = .
(o) = -

Proof. We have exp(In(z)) = z, for all z € (0,00). Therefore

1 = exp(In(z)) = In'(z) - exp’(In(z)) = In'(z) - exp(In(z)) = In'(z) - z.

2.12 The mean value theorem

Theorem 2.33 (Rolle). Let a < b in R, and let f : [a,b] — R be continuous
i [a,b] and differentiable everywhere in (a,b). Assume furthermore, that
f(a) = f(b). Then there exists some point £ € (a,b), such that f'(§) = 0.

Proof. If f is the constant function, f(z) = f(a), for all z € [a, b], then obviously
f(&) =0, for all £ € (a,b). On the other hand, if f is not constant, then either

1. there exists y € (a,b) with f(y) > f(a), or else
2. there exists z € (a,b) with f(z) < f(a).

Assume that we have case (1.). (Case (2.) is similar.) Then, according to theo-
rem 2.24, there exists some ¢ € (a,b) with f(§) > f(z), for all z € [a,b]. For each
n €N, let u, =€ — f;‘i Then (u,)nen is a convergent sequence in (a,b) with
lim,_,o u, = £. Thus we must have

U, — &
However f(u,)— f(§) <0, since f(§) is the largest possible value. Also u, —& <0
for all n. Thus we must have f'(¢) <O0.

7€) = lim
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On the other hand, let v, = £+ 2% +1, for all n. Then (v,)nen is also a convergent
sequence in (a,b) with lim, ,. %, = {. Thus we must have

: f('Un) _ f(g)
'(€) = lim - 28
FO) = lim = —
However f(v,)— f(§) <0, since f(£) is the largest possible value, and also u, —& >
0 for all n. Thus we must have f'(£) > 0.

Combining these two conclusions, we see that the only possibility is that f'(¢§) =
0. O

Theorem 2.34 (Mean value theorem (or “Mittelwertsatz”)). Let a < b in R, and
let f :]a,b] = R be continuous in [a,b] and differentiable everywhere in (a,b).
Then there exists some point £ € (a,b) with

f (b) fla)

—a

F'€) =

Proof. Let the new function F : [a,b] — R be defined by
) —
Fz) = f(a) - =10 )

Obviously the function F' fulfills the conditions of Rolle’s theorem (2.33). So let
¢ € (a,b) with F'(¢) = 0. Then we have

OEIO)

F(e)=0= 116 - =%

2.13 Complex numbers

The equation z2 + 1 = 0 has no solution within the system of real numbers R. To
solve this “problem”, mathematicians have invented an imaginary number, called

1 (for “i”maginary), which is supposed to solve the equation. So we could imagine

that we have
1=+-1.
But then, since (—1)% = 1, it would seem to make sense to agree that also
(_i)z — ((_1) . 2')2 — (_1)2 2=1.-1=_1.

More generally, given any z € R, we can imagine that ¢z is also a number, such
that (iz)? = —z2.

In order to combine these imaginary numbers with the “real” numbers of our
normal existence, we just add the two kinds of numbers together. This results in
the field of compler numbers, denoted by C. That is,

C={a+1b:a,be R}
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Addition in C is given by
(a +1b) + (c+id) = (a + ¢) + i(b + d).

The rule for multiplication uses the fact that we have agreed to make i? = —1.
Therefore,
(a +1b) - (c + d) = (ac — bd) + i(ad + bc).

It is a simple exercise to verify that with these rules for addition and multipli-
cation, C is a field. The zero element is 0+ 20 and the one is 1+ ¢0. In particular,
if a 4+ 2b is not zero, then the inverse under multiplication is

a—1b

. -1
(a‘i_zb) - m

Using the ideas of linear algebra, we see that C is a 2-dimensional vector space
over R. Therefore it is natural to picture the numbers in C on the 2-dimensional
Euclidean plane, the horizontal axis representing R, the real numbers, and the
vertical axis representing the imaginary numbers zR. Thus we have R C C when
real numbers = € R are identified with their real counterparts = + 10 € C.

We have seen how important it is to think about the distance between two
numbers. Therefore, in C, we define the distance between pairs of complex num-
bers to be the usual Euclidean distance. That is, given a+ bz and c+1d in C, then
the distance between them is

(a+1db) — (c+1d)| = \/(a—c)? + (b— d)2.

So let z € C be some complex number. That is, there are two real numbers,
a and b, with 2 = a + 1b. We sometimes write re(2) to represent the real part of
z. That is, re(z) = a. Also the imaginary part of z is im(z) = b. The complez
conjugate z to z is the complex number

Z=a —1b.

Then we have
2Z = (a +ib)(a — b)) = a® + b = |z|*.

Here, |z| denotes the distance between z and the zero of C, namely 0 + 70. It is
the absolute value of z, and for real numbers it corresponds to the absolute value
function which we have already seen in R.

We have

e 2|=04 2z=0,
e |Z| = |z|, and
o |w-z|=|w|-|z|, for all w, z € C.

Also, the combinations of addition and multiplication with complex conjugates
are
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Therefore, if we have a polynomial with real coefficients

P(z)=ap+ a1z + -+ a,z",

where a; € R, for 7 =0,...,n, then the complex conjugate is P(z) = P(Z).
Given two complex numbers w, z € C, we have

lw+ 2| < |w| + |z|.

In order to see this, begin by observing that for all complex numbers u € C, we
have both
re(u) <|u| and wm(u) < |yl

In particular, we have
re(wz) < |wz| = |w| - |z| = |w| - |z].

Therefore

lw+z]? = (w+2)(w+=2)
— (w4 2)(@+7)

WW + WZ + WZ + 2Z
= |w® + 2re(wz) + |z|?
wl* + 2Jwl - 2] + |2
= (lw]+ [2])?

[\

And so the triangle inequality |w + z| < |w| + |z| holds.®
It is now a simple exercise to verify that for arbitrary triples of complex numbers
u, v, w € C, we have
lu—w| <|u—v|+|v—wl.

All of our ideas concerning convergent sequences and series of real numbers
can be taken over directly into the realm of complex numbers. The proofs are the
same, again using absolute values to measure distances. In particular, we see that
a sequence (2, )nen, With z, = z, +1y,, for each n, converges if and only if both the
sequences of real numbers (z,)neny and (Y, )nen converge. Thus if lim, .z, =
and lim, .. ¥, = 7, then

lim z, = nh_{ﬂlo(m” +1y,) = nh_)nolo z, + 'Lnll_}l‘l&) Yn = T + 1y.

n—oo

50Of course the fact that the absolute value of a complex number corresponds with the norm of
the vector representing that number in R? means that the triangle inequality in C is nothing more
than the triangle inequality in R?, considered as a normed vector space.
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Specifically, given an € > 0, there exists an N, € N and an N, € N such that for
all n, > N, we have |z, — z| < €/2 and for all n; > N; we have |y, — y| < €/2.
Now take N = max{N,, N;}. Then for all n > N we have

. € €
\zn—z\:](:z:n—:zz)+z(yn—y)\§\$n—$|+]yn—y\<§+§:e.

In particular, we have that:

Every bounded sequence in C contains a convergent subsequence.®
Every Cauchy sequence in C converges.

The idea of absolutely convergent series of complex numbers is defined anal-
ogously to the real case.

Absolutely convergent series are convergent, and furthermore, the limit of
an absolutely convergent series does not depend on its ordering.

Both the comparison test and the quotient test are valid in C.

A function f : C — C is continuous at a point 2o € Cif foralle >0,ad >0
exists with |f(2) — f(20)| < € for all z € C with |z — 29| < 6. Equally, f is
continuous at z, if for every convergent sequence (z,)ncy With 2, — 2o, We
have f(z,) — f(z0).

If we have a convergent power series ) .., a,2", then the complex conjugate is

o
> a2zt =) a,z".
n=0 n=0

For complex numbers 2z € C, we have that the exponential series

[oe] zn
exp(z) = ) nl
n=0 ""*

is also absolutely convergent, and the resulting function exp : C — C is continuous.
So, in particular, we have

exp(z) = exp(2),

for all z € C.
And, of course, the functional equation for the exponential function

exp(w + z) = exp(w) exp(z)

also holds in C.

6The sequence (2, ), € N is bounded if there exists some positive real number K > 0 such that
|zn| < K, for all n € N.
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2.14 The trigonometric functions: sine and cosine
Definition. For all z € R the functions sin and cos are defined by
cos(z) = re(exp(iz)) and sin(z) = im(exp(iz)).
That is, the sine and cosine functions are defined in terms of Euler’s formula
e® = cos(z) + 4 sin(z).

Since e{~%) = ¢~ = ¢iz_ we have

cos(z) = ; (e”" + e‘”")

and )
sin(z) = % (e” - e’”) .
Therefore
cos(—z) =cos(z) and sin(—z) = —sin(z).
Now, we have
|exp(iz)| = \/exp(izz:) - exp(iz)

= \/exp(z’a:)-exp(ﬁ)
= \/exp(i:n)exp(—i:n)
= Vi=1

Therefore, it must be that |sin(z)| < 1 and |cos(z)| < 1, for all z € R. But also,

sin’(z) + cos®(z) = (re(exp(iz)))® + (4m(exp(iz)))? = | exp(iz)| = 1.

Furthermore, using the functional equation of the exponential function, we
have

cos(z+y) +isin(z+y) = exp(i(z+y))
= exp(iz) - exp(1y)
= (cos(z) + sin(z))(cos(y) + ¢sin(y))
= (cos(z)cos(y) — sin(z)sin(y)) + z(cos(z) sin(y) + sin(z) cos(y))

Since the real, and the imaginary parts must be equal, we have the two equations
cos(z + y) = cos(z) cos(y) — sin(z) sin(y),
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and
sin(z 4+ y) = cos(z) sin(y) + sin(z) cos(y).
It is now an easy exercise to obtain the standard formulas
sin(z) — sin(y) = 2cos (a:;—y) sin (a:z—y> ,
and

cos(z) — cos(y) = —2sin <$—2|—y> sin (3;2_:0) :
In particular let u = “’;y and v = *3¥, so that z =u+v and y = u — v. Then we
have

sin(z) —sin(y) = sin(u + v) —sin(u — v)
= (sin(u) cos(v) + cos(u)sin(v))
—(sin(u) cos(—v) + cos(u) sin(—v))
= 2cos(u)sin(v)

= 2cos <W> sin <:1: _ y>
2 2

Also

cos(z) — cos(y) = cos(u+ v) — cos(u — v)
= (cos(u)cos(v) — sin(u) sin(v))
—(cos(u) cos(—v) — sin(u) sin(—v))
= —2sin(u)sin(v)

= —2sin <:B+y) sin <$ _ y)
2 2

The trigonometric functions can be expressed in terms of power series as follows

Theorem 2.35.

2n+1 3 5

. z z z
sin(z) = nz::(— )”(2n+1) BRI
and 2 2 g
cos(z) = Z(— 2n) =l-gta
Proof. This follows by looking at the exponential series, observing that 72 = —1.
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Namely,

, 2 (zz)”
exp(iz) = > (n')
n=0 :

N i

= Z 17—

= n!

- @ (2::)2 S gy 0 >
= (S em) S G

k=0
= cos(z) + ¢sin(z).

]

The derivatives of the trigonometric functions are also found using the expo-
nential function. In fact within the theory of complex analysis, we define the
derivative in exactly the same way it is defined in real analysis. Namely the func-
tion f : C — C is differentiable at the point 2z, € C if there exists a complex
number f'(zg), such that

lim f(z) = f(z0)

Z—rZ0 Z — ZO

= fl(zo)a

with 2z # 2. That is to say, for all convergent sequences (2, )nen, with lim, . 2, =
2o and z, # zg for all n, we have

lim f(zr) — f(20)

n—r00 2, — 29

= f'(z0)-

The proof that the exponential function is differentiable for all complex num-
bers z; € C is the same as in the real case. Again, we obtain the result that

exp'(z) = exp(2),
for all z € C.
Theorem 2.36. sin'(z) = cos(z) and cos'(z) = —sin(z), for all z € R.
Proof. Using the chain rule, we have exp'(iz) = ¢exp(z). That is,
cos'(z)+isin'(z) = exp'(iz) = iexp(iz) = i(cos(z)+isin(z)) = — sin(z)+1cos(z).
]

But we can also find a more direct proof, where the functions sin and cos are
considered as being simply real functions R — R.
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Lemma.

i sin(z) _
o
Proof.
z2 z® 1
|sin(z) —z| = ‘ atE ot ‘
2 z® 17
gz
3
< 2% when |z| < 1.
3!
Therefore ‘ . ,
sin(z) — z _ sin(z) | < ﬁ
z 3!
O
Then, for h # 0, we have
sin(z + h) —sin(z)  2cos (@) sin (%)
h B h

<2a: + h> sin (%)
oS . .

2 2
Therefore in the limit A~ — 0 we obtain

sin (2
sin'(z) = lim | cos 22+h), (2) = cos(z).
h—0 2 g

h£0

Similarly, we have

cos(z + k) —cos(z)  —2sin (222%) sin (%)
h N h
. <2m 4 h> sin (%)
= —sin :
2 Ao
2
leading to cos'(z) = —sin(z).

2.15 The number 7

Theorem 2.37. The function cos has ezactly one single zero in the open
interval (0,2). That 1s, there exists a unique o € (0,2) with cos(zy) = 0.
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The proof of this theorem starts by looking at the power series expression
for the cosine function, namely cos(z) = Z;’f’:o(—l)”é;!. Obviously we have
cos(0) = 1. But then

22 2% 26
cos(2) = 1—§+E—§+---
N

2 24 720
S
3 45

Thinking about Leibniz convergence test for series, we see that it must be that
cos(2) < 0. Then theorem 2.25 shows that there must be a zero somewhere between
0 and 2. On the other hand, the power series expression for the sine function shows
that sin(z) > 0, for all z € (0,2). Then given 0 < z < y < 2, we must have

y—

. T\ .
cos(y) — cos(z) = —2sin (y;) sin <2) < 0.
Therefore, the cosine function must be strictly monotonically decreasing between
0 and 2.

Definition. The number m 1s defined to be m = 2z, where xy 15 the unique
zero of cos in the open interval (0,2).

Theorem 2.38. We have
e cos(m) = —1, cos(371/2) =0 and cos(27) =1,
e sin(w/2) =1, sin(7) = 0, sin(37/2) = —1 and sin(27) =0,
e cos(z + 27) = cos(z), sin(z + 27) = sin(z),
e cos(z + m) = —cos(z), sin(z + 7) = —sin(z),
e cos(m/2 — z) =sin(z), and sin(w/2 — ) = cos(z)
for all z € R.

The proof involves lots of little exercises which you can look up in the standard
textbooks on analysis. For example, since we know that cos(w/2) = 0, sin(7/2) >
0, and cos?(m/2) + sin?(w/2) = 1, it must follow that sin(w/2) = 1. But then

cos(7r)—cos<7r+7r)—cosz<7r>—sin2(7r)—0—1——1
- 2 2/ 2 2) T

The other points in this theorem can be similarly proved.

Using these ideas, people have found various formulas for the number 7. One
particularly interesting formula (which is related to the famous Riemann zeta
function in number theory) is the following

™ X1

= 1
6 in
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2.16 The geometry of the complex numbers

Given a complex number z = z + 1y € C, with z, y € R, we can say that z is the
point (z,y) € R?, where R? is the Euclidean plane. Then, given another complex
number w = u + 1w, we have that the sum z + w is the point (z + u,y + v) € R
This is just the normal vector addition operation of linear algebra.

But things become more interesting when we multiply two complex numbers
together. For this, another representation, using polar coordinates, is more ap-
propriate. Taking z = z + 1y, and using the trigonometric functions, we see that
there is a unique 7 € R with 7 > 0, and (if » > 0) a unique 8 € [0, 27), such that
z = rcos(f) and y = rsin(f). That is

z = rcos(8) + irsin(6).
Similarly, there exist s > 0 and ¢ € [0, 27), such that
w = scos(¢) + 1ssin(¢).
Then we have

z-z = (rcos(d)+ irsin(8)) - (scos(¢) + issin(¢))
= 75((cos(8) cos(¢) — sin(8) sin(¢)) + 2(cos(0) sin(¢) + sin(f) cos(¢)))
= rs(cos(6 + ¢) +1sin(6 + ¢))

Another way to say the same thing is to write z = re* and w = se*®. Then

zw = re’ - se' = rs. 019,

When writing 2 = re’, we can think of the complex number z as being the
two-dimensional vector with length r, and with angle 8 to the z-axis. Then we
see that multiplying two complex numbers z and w gives as the result the vector
with length the product of the lengths of 2 and w, and the angle to the z-axis is
the sum of the angles of z and w.

In particular, multiplying z by e¥ simply results in the vector z having its
length remain unchanged (since |e*| = 1), but its angle is increased by 6. Also,
one sees that if we take increasing values of z € R, then the complex number e**
just winds around the unit circle of the complex plane, in direct proportion to z.

2.17 The Riemann integral

Definition. Let a < b in R. A partition of the interval [a, b] is a finite sequence
of numbers ty,...,t,, such that to = a, t, =0b, and t,_1 < tp fork=1,...,n.
Therefore, we can imagine that the partition splits the interval into n subin-
tervals

[a, b] = [to,tl] U [tl,tg] U.--u [tn_l,tn].
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The fineness of the partition 1s the length of the longest subinterval, namely

max tp —tr_1.
k=1,...,n k kol

Definition. Let f : [a,b] — R be a function, and let P = {[to,t1],- .., [tn_1,ts]}
be a partition of [a,b]. A Riemann sum for f with respect to P is a sum of
the form

5= z £ (@) (B — tis),

where tp_1 <z, < ty, for each k.

Definition. Let f : [a,b] — R be a function. We say that f is Riemann
integrable if there exists a real number, denoted by ff f(z)dz, such that for all
€ >0, ad >0 exists, such that for all Riemann sums S over partitions with
fineness less than §, we have

< €.

‘s - /abf(:z:)da:

2.17.1 Step functions

The usual way to think about integrals is to consider step functions. Again, take
the interval [a,b], and a partition a =t; < ¢; < --- <, ; <, = b. Next, choose
n real numbers, c;,--- ,c,. Then the step function corresponding to these choices
would be the function f : [a,b] — R given by

f(l') =C, <= TC (tk—l,tk)-

The values of f(t;) can be arbitrarily chosen. Obviously every step function is
Riemann integrable (in fact, this follows from our theorem 2.39), and the integral
is simply

n

Z Ck(tk — tkfl)-

k=1
Furthermore, just as obviously, most step functions are not continuous — they
make a “jump” between adjacent intervals of the partition. So let us denote by
S([a, b],R) the set of all step functions from [a, b] to R.

Now, given two step functions g, h € S([a, b], R) with g < h, that is g(z) < h(z),
for all z € [a, b] then we must have

/abg(a:)da: < /: h(z)dz.
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2.17.2 Integrals defined using step functions

So this leads to another way of thinking about integrals. For let f : [a,b] — R be a
function such that there exist two step functions g, h € S([a, b], R) with g < f < h.
Then, assuming that f is, indeed, Riemann integrable, it would follow that we
must have

/abg(:z:)d:z: < /ab f(z)dz < /ab h(z)dz.

Definition. Let f : [a,b] — R be a function such that there exist two step
functions g,h € S([a,b],R) with g < f < h. The upper integral of f, denoted

by [* f, is given by
/*f - inf{/b h(z)de : f < h, where h € S([a,b],R)}.

Simalarly, the lower integral [, f s

/*f = sup{/abg(a:)dzz: : g < f,where g € S(]a, b],R)}.

Theorem 2.39. The bounded function f :[a,b] — R is Riemann integrable if
and only if [, f = [* f. In this case, we have [° f(z)dz = |, f.

Proof.

e “=": Let € > 0 be given. The problem then is to show that [* f — [, f <.

Since f is Riemann integrable, there must exist some § > 0 which is suffi-
ciently small that

g:f(fk)(tk —tr1) — /ab f(z)dz

< €
2 ?
for every partition whose fineness is less than §. Given such a partition, for

each k, let

ur = inf{f(z):z € [tr_1,ts]}
ve = sup{f(z): & € [to-r,ts]}

Then we have

i ug(tre — te-1) < /b f(z)dz, and
1 a

k

Velts — te 1) > /abf(:r)d:r.

R
|
M 3

k=1

However,

s> [(1> [ @iz [ 125,
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and
&—Sug(&—/ﬁﬂ@ﬂ)+<ﬁf@ﬂx—&><;+;:e

“<": Again, let € > 0 be given. Since [* f = [, f, there must exist two step
functions g, h € S([a, b],R) with ¢ < f < h and

/ab h(z)dz — /abg(a;)dac < %

By possibly subdividing the partitions defining g and A we may assume that
both are defined along a single partition of [a, b|, namely

a:m0<:z:1<---<:nm:b.

Since f lies between the two step functions g and h, which are both bounded,
it follows that f is also bounded. So let

M = sup{|f(z)|: z € [a, b]}.

Then choose c

~8Mm’
The problem now is to show that the Riemann sum with respect to any
partition of [a, b] of fineness less than ¢ is within € of [* f = [, xf. So let

a:t0<t1<-~~tn:b

be a partition whose fineness is less than ¢, and let &, € [tx_1, tx], for each k.
We define the new function F : [a,b] — R by the rule

Py = {0 if 2 € {to, .., ta},
| f(&), iz € (te1,te)

Then F' is Riemann integrable, and we have
b n
[ F@)dz =3 f(€)(t — b ).
e k=1
A further function s : [a,b] — R is now defined as follows.

3($) . 07 if S [tkfh tk]i where [tk,]_, tk] N {:1;01 ... 7$m} - @,
oM , otherwise.

Then we have g — s < F < h + s, and furthermore, both ¢ — s and A + s
are step functions. But we can only have s({;) # 0 for at most 2m of the
numbers &. Therefore

n

/ab s(z)dz = s(&)(tr — te-1) <2m-2M -

k=1

€ €
8Mm 2
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This means that

[o@az -5 < [(g@) - @)z

b

< /:F(a:)dzz:
< [ (@) + s(z))az

b €

But we also have

/abh(a;)da;—;</*f:Af</:g(x)da;+§.

It is now a simple exercise to show that we have

’

abf(:z:)d:s - F(:z:

‘/ (z)dz — kéf(gk)(tk ) <e

where the number [’ f(z)dz is taken to be equal to the upper and lower

integrals .
J =5

2.17.3 Simple consequences of the definition

By thinking about integrals defined in terms of step functions, we immediately see
that the following theorem is true.

Theorem 2.40. Let f, g : [a,b] — R be integrable functions, and let A € R be
some constant. Then we have:

1. The function f + g 1s also integrable, and
b b b
[ G +9@dz= [ f@)dz+ [ ga)de.
2. Af 1s integrable, with

/ab)\f(:z:)dzz: = )\/abf(a:)dzz:.

/abf(:z:)dzz:Z/abgzz: dz
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4. The functions max{f, g} and min{f, g}, given by max{f, g}(z) = max{f(z),g(z)}
and min{f, g}(z) = min{f(z), g(z)} are both integrable.

5. If fi is given by f,(z) = max{0, f(z)} then f. is integrable. The function
f- can be similarly defined to bef (z) = min{0, f(z)} , and we have

/: fi(z)dz + /ab f-(z)dz = /ab fz)dz.

Also |f], gwen by |f|(z) = |f(z)| for all z is integrable, and we have

[ | < [ 1(@iae

6. The function fg is integrable.”

2.17.4 Integrals of continuous functions

Theorem 2.41. Let [a,b] C R be a closed interval, and let f : [a,b] — R be
some continuous function. Then the integral

/ab f(z)dz

exists.®

Proof. Since the interval is closed, the function is uniformly continuous (theo-
rem 2.26). The problem is to show that [* f = [, f, or in other words, to show
that for all € > 0, we have [* f— [, f <e.

So let some € > 0 be given. Since f is uniformly continuous, there exists some
0 > 0 such that we have

1)~ S0 < 55y

for all u, v € [a,b] with |u —v| < §. Next choose n € N to be sufficiently large that
nd > b — a and we define two step functions g and h from [a, b] to R as follows.

and

m(bn— a)> I

o) = (ot o

"But, of course, we do not always have [fg = [f- [g. For example, fjll zdz = 0, yet
f_+11 z?dr = 2.
8If f is only defined on an open interval (a,b) then the integral may not exist, even if f is

. . 1
continuous. For example, lim,_.g fs %d:c = 00.
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when

TE |a+

)

m(b—a)’ ot (m—i—l)(b—a))

for each m € {0,...,n — 1}, and finally g(b) = h(b) = f(b).
Then we have g(z) > f(z) > h(z) for all z € [a, b], and furthermore

9(z) = h(z) < 37— .

Therefore we must have
* b
/ f—/*fg/a(g(:z:)—h(:z:))d:zzgﬁ-(b—a):e.

]

We also have the following simple analogue of the intermediate value theorem
for continuous functions.

Theorem 2.42 (Mean value theorem for integrals). Let f, g : [a,b] — R be
continuous functions with g(z) > 0, for all z € [a,b]. Then there exists some
€ € [a,b] with

[ f@g@iaz = 5©) [ g(e)aa.

Proof. Let m = inf{f(z) : z € [a,b]} and M = sup{f(z) : = € [a,b]}. Then
mg(z) < f(z)g9(z) < Mg(z), for all z € [a,b]. Therefore

m [ gz < [ f@)a(@)z < M [ g(a)az,

and if we write \ ,
| f@)g(@)dz = p | g(z)de,

for some 4 € R, we must have m < pu < M. But then, according to the in-
termediate value theorem (theorem 2.25), there must exist some ¢ € [a, b|, with

f(€) = u. O

2.18 The fundamental theorem of calculus

Theorem 2.43. Let [a,b] C R be a closed interval, and let f : [a,b] = R be
some continuous function. Then the function F :[a,b] — R, given by

P(z) = / " ()t

1s differentiable in (a,b), and we have F'(z) = f(z), for all z € (a,b).
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Proof. Theorem 2.41 shows that the function F' does exist. So let z € (a,b) be
given, and we first examine

F h)y — F a+tz atz+h z+h
lim 2@+ }3 () :£%;<A+ f(t)dt—/a++ f(t)dt> :,1113%; " rwa,

h—0 z

where h > 0. According to theorem 2.42 (and taking the function g to be g(z) = 1,
for all z), there exists some &, € [z, + h] with

z+h
[ fwat = rfe).
Since f is continuous at z, we have limy,_,o f(§x) = f(z), therefore

lim F(z+h)— F(z)
h—0 h

~ lim }11 /:” f(t)dt = lim ;hf(fh) = f(z).

If A < 0 the argument is analogous. First of all, for a < b we define the integral

I f(z)dz to be
[ t@z=— [ f(z)az

Then one need only observe that

F(z+h)—F(z) = / f(=z) d$—+/

2.18.1 Anti-derivatives, or “Stammfunktionen”

Definition. Let f : (a,b) — R be a continuous function. A differentiable
function G : (a,b) — R, such that G'(z) = f(z), for all z € (a,bd) is called an
anti-derwative (Stammfunktion, in German) to f.

Theorem 2.44. Gwven a continuous function f, then any two anti-derivatives
to f differ by at most a constant.

Proof. Let G; and G. be anti-derivatives to f. Then we have G| = f = G,
which is to say, G} — G, = (G1 — G»)' = 0. But then the mean value theorem
(theorem 2.34) shows that we must have G; — G, being constant, say Gi(z) —
Go(z) = C, for some constant C' € R. O

But we have seen that the integral [ f(t)dt is an anti-derivative. Therefore,
all possible anti-derivatives are of the form

/: F(t)dt + C,

for various constants C € R.
In fact, we can be more specific.
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Theorem 2.45. Let f : [a,b] — R be continuous, and let G be some anti-
derivative to f. Then we have

Kﬂ@m:G@—G@.

Proof. In order to see this, we need only look at our original anti-derivative F(z) =
[ f(t)dt. Therefore, we have F(a) = 0 and F(b) = [ f(t)dt. But if F(z)—G(z) =
C, for all z, then we must have in particular

F(a) — G(a) = C = F(b) — G(b),

or

mm—m@:mw—mwzfﬂ@@.

Note that people often use the notation

b

[ f(z)dz = G(a)

a

2.18.2 Another look at the fundamental theorem
Given that

f0) = F(o) = o ([ s0at),

then one can think of the differential operator %, and the integral operator [, as
being inverses of one another, in some sense. We have seen that the combination
% [, when applied to a continuous function f, simply gives us f back again. How
about the reversed combination [ 27

For this, we need to have a differentiable function f, defined on an open interval
containing the interval [a,b]. Then, the assertion is:

Theorem 2.46. Let f : (c,d) — R be a differentiable function, and let [a,b] C
(c,d). Then we have

[ 7@z = £6) - (@)

Proof. This is obvious! We need only observe that f is an anti-derivative to f'. [

2.18.3 Partial integration

This is a trivial consequence of what we have done up till now. Let (¢, d) be an open
interval with [a, b] C (¢, d), and let f, g : (c,d) — R be two differentiable functions.
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Then, according to the product rule, we have (fg)'(z) = f'(z)g(z)+ f(z)g'(z), for
all z € (c,d). Therefore it follows that

T / " p(@)g(z)dz + / ’ f(2)g' () da.

b
| (£9)(@) = f(@)g(a)
Often, one writes this equation as

[ 1@ty = @) - [ )o@

2.18.4 The substitution rule

Another trivial consequence. Let f : [a,b] — R be continuous and g : [¢,d] — R
be differentiable, with g([c,d]) C [a,b]. (In order to have differentiability at the
endpoints, we assume that the functions are defined in open intervals containing
the given closed intervals [a,b] and [c,d].) Since f is continuous, it is integrable;
thus there exists some anti-derivative F', with F’ = f. Then according to the chain
rule of differentiation, we have

(Fog)(z) =d'(z)F'(9(z)) = g'(z)f(9()).
Integrating both sides of the equation gives the substitution rule:

= Flo@) - Flg() = [ f(a)de.

9(c

[ #(e(@)g @)z = (F o))

In particular, let the real-valued function f be defined and Riemann integrable
on an appropriate interval of R. Then we have the following simple consequences
of the substitution rule.

b b+c
/af(t+c)dt - /m f(z)dz
/bf(ct)dt - i/bcf(:z:)d:z:, c#0

b2

/abtf(t2)dt _ ; [ i@y

a?
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2.19 Various examples

2.19.1 z"for meZ
1

Since (z")' = nz™ %, for n € N, it follows that —~;z"*! is the anti-derivative to
z". Therefore

b 1 .
/ " = ™"
a n-+-1

We have seen that In'(z) = % when £ > 0. But also, using the chain rule, if

z < 0 we have that

b

a

1 1
].Ill(—.'E) — —7 — E
Thus In'(|z|) = 2 for all z not equal to zero. It follows that for a < b with 0 ¢ [a, b]

we have ,
bdx

atad |
= = In(je)

a

Then, since z7"z™ = 1, we differentiate both sides of the equation, using the prod-
uct rule, to obtain that (z")' = —nz "}, for all n € N. Therefore, —>—~z "' is
the anti-derivative to 2", for n > 2. Thus if 0 ¢ [a,b] and m € Z with m < -2,

—n+1
we have ,

b 1 .
/ i ™t
a 7n‘+'1 a

So much for the integrals of monomials — and thus polynomials.

2.19.2 The exponential, trigonometric, and logarithm func-
tions

We have exp'(z) = exp(z), sin'(z) = cos(z) and cos'(z) = — sin(z). Therefore

b

?

/abexp(:c)dm = exp(z)

a

b
, and

a

/absin(:z:)dm = —cos(z)

/abcos(:z:)dm = sin(z)

b

a

Also for z > 0 we have (z(ln(z) — 1)) = In(z). Therefore for 0 < a < b

b

/a In(z)de = z(1n(z) — 1)

a
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There are books containing hundreds of mathematical formulas — and in par-
ticular the integrals of all sorts of functions which might come up in practice.® But
the more modern seeker after formulas involving integrals will undoubtedly make
use of one of the various computer algebra programs which are widely available
these days.'°

Despite this, let us look at a couple further integrals. For example, the tangent
function is defined to be

tan(z) = ::;EZ; .

Since cos(z) = 0 when z is 7/2 or 37 /2, we must exclude these numbers (and also
m/24 2mm and 37 /2 4 2mm, for all m € Z) when looking at the tangent function.

In any case, one immediately sees that for an interval [a, b] which avoids such
“bad” numbers, we have

b

/a " tan(z)dz = — In(| cos(z)|)

a

2.19.3 The hyperbolic functions

The hyperbolic sine and hyperbolic cosine functions are defined to be

sinh(z) = % and cosh(z) = e+2€

Looking at the defining power series, one can say that
sinh(z) = —isin(zz) and cosh(z) = cos(iz).

In any case, using the fact that the exponential is its own anti-derivative, we
immediately obtain

b b b b
/ sinh(z)dz = cosh(z) and / cosh(z)dz = sinh(z)| .

a
a a

2.19.4 The inverse trigonometric functions

We have that the sine function has the value -1 at —7/2 and +1 at +7/2. Between
those two numbers, the sine function is strictly monotonically increasing. The
inverse function is called “arcsine”. Therefore for —7/2 < 6 < 7/2 and z = sin(6),
we have arcsin(z) = 0. In particular,

arcsin(sin(f)) = 6, and
sin(arcsin(z)) = «=z.

9For example, “Formeln der Mathematik”, by Dr.-Ing. Dipl.-Math. G. Arnold, herausgegeben
von Prof. Dr.-Ing. H. Netz. (I have this one at home!)

10The open-source program “Maxima” is part of the Ubuntu distribution, and is thus freely
available.
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Remembering theorem 2.29, we have

. in'(<i ! =
arcsin’(z) = arcsin'(sin(9)) = sin’(6) - cos(9)

But
cos?(8) + sin®(f) = cos?(8) + z? = 1.

That is,
1

V1—1z2

arcsin’(z) =

Therefore, if -1 < a < b < 1 we have

b
dz = arcsin(z)| .

b 1
/a V1—z2 R

Analogously, one finds that

1
arccos'(z) = ————
V1—122

and )
arctan’(z) = — .

In particular, in the case of arctan, we have the mapping
arctan: R — (—m/2,m/2),

and so for any a < b we have

b1 b
/a o 1da: = arctan(z)| .

a

Of course the list could be extended almost indefinitely. For example our “stan-
dard textbook”, namely Analysis 1, by Otto Forster, contains many interesting
examples of what can be done with such functions. For example he proves the
Wallis’ product formula:

T 2 2 4 46 6 —10_0[ 4n?
2 133557  L4ap2-1’

making use of the integrals of various standard functions.
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2.19.5 The area of a unit circle is 7

For —1 < z < 1, let 8 = arcsin(z). Then for —1 < a < b < 1, we have

b arcsin(b) arcsin(b)
/ V1 zdz = / /1 — sin®(9) sin'(6)d6 = / cos?(8)d6.

resin(a) resin(a)
But then
oy (€5 FETNT L o 1
cos®(z) = <2> =1 (e +e 7+ 2) = 5(cos(293) +1),

so that ia(t)

b . 29 0 arcsin

/ V1—z2%dz = sin )+—

e 4 2 arcsin(a)

But
sin(26) = 25sin() cos(f) = 25sin(8)\/1 — sin*(6) = 2zv/1 — z2.

Thus

/b V= ds — <2a:\/1 — z? N arcsin(a:)) °

4 2

a

Taking the limit as a — —1 and b — 1, we have

2zy/1— 22"

il A Y}
4 a

and

. b

arcsin(z) vis

— = -
2 2

We conclude that

+1 T
v1—z2dz = o
—1

which represents the area of the half-circle.

2.20 Uniformly convergent sequences of functions

The exponential function is defined in terms of the exponential series. But looking

at the partial sums, we see a sequence of functions

nwk

=k

fn(m) =

Each f, is simply a polynomial, and for each z € R, the sequence of numbers
(fn(z))nen converges to exp(z). That is to say, we have point-wise convergence

of the sequence of functions
fn — exp.
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Nevertheless, this convergence is not uniform.!

Definition. Let U C R and f, : U — R be a function for each n € N, giving
a sequence (fn(Z))neny of functions. The sequence will be called uniformly
convergent if there exists some function f : U — R such that for all € > 0
there exists an N € N, such that if m > N then |f.(z) — f(z)| < € for all
zecU.

Another way to look at this situation is to imagine that the set of all functions
from U to R is an abstract “space”. Within this space it is possible to establish
a sensible idea of the “distance” between pairs of functions. For this we use the
Supremum norm.

Definition. Let X be a set, and let f : X — R be a bounded function on X.
Then the supremum norm of f s

[fllx = sup{|f(z)| : z € X}.

It is obvious that the supremum norm satisfies the properties of a norm func-
tion, namely:

o [fllx >0,
o |[Aflix = Al - || fllx, for all A € R, and
o [|f+4allx <|fllx + |lg|lx, for any further bounded function g : X — R.

Then the distance between any two such bounded functions f, g : X — R is
given by
d(f,9) = I — gllx-

With this definition, we see that a uniformly convergent sequence of bounded
functions is simply a convergent sequence with respect to the supremum norm.
That is, for all € > 0 there exists some N € N with ||f,, — f||x <€, for allm > N.

Theorem 2.47. Let U C R be an wnterval, and let f, : U — R be a continuous
function, for all n € N. If the sequence (fn(z))nen is uniformly convergent,
with f, — f, then the function f : U — R 1s also continuous.

Proof. Let £ € U and € > 0 be given. Choose N € N to be so large that
|fm(y)—f(y)| < €/3,forallm > N and y € U. Since the function fy is continuous,

10n the other hand, the series defining the exponential function is locally uniformly conver-
gent. That is, for every = € R there exists an 7 > 0 such that f,, — exp uniformly in the interval
[z — r,z + 7]. (And of course the analogous statement is also true for the exponential function
applied to complex numbers. Given any 2z € C, there exists an » > 0 such that the series f, — exp
is uniformly convergent in the disc {w € C: |w — z| < r}.
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there exists some 6 > 0 such that |fy(u) — fx(z)| < €/3 for all v € U with
|lu — z| < 8. Then for all such u we have

[f(u) = f(@)] < [f(u) - fw(u)] + [ fw(u) = fu(@)] + | fn(z) - f(2)]

< e+e+e
3 3

w

]

Theorem 2.48. Let a < b and for each n € N let f, : U — R be a Riemann
integrable function. Assume that f, — f uniformly. Then f is also Riemann
integrable, and we have

/ab f(z)dz = /ab (7111_{1;)10 fn(a:)dzz:> dr = lim /ab fn(z)dz.
Proof. The fact that f is Riemann integrable is left as an exercise. To show that
tim [ o)z = [ f@)as,
let € > 0 be given, and let N € N be sufficiently large that
| fm = fll) <

for all m > N. Then we have

€
b—a

/ab fm(z)dz — /abf(:z:)dm /ab(fm(:z:) — f(z)dz

VAN

[ 15n(@) - f(@)dz

€
(b —
< ' a (b—a)

€.

]

Remark. All of these results may be generalized to complez-valued functions.
One need only take the absolute-value function in C, rather than simply re-
stricting it to R.

2.21 Taylor series; Taylor formula

2.21.1 The Taylor formula

Theorem 2.49 (Taylor’s formula). Let f : [a,b] — R be an (n+1)-times contin-
uously differentiable function defined on an open interval (c,d) D [a,b]. (That
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is, let f'(z) = fY(z), and then recursively we define f*+Y(z) = (f(k)(a:)>/.

Then the requirement is that f("1)(z) exists for all  in [a,b], and the func-

tion f"*1) : [a,b] — R which is so defined is continuous.) Then for any z,

and z € [a,b] we have

f'(20) f"(%0)
1! 2!

)3;0
£@) = f(ao)+ T o) 4 T o gy T o gy (),

where

Rn(z) = ;'/:(:B — )" fr () dt

0

Proof. Use induction on n. For n = 0, Taylor’s formula is simply the fundamental
theorem

f(&) = f(zo) + / F(t)dt.

So now assume it is true for the case n > 0. In particular, we assume that the
remainder term is

Ru(z) = (ni £ £ (1)t

Applying partial integration, we obtain
1

R2) = oy /w(:z:—t)”‘lf(”)(t)dt
= _/ fn) ( ) > dt
e ()M ¥ /(;f) £ @)t

n!
(n)(mo)

= — zo)" +/ ”“)(t)

which is just the next term in the Taylor formula, with the corresponding remain-
der term.!2 O

We can also express the remainder term in a different way. Since % is
always non-negative, we can use the mean value theorem for integrals to find some

12In the case that z < mo we use the general rule that for integrable functions ¢ : [a,b] — R we
have f: ¢(z)dz = — fb z)dz, and the proof is then the same as when z4 < z.
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€ € [zo, z] with

Roa(@) = [ ema
_ LR
= ") (:En +)1)! .
S TS
Then Taylor’s formula takes the simple form

n To ) (n) To .
(:B—ZDO)—i—f é' )(m—lio) _|_..._|_fn(!)($_$o) +

£
(n+ 1)!

f'(2o)
|

z—x)" .
; (a0

f(z) = f(zo)+

2.21.2 The Taylor series

If f is infinitely differentiable!® then we can consider the series

% £(n)
fl@)=>_ ! 77,(|$0)(3C — Tp)".
n=0 .
In fact, if you think about it, you will see that all of our standard functions are
simply defined in terms of their Taylor series.

Back in the “old days”, 200 years ago and more, mathematicians thought that
the only sensible way to define the idea of a function was by means of a Taylor
series. Yet, in modern mathematics, we see that there are many infinitely differen-
tiable real functions which are different from their Taylor series. (Assuming that
the series converges in the first place!)

On the other hand, things are quite different when we consider differentiable
functions of complex numbers. There, all differentiable functions are always in-
finitely often differentiable, and furthermore, they are given by their Taylor series.
The subject of complex analysis is called “Funktionentheorie” in German, paying
tribute to this old-fashioned way of looking at functions.

2.21.3 The “standard” functions

At this stage of things, we take these to be: polynomials, the exponential function,
the trigonometrical functions and the logarithm function.

But of these, the first three categories are simply defined in terms of power
series, which are the Taylor series for the respective functions, taken at the point
zo = 0.* Thus we need only look at the logarithm function.

130f course this is the case with our “standard functions”, namely polynomials, the exponential
function, and the things which come out of that: sine, cosine, and so forth.

14polynomials can be thought of as being power series where all but a finite number of the terms
are Zzero.
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But since the logarithm is only defined for positive numbers, we need to look
at the Taylor series at some point z, > 0. The natural idea is to take z, = 1.
Then we have In(1) = 0, In'(1) = 1, and in general

In™(1) = (=1)" }(n — 1)!
This gives the Taylor series

(z — z0)° n 2z — z0)* 3z —z0)*

T(z) = 0+ (z—z0) — 51 3l 2l +--
(z-1? (z-1)° (z-1)*
= —1)— _
(z-1) R :
It is often written
2t
T(14t)=t— =+ = ——+--
(+) 2+3 4+
Another way to write it is
2 3 t4
T1—t)=—(t+—+—+—+--
( ) (+2+3+4+ )

Note however that this series only converges for |¢| < 1.
Is it true that the Taylor series for the logarithm does actually equal the loga-
rithm function itself? That is, do we have

T(1+t)=1In(l+1)

for all |¢| < 17
To answer this question, the simplest idea is to consider the sequence of func-
tions

n

falz) = > (-1)* 2",
k=1
Lemma. For |z| < 1, the series (f.(z))nen ts absolutely convergent. If —1 <
a < b <1 then the series of functions f,, when restricted to [a,b|, converges
uniformly.

Proof.
1

n —1k_1a:k:n z|f = .
kzl\() | k;u -

Therefore the convergence is absolute, and as a consequence the series of functions
(fn(z))nen converges point-wise to a function f on the interval (—1,+1). For
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T € [a,b], we have

f(z) = falz)] =

= la|™ 3 lal®

k=0

1
< Mn+1
= 1_M7

where M = max{|a/, [b|} < 1. O

This result can be applied to the logarithm function. We have
1
l+z

In'(1+z) =

Therefore, using theorem 2.48, we have

T

In(l+z) = In(1+¢)

0

- [ (B

- Z(l n+1

n=0

= Z( 1”133

for |z| < 1.
What can we do to represent In(z) when z > 17 In this case we can find some
y with 1 < y < 2, and y* = z, for some k € N. Then

ine) = n(y?) = - 1ny) = &+ (S0 0 V"),

n=1
For the special case In(2), the Taylor series gives

1 1 1
T2)=1--+-—"-
) 23 1"

In order to see that, in fact, T(2) = In(2), let us examine the remainder term in
the Taylor formula. For this, we first observe that

In" (14 €) = (-1)"nl(1+ &)™

Then
1

(n+ 1)1+ &

In™*(1 4 ¢)
Rn+1(2) = W

where 0 < £ < 1, and thus R,;1(2) — 0 as n — oo.

(2-1) =
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2.22 Improper integrals

We have only defined integrals for functions on closed intervals [a, b], where a < b
are real numbers. This definition can be extended to include integrals of the form

[ f@yas,

where b = —oo0 and/or a = co. Namely, if
R
lim f(z)dz

R—oo Jg

exists, then the limit is taken to be [,° f(z)dz. The other cases are defined anal-

ogously.
For example
z dt i
/ — =t =—=+1
1 t? ) z
Therefore
=
1 2

However, the function 1/t — oo as t — 0. Can it be that the integral

ldt . ldt
/ = lim
0

t2 e—0 Je t2

exists?
Obviously not, since
dt —-1+-—0
€ t2 N €
as e — 0.
On the other hand,
1 dt \/1 Je
— =2Vt =2—-2/e— 2
v aiat]

as € — 0.
As a matter of fact, we have the following theorem.

Theorem 2.50. The improper integral

/ £ dt
0

dwerges for all s € R.
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Proof. Otherwise, we could write

[e’s) 1 o
/ tsdt:/ tsdt+/ £ dt.
0 0 1

If s = —1, then the anti-derivative to ¢! is In(¢). And
R dt
/ i In(R) — o0
1

as R — oo.
If s # —1 then the anti-derivative to ¢° is

ts+1

s+1°

If s < —1 then

/:tSdt: ler1 (1-e) = oo,

since (s + 1) < 0, and thus €™ — 00 as € — 0.
If s > —1 then

/lRtSdt: 3+11 (R —1) = oo

since s +1 > 0, and thus R**! — oo as R — oo. In all cases, the integrals do not
converge. O

2.23 The integral comparison test for series

Theorem 2.51. Let a < b and f : [a,b] — R be a monotonic function. Then
the Riemann integral [’ f(z)dz ezists.

Proof. Assume without loss of generality that f is monotonically increasing; that
is, f(s) < f(¢t) for all s < t in [a,b]. For each n € N, we can take the partition
a=zp< T, <---<z,=>, where

b—a
?
n

T =a+ k
k=0,1,...,n. Let the step functions g, h : [a,b] — R be given by

9(z) = f(zr_1), for z;_; < z < zy,
h(z) = f(zx), for z, 1 < z < x4,

and then g(b) = h(b) = f(b). Therefore g < f < h. But
/bg(:z:)da: < /f < /*f < /bh(a:)da:
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and

/ab h(z)dz — /abg(:r)d:z: = /ab(h(:r) — g(z))dz

= > P0G - f@)
= "22(00) - £())

Since both the numbers f(b) — f(a) and b— a are constant, and we can choose n to
be arbitrarily large, it follows that we must have [, f = [* f, so that f is Riemann
integrable. O

Theorem 2.52 (Integral comparison test). Let f:[1,00) — R be monotonically
decreasing. Then the improper integral [° f(z)dz ezxists if and only if the
series Yoo, f(n) converges.

Proof. Obviously both the sum and the integral can only converge if f(z) > 0,
for all z > 1. For each n € N let g,,, h, : [1,n] — R be given by

gn(z) = flk+1), fork<z<k+1,
ho(z) = f(k), for k<z <k+1,

fork=1,...,n—1and g,(n) = hp(n) = f(n). Then

[ onte)iz =3 st

and o
/1 ho(z)dz = kz_: f(n).

Therefore we see that >°°, f(n) converges if and only if both

lim [ gn(z)dz

n—o0 1
and .
Jim ) hn(z)dz
exist. But g, < f < h, on [1,n], for each n. ]

2.23.1 Riemann’s zeta function

Since for each = > 1 we have

/°°dt_ 1
1tz -1’
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it follows from the integral comparison test that
{(@)=>_n"
n=1

defines a function ¢ : (1,00) — R. As an exercise, we see that the series also
converges for all complex numbers 2 = z + 2y with £ > 1. Riemann proved
that the zeta function satisfies a certain functional equation which allows it to be
“analytically continued” throughout the whole of the complex plane except for
the obvious singularity at z = 1. This function plays a central role in the subject
of analytic number theory.

There are certain relationships with the Gamma function, which also has a
functional equation, allowing an analytic continuation within the theory of com-
plex analysis.

2.24 The Gamma function

For z > 0, one writes
I'(z) = / t*tetdt.
0

Theorem 2.53. The integral defining the Gamma function converges for all
z > 0.

In order to prove this, let us begin with a simple lemma.

Lemma. For all n € N, we have

e
m — = 0.
t—oo tN
Proof. Since
tn+1
e=14+t+ -+ ——+---,
(n+ 1)
it follows that
¢t
" (n+ 1)
for all ¢ > 0, and thus
et

t—nﬁooastﬁoo.

Therefore we must also have

n

.t
lim — —0ast— 0.
t%ooet
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Proof of theorem 2.53. Let £ > 0 be given, and let ¢, > 0 be sufficiently large
that t®*le~t < 1, for all ¢t > t5. Then

t*let < t 2 for all t > t,.

Therefore it )
[Tetea [TH 1

)
to to t2 tO

so that the integral from %, to oo converges.!®
On the other hand we have e * < 1 for all £ > 0, therefore t* e * < t*!, and

t t
/Ot“"le‘tdt < /Ot""ldt

€
£
T

to
5 €°

z Z

€
z

— DYase—o0.
z

Thus also the integral from 0 to ¢, converges. [

2.24.1 The functional equation for the Gamma function
For 0 < € < R < 00, partial integration gives

R

R R
/ Fetdt — —tTe~t| + / ot e tdt.

However, for z > 0, we have lim, ,,€®¢~¢ = 0 and limg_,o R®e % = 0.
Therefore we obtain the functional equation for the Gamma function:

P(z+1) = /Ooo tPe~tdt = z /Ooo t#letdt — zT(z).

In particular we have

= 1.
0

I(1) :/wtl‘le‘tdt:/m etdt = —et

0 0

It follows that
I'(n+1) =n!,

for all n € N.

For n = 0 we have I'(0+1) = I'(0) = 1. But then the functional equation gives
I'0+1) =1=0-T(0). This is impossible! So the Gamma function is not defined
at 0. And therefore it is also not defined at all of the negative integers —n, for
n € N.

15We have t* et > 0 for ¢t > ty. Thus ft}j t*le~tdt increases as R increases.
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On the other hand, if we take say £ = 1/2 then we have ['(1/2) being some
positive number. In fact, it turns out that I'(1/2) = /7. Then, using the func-
tional equation, we find that I'(—1/2) = —2+/7, I'(—3/2) = 44/7/3, and so forth.
In fact, apart from zero and the negative integers, the Gamma function is defined
for all of R.

2.24.2 The Gamma function in complex analysis

For z = z + 1y € C, we can write
I'(z) = / t* e tdt.
0

It can be shown that the integral converges when the real part of 2 is positive,
namely z > 0. We again obtain the same functional equation, namely I'(z + 1) =
2I'(z), and this allows us to analytically continue the definition of the Gamma
function into the region of the complex plane where the numbers have real part
negative or zero. It turns out that the function can be defined everywhere except at
zero and the negative real integers. These are points of singularity of the function.
Apart from these points, the Gamma function is everywhere differentiable. There
are various interesting formulas which can be proved. For example, we have

n*n!
I'(z) = lim )
(2) n—0 z2(z4+1)--- (2 +n)

In order to get a feel for how such formulas can be proved, let us again look at the
situation for I'(z), for z > 0.

2.24.3 Two formulas
Theorem 2.54. Fort € R, n € N we have

t n
lim (1 + > = et.
n—oo n

Proof.

t\" t\"
1n<lim (1+) > = lim 111<1+>
n—00 n n—00 n
. t
= lim nln(1+>
n—00 n
— tlim n1n<1+t)
n—oo §{ n

In (1 + %) —1n(1)

= tlim ;
n—oo =
n

= tln'(1) =t
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The first equation follows from the continuity of the logarithm function; the fourth
equation follows since In(1) = 0, and of course the fifth equation results from
In'(z) = 1/z = 1, when z = 1.
Therefore pyn
e ((fmnoee(142)") = Jim (1 + > = €.
n

n—oo

Theorem 2.55. For x > 0 we have

n n Zyl
/ (1—t) t=-ldt = n |
0 n z(z+1)---(z+n)

Proof. Progressively using partial integration, we have

n £\ 1z tnn n tn—lt:n
N S I
0 n HA n 0o —Nn n HA

0
n t'n.—l
- <1—> £ dt

zn Jo n
z-+1 n—1|" n o n—2 jz+1
= bz ) | e ) o
zn \z+1 n 0 0o —n n z+1

_ n n—2
_ nn-1) / (1_ t) £+ L4t
z(z + 1)n? Jo n

nn—1)---(n—(n—-1)) " oitmy
m(z+1)~--(m+(n—1))n”/ot at

_ n(n-1)-(n—(n—-1)) <tz+n
zlz+1)--(z4+(n—-1))n* \z+n
n®n!
z(z+1)---(z+n)

Notice here that we always have the expressions of the form

tz:+k t n—k
1=
z+k ( n)
being zero, so that only the integral is carried through from one line to the next.
O

n

0

It is now an exercise to show that the convergence given by theorem 2.54
is uniform, and that the improper integral defining the Gamma function also
converges when theorem 2.55 is used. All of this gives us the formula

n®n!
I(z) = lim ,

for x € R with = > 0.
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2.25 Convexity

Definition. Let D C R and f: D — R be some function. An element z, € D,
together with its value f(zo) under f, is called an isolated local minimum of
the function if there exists some d > 0 such that for all z € D with |z — x| < 6
and ¢ # zo, we have f(z) > f(zo). The idea of an isolated local maximum s
defined analogously.

Theorem 2.56. Let f : (a,b) — R be a differentiable function which s twice
differentiable at the point =, € (a,b), such that f'(zo) = 0 and f"(zo) > O.
Then f(zo) ts an tsolated local minimum of the function f. If f"(z,) < 0 then
f(zo) is an isolated local mazimum.

Proof. Since

(zo) = 511_}1}:10 -7 (2 : :];O(mo),

there must exist some € > 0 such that for all £ € (a,b) with |{ —zo| < € and £ # zo
we have . .
f'(€) — f'(z0)

§— 2o
But f'(z¢) = 0. Therefore we must have f'(§) < 0if ¢ < zg and f'(§) > 0if £ > zo.
It then follows from the mean value theorem (2.34) that f is strictly monotonically
decreasing for ¢ < z,, and strictly monotonically increasing for £ > zo.
The result when f”(z,) < 0 follows analogously. O

> 0.

Definition. Let D C R be an interval. (Thus if a < b are two points of D,
and T is some point with a < ¢ < b, then we must also have z € D as well.)
A function f: D — R 1s called convex if for any two points a, b € D, and for
any A with 0 < A <1, we have

fa+(1—2)b) < Af(a) + (1 - A)f(D).

Theorem 2.57. Assume that D 1s an open interval, and let f : D — R be
twice differentiable. Then f is conver < f"(z) > 0 for all z € D.

Proof. “=" In order to produce a contradiction, assume that f is convex and that
there exists some zo € D with f"(z¢) < 0. Let g : D — R be given by

9(z) = f(z) — f'(zo)(z — T0),

for all z € D. Then we have ¢'(z¢) = 0 and g"(zo) = f"(z¢) < 0. Therefore, g(zo)
is an isolated local maximum of the function g. That is, there exists some § > 0
with g(z) < g(zo) for all z # z, in D, with |z — zo| < 6. But then

1 1
f(zo) = g(z0) > E(g(mo —8) +9(z0 +9)) = §(f($o —8) + f(zo + 6)),
contradicting the fact that f is convex.
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“<" Since f"(z) > 0 for all z € D, we must have the function f' monotonically
increasing. So let a < b be two points of D, and let 0 < A < 1 be given. Take

z=Aa+ (1— A

Then, according to the mean value theorem, there exist two further points £;, &
with a < & <z < & < b, such that

)~ 1o 10~ 1)

-

= f(&) < f'(&) =
Butz—a=(1—-A)(b—a)and b—z = A(b—a). Thus

f(z) — fla) _ f(b) — f(z)
1-N0b-a) = Ab—a)

or
A(f(z) — Fa)) < (1 = A)(f(0) — f(z))
That is,
f(z) = f(Ra+ (1= A)b) < Af(a) + (1= A)f(b).
Since a, b and A were chosen arbitrarily, it follows that f must be convex. O

Similarly, one proves that f is concave if, and only if, f"(z) <0 for all z € D.

Theorem 2.58. Let p, ¢ > 1 such that 1/p+1/q =1. Then for allz, y > 0 we
have - y
EyE < -4+ =,
P g

Proof. Since for all z > 0 we have In"(z) = —1/z® < 0, it follows that the

logarithm must be a concave function, and we have
In(Az + (1 — A)y) > Aln(z) + (1 — A) In(y).

In particular, this is true for A = 1/p, and thus 1 — A = 1/q. The result then
follows by applying the exponential function to both sides and remembering that
the exponential function is monotonically increasing. O]

Corollary (Young’s inequality). For ¢ and y non-negative real numbers and
p>1with1/p+1/q =1, we have

q
zy < <z + v
p q
Definition. Let K be either the real numbers R, or else the complexr numbers
C. For any vector z = (z1,22,...,2Z,) € K*, and p > 1, the p-norm of z s
1
n P
loll = (3 out)
k=1
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Theorem 2.59. Let z = (z1,Z3,...,Z,) € K™ be a vector (K =R or C), and
p>1. Then forq > 1 with 1/p+1/9g =1 and also y = (Y1, Y2,---,Yn) € K",
we have

n

> lzysl < llllllylls
k=1

Proof. 1f ||z||, = 0 or ||ly|]|; = O then the result is trivial. Otherwise, for £k =
1,...,n let
vy = - Yi|?

el lyllé

We have

U (|zP + -+ |zn P < a:”)—
Z k= H ||p ‘ 1‘ ‘ ‘) Zk*l ’xk’p Z‘ k’

k=1

Similarly, >°7_; v, = 1. But

|Z1 Y| a1
= UV, < —Up + —V
lzllpllyll, — "
Therefore |
LA XY 1
U + Up = — + -=1
S el S p o g q
And finally,

n

> eyl < lzllsllylle-
k=1

]

In particular, when p = ¢ = 2 we obtain the familiar Cauchy-Schwarz inequality
of linear algebra:

(z,9)| =

1 1
§Z|mkyk|§<2mi> (Zyz) ~ el - Il
k=1 k=1 k=1

Definition. Let a < b and f : [a,b] — R be Riemann integrable. For p > 1, we

define 1
b P
i1, = ([ 15@)Pas)

Theorem 2.60 (Holder’s inequality). Let a < b and f, g : [a,b] — R be Riemann
integrable. For p > 1, we have

b
| 1£@)g(@)ldz < | lllgls
where 1/p+1/q = 1.
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Proof. For each n € N, take the partition a = zog < z; < --- < z, = b of the
interval [a, b] where z, = a + @, for each k, and consider the Riemann sum

i If(&x)g(&x) (2 — 2p—1) = b

where z; ;1 < & < z, for each k. Then according to theorem 2.59, we have

t(Sisente) < 10 (st ) » \g(&)\q)

1

_ <b;“>; "(zyf(gk ) (z\g(w)

- (0 > |g(5k)|q)‘l’

1
Pl(b—a
> |f(fk)|f’) (
k=1 n
According to the definition of the Riemann integral, we have both

Z\f )9 (&) (T — Th—1)

(@96 — [ 17(@)o(z)lda

and also

)]1"—>/ab]f(:1:)\pd$ and

)7 [ lo(a)loas,

k=1

for n — 0. O]

Theorem 2.61. Let p > 1 and z, y € K™ (where, again, K s either R or C).
Then we have
Iz +yllp < llzlls + [lyll,-

Proof. If p = 1, then this is just the triangle inequality for the absolute value
function. Therefore assume p > 1, and let 1/p + 1/¢ = 1. Define z € K™ by
z=(z1,...,2,), where z; = |z + yi|P* for each k. We have % + % = 1. That is,
% +1=gq,or g(p—1) =p. Therefore

Zi = |zi + yk|q(p_1) = |zi + Y%,

and so |z[l, = ||z + y[[5/*.
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According to theorem 2.59, and using the triangle inequality, we have

le+yllp = D lzx +ul?
k=1

n

= Z Tk + Yr||2k]

k=1

n n
Z |zk2k| + Z | Y2k |
k=1 k=1

(lzlly + [1yllp) [12]lq
(lzll + [1yllp) llz + ]2
(lzllp + lylle) [l + ylf5 "

[\

[\

The last equality here follows from the observation that % = p — 1. Finally,

dividing by ||z + y||2~* gives the result. (Of course the theorem is trivially true if
o+ vz = 0) =

This shows that the mapping || - ||, : K — K is, in fact, a norm. For we
certainly have ||z||, > 0 for all z € K", and =z = 0 if and only if ||z|[, = 0. Also
[Az||l, = |A|l|z||p is easy to verify. Then finally, Minkowski’s inequality gives us
the triangle inequality for a norm.

In analogy to the proof of theorem 2.60, we can extend theorem 2.61 to inte-
grals.

Theorem 2.62 (Minkowski’s inequality). Again let a < b and f, g : [a,b] = R
be Riemann integrable. For p > 1, we have

1 +glls <1171l + llglle-

It is important to note however, that we can have ||f||, = 0 even when f is not
the zero function. For example, take the function f: [—1,+1] — R to be given by

1, ifz=1
ﬂ@:{q if 11

Then clearly || f||, =0, for all p > 1, yet f is not the zero function. Thus, strictly
speaking, || - ||, is not a norm on the space of integrable functions on a given
interval.

If you continue on to the Analysis 3 lecture, then you will learn more about
such things.
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Chapter 3

Analysis 2

3.1 Metric spaces

Definition. Let M be some arbitrary non-empty set. A mapping
d:-MxM-—=R
15 called a metric on M if it satisfies the following three properties.
e d(z,y) =0 if, and only if z = y.
e d(z,y) =d(y,z), for all z and y in M. (Symmetry)
e d(z,z) < d(z,y)+d(y, z), forallz, y, and z € M. (‘The triangle inequality )

We can think of this function “d” as giving us a sort of abstract “distance” func-
tion within the set M. Obviously the distance function in our usual 3-dimensional
space of everyday experience is a metric.

Theorem 3.1. Gwen a metric d, defined on a set M, then we have d(z,y) > 0,
forallz, ye M.

Proof. This follows trivially from the fact that
0 =d(z,z) < d(z,y) + d(y, z) = 2d(z,y),
forall z, y € M. [

Examples
e The real numbers R, together with the metric given by d(z,y) = |z — y|.
e The complex numbers C with d(w, z) = |w — z|.

e Let V be any normed vector space, with norm ||-|| : V — R. Then d(u,v) =
||lu—v|| is the corresponding metric on V. Therefore we see that any normed
vector space — for example our usual R® — is automatically also a metric
space.
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e Let Cy([a, b, R) be the set of continuous real-valued functions defined on an
interval [a,b] C R. Then, as we have already seen, Cy([a, b], R) can be con-
sidered with the norm || f|| = sup{|f(z)| : a < z < b}. Therefore Cy([a, b}, R)
is also a metric space.

e The 2-sphere S? = {z € R?: ||z|| = 1}, together with the metric given by
d(z,y) = ||z — y||, where the norm here is simply the usual Euclidean norm
of R3.

3.1.1 Open sets, closed sets

Definition. Let (M,d) be a set, together with a metric. Given any number
€ >0, and any ¢ € M, then the open ball around z with radius € 1s the subset

B(z,e) ={y € M : d(y,z) < €}.

In general, a subset U C M will be called open, if for all x € U, there exists
some €, > 0 (depending on z), such that B(z,e;) C U. A subset A C M will
be called closed if the compliment M \ A is open.

Obviously, if €; < €, are two positive numbers, then B(z,¢€;) C B(z,€s).

Examples

e Given any metric space (M, d), then the empty set 0 is both open and closed.
Also the whole set M is always both open and closed.

e Within the real numbers R, together with the usual metric, we have that all
open intervals (a, b) are open, and furthermore, all closed intervals [a, b] are
closed. On the other hand, intervals which are half open and half closed,
such as (a, b], are neither open nor closed. But for example (a, o0) is open,
while [a, 00) is closed.

e If (M,d) is an arbitrary metric space, then any subset consisting of a single
element {z} C M is closed. To see this, it is only necessary to observe that
we have B(y,d(z,y)/2) C (M \ {z}), for all y # z.

By extension, we have that any finite subset of M must also be closed.

Theorem 3.2. An arbitrary union of open subsets is open. On the other hand,
we can only say that every finite union of closed subsets is closed.

Proof. Let (M,d) be a metric space. Let U; C M be open subsets of M, indexed
by some “index set” I, so that ¢ € I for all 2. This index set might be infinitely
large, even of some higher order of infinity. The problem is then to show that
User Us C M 1s open.

94



But given any z € U;c; U; then, in particular, z € U; for some 7+ € I. But
since U, is open in M, there exists some €, > 0 such that B(z,¢e,) C U; C U Us.
Therefore, since ¢ was arbitrarily chosen, it follows that (J;c; U; is open in M.

Now let A4,..., A, be a finite collection of closed subsets of M. The problem is
to show that M\Uj_, A is open. Solet z € (M\U;_; Ax). However, since each A
is closed, it follows that each (M \ Ax) is open. Furthermore, z € (M \ A) for all
k =1,...,n. Therefore, for each k, there is some ¢, > 0 with B(z, ;) C (M \ Ag).
Choose € = min{e; : Kk = 1,...,n}. Then we have B(z,¢e) C (M \ U;_; Ax). Since
z was arbitrary, it follows that M \ U;_,; A is open, hence Uj_; Ay is closed. [

Thinking about the basic relationships of set theory leads to the following
corollary.

Corollary. Arbitrary intersections of closed sets are closed. Finite intersec-
tions of open sets are open.

Definition. Let (M,d) be a metric space, and let 0 # V C M be a subset.
Denote by V the intersection of all closed subsets of M which contain V.
The set V 1s called the closure of V in M.

Note that since M itself is always closed, this intersection is not empty. Thus
V is a closed set, and it is the smallest closed set containing V. Obviously, if V is
already closed, then we have V =V

Definition. Given some subset V C M, a point £ € M 1s said to be on the
boundary of V' if for all e > 0, the open ball B(z,¢€) at z with radius € contains
points of V. and also points of M \ V. That is

VN B(z,e) 0 # (M\ V)N B(z,e€)
for all e. The set of all boundary points of V 1s denoted by OV.

Theorem 3.3. Given any V with 0 AV C M, then we have V =V U8V.

Proof. Let £ € M with z ¢ V UOV. Since z € 0V, there must exist some ¢ > 0
with B(z,e)NV = 0. But also B(z,e/2)N8V = @, since for any point y € 8V, we
have B(y,€/2)NV # 0, and if y € B(z,€/2), then we would have B(z,e)NV # 0,
which is impossible. Since z was chosen arbitrarily in M \ (V U 8V), it follows
that M \ (V U 8V) must be open. Thus V UV must be closed.

Now take W to be any closed subset of M with V' C W. Let y € 0V be an
arbitrary point of the boundary of V. If y ¢ W then we would have y € (M \ W),
which is an open set, since W is closed. But then there would be an ¢ > 0 such
that B(y,e) C (M \ W) C (M \ V). But this is impossible, since then y would
not be on the boundary of V. Therefore y € W, and we must have that V U oV
is contained within every closed set which contains V. That is, V =V uUdV. 0O
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3.1.2 Compact sets

The ideas of convergence which we have already encountered in Analysis I can be
generalized to the case of arbitrary metric spaces.

Definition. Let (z,),cn be a sequence of elements in the metric space (M,d).
Then the sequence converges to the element © € M 1f for all € > 0, a suffi-
ciently large N € N ezists, such that d(z,,z) <€, for alln > N.

We will say that = ts a cluster point (or “Hdufungspunkt”) of the sequence
if for every € > 0, there ezist infinitely many elements of the sequence con-
tained within B(z,€). Thus a cluster point is the limit point of a convergent
subsequence.

Definition. Let K C M be some subset of a metric space (M,d). We will say
that K 1s sequentially compact if for every sequence in K there exists a cluster
point in K.

Examples

e Any subset consisting of only finitely many elements must be sequentially
compact.

e In R, any open set such as (a,d) is not sequentially compact. For example,
consider the open interval (0,2). Then the sequence (1/n),cn is contained
in (0,2), yet the only possible cluster point, namely the number 0, is not
contained in (0,2). Similarly, the entire set R is not sequentially compact.
For example the sequence (n),cn has no cluster points.

Theorem 3.4 (Heine-Borel: 1-dimensional version). A subset K C R is sequen-
tially compact if and only if it 1s closed and bounded.

Proof. Let K C R be sequentially compact. If K were not bounded, then for each
n € N there would be some z, € K with |z,| > n. Clearly the sequence (z,)nen
has no cluster points. Thus K must be bounded. Assume now that K is not
closed. That is, M \ K is not open. Therefore there must be some z € (M \ K),
such that for all € > 0, B(z,e) ¢ (M \ K). Or, put another way, for all € > 0,
there exists some y. € K with d(z,y.) < €. In particular, there exists a sequence
(2n)nen With 2, € K for all n, and d(z, 2,) < 1/n.

Could it be that there exists some cluster point v € K for this sequence? If
so, then since z ¢ K, we must have z # v, and so d(z,v) > 0. Since the sequence
(2n)nen converges to z, there exists some N € N with d(z,,z) < d(z,v)/2, for all
n > N. But then for all such n, we must have z, ¢ B(v, d(z,v)/2), since otherwise
we would have

d(z,v) n d(z,v)

d(z,v) < d(z,2,) + dlzn,0) < 2 s

=d(z,v).
But this is impossible, since d(z,v) > 0.
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On the other hand, assume that X C R is closed and bounded, and let (a,)nen
be some sequence in K. Since the sequence is bounded, there must exist some
convergent subsequence (Bolzano-Weierstral, theorem 2.4). Therefore there is
some cluster point £ € R of the sequence. We must show that z € K. If not,
then z is in the open set R\ K. But then there would exist some € > 0 such
that B(z,e) N K = 0. However, since all the elements a, are contained in K,
it would follow that z could not be a cluster point of the sequence (an)nen. A
contradiction. O

With only a few changes, the same proof also works in the case of R™. For
this we begin by observing that if typical points of R" are z = (z,,...,z,) and

Y= (Y1,-..,Yn), then

d(z,y) = |z —yll = /(&1 — 9)2 + - + (zn — )%

From this, one sees that for each 2 = 1,...,n we have
z: — y:| < d(z,y).

Therefore let (a,)men be a sequence of points in R™. For each m, we have that
m = (@m1y.--,Qmn), With a;; € R for each m € N and 7 € {1,...,n}. Then
if the sequence converges to a point z = (zi,...,z,) € R?, it follows that we
have lim,, ,o @m; = z, for each j. Thus it is clear that a sequence (am)men in
R™ converges if and only if the n separate sequences of coordinates (@,;)men each
converge in R, for 7 = 1,...,n. Slightly more general is the question of convergent
subsequences.

Theorem 3.5. Every bounded sequence in R™ contains a convergent subse-
quence.

Proof. Let (am)men be a bounded sequence in R™. Therefore each of the sequences
of coordinates (@m;)men is bounded in R. Let (@m,(k)1)ren be a convergent sub-
sequence for the sequence (@m,1)men (Bolzano-Weierstraf3, theorem 2.4). But then
(@m,(k)2)ken is another bounded sequence in R. So let (@m,k)2)ken be a conver-
gent subsequence. Note that then, (amz(k)l)keN is still a convergent sequence in
R. Again, choose (@m,(k)s)ren to be a convergent subsequence of (@, (x)3)ken, and
so on. Eventually we obtain the subsequence (@, (x))ken, such that all of the
sequences of the coordinates converge. Thus (am,(x))ken converges in R™. O

Theorem 3.6 (Heine-Borel: n-dimensional version). A subset K C R™ is sequen-
tially compact if and only if 1t 1s closed and bounded.

Proof. First assume that K is sequentially compact. The proof that K must be
closed and bounded is the same as before.

On the other hand, under the assumption that K is closed and bounded, let
(am)men be some sequence in K. According to theorem 3.5, there exists a con-
vergent subsequence (am(k))keN with limg o @mir) = z, say. If z ¢ K then since
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K is closed, it follows that R™ \ K is open, and so there exists some ¢ > 0 with
B(z,e) C (R™\ K). Yet limy ,0 Gm(x) = . That means that if we look at the co-
ordinates of the points, then we see that limy . amp)y; = z;, for 3 = 1,...,n.
In particular there must exist an N € N such that for all &k > N we have
|@mk); — T;| < €/4/n, for all j =1,...,n. But then we have

lamge) — 2 = JZ (ampes — 25)° < z<ﬁ) _ Ve

71=1

That would mean that a,u) € (R*\ K) for all k¥ > N, a contradiction, since
. € K for all m € N. Therefore we must have ¢ € K. O

The usual idea of “compactness” differs somewhat from this idea of “sequen-
tial compactness”. In 1929, the two mathematicians Pavel Alexandrov and Pavel
Urysohn realized that the following definition is more general, and often more
useful.

Definition. Let (M,d) be a metric space, and let K C M. A collection of
open sets U; C M, with © € I some index set, such that K C U;c; U;, 15 called
an open covering of K. The set K 1s compact if for any open covering of K,

there exists a finite open sub-covering. That s to say, there exist 11,1%s,...,1%,,
for some n € N, and 1; € I for all j, such that K C U7, U,

Theorem 3.7. Let (M,d) be a metric space, and let K C M. Then K 1is
sequentially compact if and only if it 1s compact.

Proof. Begin by assuming K is compact. Could it be that K is not sequentially
compact? If so, then there exists a sequence (a,)ney in K which has no cluster
points in K. Thus, since each point z € K is not a cluster point of the sequence,
there exists an €, > 0 (depending on z), such that there are only finitely elements
of the sequence in B(z,€;). But U,cx B(z, €;) is an open covering of K, and since
K is compact, there exists a finite sub-covering, say

K C B(z1,€,)U---UB(zZpm,€sz,,,)-

But then there could only be finitely many elements in the whole sequence, which
is a contradiction. Therefore K must be sequentially compact.

Now assume that K is sequentially compact. We must show that it is compact.
To start with, for each n € N we find a finite collection of points z,,1, Zn2,..., Ty, In
K as follows. Take z,; € K to be some arbitrary point. Then if K ¢ B(z,1,1/n),
take Tny € K\B(Zp1,1/n). Andsoon, with z,, € K\UZ! B(zn;, 1/n). Eventually
we must reach some n,, € N with K C U™ B(zy;, 1/n) for otherwise (z,,);en
would be a sequence in K containing no convergent subsequence, contradicting
the fact that K is sequentially compact.

Therefore, taken together, there are only countably many possible open balls
of the form B(z,;,1/n).
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To obtain a contradiction, assume that K is not compact. Assume that there
is an open covering J;.; U; of K such that no finite sub-covering exists. For each
element z € K, one of the open sets U; contains . And for a sufficiently large n,
there is an open ball B(z,;,1/n) containing z, which is also contained within U;.
For each z € K we can take such a ball, and in this way we obtain a countable
open covering, say Uz~, Vi of K, such that each V} is contained within some U; of
the original open covering. Therefore, for all m € N we have K \ Uy ; Vi # 0.

We can construct a sequence (ag)xen in K by taking

k
akEK\U‘/;‘,

J=1

for each k£ € N. Since K is assumed to be sequentially compact, the sequence must
have a cluster point, a € K. But since

K C W,

k=1

there must be some k, € N with a € V,,. Thus V;, contains infinitely many
elements of the sequence, in particular elements of the form a; for j > k,. This is
a contradiction. O

Therefore we see that for metric spaces, the ideas of “sequentially compact”,
and “compact”, are the same. Since Euclidean space R" is a metric space, it is
usual to state Heine-Borel’s theorem by saying that a subset K € R™ is compact
if and only if it is closed and bounded.

A counterexample

But remember, Heine-Borel’s theorem only applies to Euclidean spaces! In general
it is not true that closed and bounded implies compact. For example, consider the
metric space Cy([0, 1],IR), consisting of the set of continuous functions f : [0,1] —
R. Let K C Cy([0,1],R) be the set of functions whose supremum norm is less than
or equal to 1. That is

K =A{f € G([0,1],R): Sél[lopl]{\f(x)\} <1}.

It is an exercise to show that K is both closed and bounded, and yet it is not
sequentially compact — therefore also not compact.

Of course, given any metric space (M, d), then the whole set M is also a subset
of itself. Therefore the definition of compactness can also apply to the whole space.

Theorem 3.8. If a metric space (M,d) is compact, then any subset V C M 1is
compact if and only if it 1s closed in M.
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Proof. Assume that V is closed. Then M \ V is open. Let {U; : ¢ € I} be an
open covering of V. Then {U, : + € I} U{M \ V} is an open covering of M.
Since M is compact, there exists a finite sub-covering {U;,,...,U;,, M\ V}. Then
{U,...,U;, } must be a finite sub-covering of V. Thus V is compact.

Now assume that V' is compact. We must show that V is closed, that is, that
M\ V is open. Choose some z € (M \ V). For each v € V, take the open set
B(v,d(v,z)/3) around v, and also take the open set B(z,d(v,z)/3) around z. So
we have B(v,d(v,z)/3) N B(z,d(v,z)/3) = 0.' But then we have

vV C | B(v,d(v,z)/3),
veV
so that {B(v,d(v,z)/3) : v € V} is an open covering of V. Since V is compact,
there exists a finite sub-covering {B(v;,d(v1,2)/3), ..., B(vi,d(v,,z)/3)}. Then
the intersection

6 B(z, d(vj,z)/3)

is an open set containing z, and we must have

148 (ﬂ B(x,d(vj,m)/3)> = 0.
j=1
Thus M \ V is open, and so V must be closed. O

3.1.3 Continuous mappings between metric spaces

Definition. Let (X,dx) and (Y,dy) be metric spaces. A mapping f: X — Y
1s continuous at the point zo € X if for all € > 0, a § > 0 exists, such that
for all z € X with dx(z,z0) < § we have dy(f(z), f(z0)) < €. The mapping s
everywhere continuous — that is to say, it 1s continuous — if 1t 18 continuous
at all points of X.

This definition is entirely analogous with the definition we had last semester
for real-valued functions f : U — R, where U is some interval along R. Continuity
involved the “distance function”, which was given by d(z,y) = |z — y|. But as we
see, the generalization to metric spaces is a natural one.

When considering mappings f : X — Y, one makes much use of the sets of the
form f~1(V), for subsets V C Y. That is,

fiV)={zeX: f(z) eV}
Thus, for each subset V C Y, we have that f~1(V) C X.

Theorem 3.9. The mapping f: X — Y 1s continuous if and only if f~(V) is
open in X, for every open set V CY.

'Here we are using the fact that every metric space is a “Hausdorff space”. This part of the
theorem is not true for non-Hausdorff topological spaces.
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Proof. Assume first that f : X — Y is continuous. Let V C Y be open and
let z € f~3(V). Since f(z) € V and V is open, there exists some ¢ > 0 with
B(f(z),e) C V. Since f is continuous, there is some § > 0 with

f(B(z,8)) C B(f(z),e) C V.

That is, B(z,8) C f~*(V). Since z was arbitrarily chosen in f~(V), it follows
that f~'(V') must be an open subset of X.

In the other direction, assume that f1(V') is open in X, for every open subset
V of Y. Let £ € X be some arbitrary point. Let € > 0 be given. Then take
the open set B(f(z),e) C V. We must have f~!(B(f(z),e)) C X being open in
X. Since z € f7(B(f(z),€)), there is some open ball B(z,§) around z which is
contained within f~'(B(f(z),€)). That is, we have shown that for all € > 0 there
exists a § > 0 with dy (f(z'), f(z)) < ¢, for all 2’ € X with dx(z',z) < 0. Therefore
f 1s continuous at z, and since = was arbitrary, it is continuous everywhere. [

It is also interesting to see what happens to compact subsets under continuous
mappings.

Theorem 3.10. Let f : X — Y be a continuous mapping between metric spaces
and let K C X be compact. Then f(K)={f(z):z € K} s compact in Y.

Proof. Let {U; : © € I} be an open covering of f(K) in Y. Then since f is
continuous, {f }(U;) : 4 € I} must be an open covering of K in X. Therefore,
since K is compact, there must be a finite sub-covering {f~*(U;,), ..., f~1(U;,)}
of K, and so {U,,,...,U;,} is a finite sub-covering of f(K) in V. O

The proof of the following theorem follows the proofs of the analogous theorems
which we have seen in the last semester.

Theorem 3.11. Let (M,d) be a metric space and let K C M be compact. If
f: M — R s continuous, then f(K) is compact (that is, closed and bounded)
wn R. Furthermore, there exist points ©; € K with f(z,) = inf{f(z) : z € K}
and o € K with f(z2) = sup{f(z) : z € K}. Also f is uniformly continuous
on K.

Theorem 3.12 (The fundamental theorem of algebra). Let
f(z)=ao+a1z+---a,z"

be a polynomial with a; € C for all 7 =0,...,n, n > 1 and a, # 0. Then there
exists some 2o € C with f(2,) =0.

Proof. For z # 0 we have

an—-1 Qo
z)| = lan||lz|" |1
P = laallz 1422 4 2
> Janllal” (1|22 - - |2 ),
an2 an 2"
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Then for z € C with
|z| > R = max{1,2n|a,/a,|: 0 < j < n},

we must have @izl
anllz|™

[(2) > —,
Furthermore, it is clear that for any C' > 0, we can choose an R, > 0 such that
for all z € C with |2| > Ry, we have |f(z)| > C. In particular, choose C to be
larger than |f(z)|, for some z € C. Therefore, if there exists any solution z, with
f(20) = 0, then it must be contained within the closed disc

D ={z¢eC:|z| <Ry}

Furthermore, for all z ¢ D, we know that |f(z)| is not minimal.

According to the theorem of Heine-Borel, D must be compact. Also the func-
tion ¢ : D — R with ¢(2) = |f(2)| is continuous. Thus there exists some 2y € D
with

> 0.

#(20) = inf{p(z) : z € D} = inf{|f(z)| : z € C}.
We must show that ¢(z,) = 0.
To obtain a contradiction, assume that |f(z,)| > 0. We can write

f(z)=ao+a1z+-an2" =co+c1(z—20) + -+ cn(z — 20)"

for some particular complex numbers ¢y, ...,c, € C. Since |f(20)| > 0, we must
have |f(2o)| = |co| # 0. Another way to look at this is to take the new function
f1, with fi(2) = f(z + 2¢), so that

fi(2) = co + cmz™ + 2™ g(2),

where m > 1 is the smallest number such that ¢,, # 0, and g is a further polynomial
in C.
Let z; € C be such that 2* = —cg/cm, and for 0 < A < 1, consider

fi(Az1)) = co— AMco + A2 g(Azy)
= ¢ (1 — A"+ )\m“z{”“cglg()\zl)) :
Since the interval [0, 1] is compact, there exists some L > 0 with
|2 ey Tg(Az)| < I,
for all 0 < A < 1. Therefore
[f1(Az1)] < leof (1= A™ + LA™
But if we choose A < 1/L, then we have LA™ < A™, so that
—A" 4 LA™ < 0.
Therefore, for such A we have
[f1(Az1)] = [f(Az1 + 20)| < |eo| = inf{|f(2)] : z € C}.

This contradiction proves the theorem. O
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3.1.4 Topological spaces

If the idea of metric spaces is a generalization of the “usual” geometry of the real
numbers R, or the Euclidean spaces R", then a further generalization is to consider
topological spaces. In fact, the study of topology is one of the major branches of
pure mathematics.

Definition. Let X be any non-empty set. A set O of subsets of X 1s a topology
on X if

1. Both ® € O and also X € O.
2. Bvery finite intersection of elements of O 1s also an element of O.
3. Every union of elements of O 1s also an element of O.

Given a topological space (X, O), that is to say a non-empty set, together with
an appropriate set of subsets, then the elements of O are called the open sets of
X. Furthermore, a set V C X is a closed set if X \ V is open.

It is obvious that many of the ideas we have developed for metric spaces can
be generalized into the framework of topological spaces. For example theorem 3.9
shows how the idea of continuous mappings between topological spaces should be
defined. Also the definition of compact sets can be directly generalized into the
theory of topology. Students who wish to pursue such ideas may enjoy taking part
in the topology lectures which are offered each year in the Faculty.

3.2 Convolutions

Definition. Let (M,d) be a metric space and let f : M — R be a real-valued
function. The support Supp(f) of f is the closure of the subset {z € X :
f(z) # 0}. If the support is compact, then the function f is said to have
compact support.

A function f: R — R is called “piecewise continuous” if it is continuous at all
points of R except possibly for some finite set of points {pi,...,p,} C R where it
might be discontinuous.

Definition. Let f : R — R be piecewise continuous. Then gwen a Riemann
integrable function g : R — R of compact support, the convolution gxf : R — R
15 the function given by

g*f(z)= /Z f(t)g(z — t)dt.
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3.2.1 Dirac sequences

We will say that a sequence of functions of compact support K, : R — R, with
n € N, is a Dirac sequence if for all n:

1. K,(z) >0, for all z € R,
2. K, is Riemann integrable and we have [%_ K,(z)dt =1, and

3. for each & > 0, there exists an N € N such that Supp(K,) C [—9,d], for all
n > N.

Theorem 3.13. Let f : R — R be a piecewise continuous, bounded function,
and let (K, )nen be a Dirac sequence. For each n we define f, = K, x f. Then
for each closed interval S = [a,b] C R, such that f is continuous in an open
neighborhood of S, we have that the sequence (f,)nen converges uniformly to
fonsS.

Proof. The substitution rule gives

falz) = /_Z flz — DK (b)dt,
and since [® K, (z)dt = 1, we have

[e e}

f@) = @) [~ Kaat= [ f@)Ka (bt

— 00

Therefore, for each x € R we have
fa@) = f@) = [ (f(z~ &) f(2)) Knlt)at

Let S = [a,b] C R be a closed interval such that f is continuous in an open
neighborhood of S. In particular, there exist ' < a and ' > b such that f is
continuous in the closed interval [a’,b']. Then since f is uniformly continuous on
[a’,b'], we have that for all € > 0, some § > 0 exists with 6 < min{a — a/,b’ — b},
such that for all ¢ with |t| < § we have

[f(z —t) = f(z)] <e,
for all z € S. Now choose N € N so large that Supp(K,) C (—9,9). Then we have

fol@) = f@) < [ 151 - f(@)|Kat)at
- /2|f(m—t)—f(m)|Kn(t)dt

< e (/_2 Kn(t)dt>

= €.
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Remark. It is an ezercise (using the Intermediate Value Theorem for Inte-
grals, theorem 2.42) to show that the idea of Dirac sequences can be gener-
alized in the following way. Rather than assuming that the functions in the
sequence K, are of compact support, we assume instead that they satisfy the
condition that for all € > 0 and all 6 > 0 there exists an N € N such that for
all mn > N, we have

/: K,(z)dz + /500 K,(z)dz < e.

Therefore we have:

Corollary. With this alternative formulation of Dirac sequences, theorem 3.13
15 also true.

3.2.2 Weierstrass’ convergence theorem

Theorem 3.14. Let f : [0,1] — R be continuous, with f(0) = f(1) = 0. Then
there ezists a sequence of polynomials (P,)nen which converges to f uniformly
on [0, 1].

Proof. We can extend f to a function f : R — R by simply taking f(z) = 0, for
z ¢ [0,1]. Consider the sequence of functions (K, )ncy with K, : R — R for all
n € N, such that

G <,

0, It > 1,

Kn(t) = {

where 1
Cn = /71(1 )t
Then, noting that K,(—t) = K,(t), for all t € R, we have
1. K,(t) >0, for all ¢.
2. %, K,(t)dt = 1, since the constant ¢, was chosen to ensure that this is true.

Note further that

Cn

- :/01(1—t2)”dt:/01(1+t)”(1—t)”dt2Al(l—t)”dt:/olt”dt:

1
n+1

3. For § > 0 with § < 1 we have
) oo 1
/ Ko (t)dt + /5 K,()dt = 2 /5 K, (t)dt
1 _ 42\n
§ Cp
t(n+1
< 2/5 (1)1 _ g2yt

2
= (n+1)(1—-6*)"(1-6).
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But? since 0 < (1 — §2) < 1, we have (n + 1)(1 — %) — 0.

n—oo

Therefore, (K, )nen is a Dirac sequence. But according to the corollary to theo-
rem 3.13, we must have the sequence (f,)neny With

fa(z) = /o; fO K, (z —t)dt

converging uniformly to f on [0, 1]. Since f(t) =0 for ¢t ¢ [0, 1], we have

1
h@y3ﬁf@K4x—ﬂﬁ
Since K, is a polynomial of degree 2n, we can write
Kn(z —t) = go(t) + q1(t)z + - - - + gan(t)z®",

where the g;(t) are some polynomials in ¢. Thus if we write

0= [ F(t)at

for each 7 =0,...,2n, we obtain
fo(Z) = a0 + a1z + - - - 4 G2nz™".
O

Theorem 3.15 (Weierstrass’ convergence theorem). Let f : [a,b] — R be prece-
wise continuous. Then there exists a sequence of polynomaals which converges
uniformly to f on compact intervals which contain no points of discontinuity

of f.

Proof. Let [a,b] be an interval where f is continuous. Instead of the function f,
consider the function

F(z) = f((b—a)z +a) — f(a) — z(f(b) — f(a)).

This new function fulfills the requirements of theorem 3.14, so there exits a se-
quence of polynomials (P,),cn which converges uniformly to F on [0, 1]. Then the
sequence of polynomials (Q,)nen With

—a

)+f(a)+§_

Qn(a) = P

- (£() - £(a))

converges uniformly to f. [

a

*For n sufficiently large we have 25 > (1 —6?), or ﬁ(l —6%)"™ > (1 —6%)"*1. Thus

(n+1)(1-6%)" > ((n+ 1) + 1)(1 — 62)"*?, and it follows that the sequence is monotonically
decreasing. Since

n _ S22 \n+1 n
L e

The sequence must converge to zero.
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3.3 Periodic functions

3.3.1 Fourier polynomials

A function f : R — R with the property that there exists some constant L > 0
such that f(z+L) = f(z) for all z € R is called periodic, with period L. The most
obvious examples are the trigonometric functions: sine and cosine. According to
theorem 2.38, both of these functions are periodic, with period 2.

Of course there are many other possibilities. For example the “sawtooth”
function f(z) = z — [z], where [z] € Z is the largest whole number® which is not
larger than z, is periodic, with period 1.

In the theory of Fourier series we seek to represent periodic functions as sums
of the trigonometric functions. Therefore, given a periodic function with period
L, we first need to alter it so that its period becomes 27. If, namely f : R — R
has period L, then the new function F' : R — R given by

=1L

has period 27. Alternatively, we could change the period of the trigonometric
functions to L by taking instead

sin(27r:z:> and cos <27T:z:>
L L '

Thus, for the sake of simplicity, and without loosing generality, we will only con-
sider periodic functions with period 2.

Definition. A Fourier polynomial of order n 1s a function of the form
¢(z) = > (awsin(kz) + b, cos(kz)).
k=0

Just as is the case with the “usual” polynomials, it is also true that both sums
and products of Fourier polynomials are again Fourier polynomials.*

3This function is called the “foor function” in English; it is called the “Gauss Klammer” in
German.
4Recall from last semester that we have the following formulas. For k > 1:

sin(kz) =sin(z + (k — 1)z) = cos(z)sin((k — 1)z) + sin(z) cos((k — 1)z)
cos(kz) = cos(z + (k — 1)z) = cos(z)cos((k — 1)z) — sin(z) sin((k — 1)z)
Also
sin(kz) sin(lz) = %(cos((k —Dz) — cos((k + 1)z))
cos(kz) cos(lz) = %(cos((k —Dz) + cos((k + 1)z))
sin(kz) cos(lz) = %(sin((k —Dz) +sin((k + 1)z))
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A particular class of Fourier polynomials can be written

Dpn(z) = <1+Z2cos(k:r>: 3 e 17r< 1+2Rezem>

k=1 k——m k=0

When z # 27l, [ € 7Z, we have

in: eik:c B 1 — ei(m+1)a: B efi:c/2 _ ei(m+1/2):c B efia:/Z _ ei(m+1/2)a:
T l—eir e —em2 _2isin(z/2)
Therefore

—1+2ReZe"’“:—1+2<

sin(—z/2) — sin((m + 1/2)3:)) _ sin((m + 1/2)z)
—2sin(z/2) sin(z/2)

We also have the relation

712—:1 pime 1—e® 11— cos(nz)— isin(nz)
1 — ei® o ei:c/2(e—i:c/2 _ ei:c/Z)

Multiplying both sides with e®/?, we obtain

”Z_:l gilmi1/2)e _ 1 —cos(nz) —isin(nz) 1 — cos(nz) — ¢sin(nz)
m=0 T emPoem2 —2isin(z/2)

Comparing the imaginary parts, we must have

n—1 1

> sin((m +1/2)z) =

m=0

—cos(nz) _ sin®(nz/2)
2sin(z/2) sin(z/2)

For the last equation here, we have used the formula which we found last semester,
namely
cos(a + b) = cos(a) cos(b) — sin(a) sin(b).

Therefore
1 —cos(nz) = 1— (cos?®(nz/2)— sin*(nz/2))
= (cos?(nz/2) + sin*(nz/2)) — (cos®(nz/2) — sin*(nz/2))
= 2sin®(nz/2).

Next, we consider the Fourier polynomial

1T : sin((m+1/2)z) 1 sin’(nz/2)

7 2 Dn(@) 2 (@) 2mn snl(a)2)

U0 m=0

For the sequence (K, ),cny We have

1. K,(z) > 0 for all ¢ with |z| < 7. (For £ = 0 we have D,,(0) = (1/27)(1 +
Zz:n:l 2')

108



/: K,(z)dz =1

This is true since each of the terms D,, is 1/27 plus a sum of functions of
the form cos(kz), where k # 0. But for such functions, the integral from —m
to m is zero.

3. For each 0 < § < 7 we have

2) 1 pm 1
7/ sm(nt/ dt < 7/ N
sin(t/2) n Js sin®(t/2)
But the last integral® gives a constant, independent of n. Therefore, for all
€ > 0 and 6 > 0 there exists an N € N, such that

/ K, (a:)da:+/ o(z)dz <€,
forallm > N.

We can now follow the proof of theorem 3.13 of the last section, but confining
our function f, and the functions in a Dirac sequence, to the interval [—, 7],
rather than (—o00,00). That is to say, we alter K, outside [—m, 7], so that for all
z € R with |z| > 7, we take K,(z) to be zero. Given this, then our sequence
(K, )nen is a Dirac sequence, and we follow the proof of theorem 3.14 to obtain

Theorem 3.16. Let f : R — R be a continuous periodic function with pe-
riod 2m. Then there exists a sequence of trigonometric polynomaials which
converges uniformly to f.

Proof. In the proof of theorem 3.14 we used the fact that K, (z—t) has a particular
form. In the present proof, K, is a Fourier polynomial, consisting of terms of the
form cos(kz). But then we have

cos(k(z —t)) = cos(kz — kt) = cos(kz) cos(kt) + sin(kz) sin(kt).

Therefore as in the proof of theorem 3.14, the terms with ¢ can be integrated to
obtain the coefficients of the appropriate Fourier polynomial.

Since both f and also K, are periodic, with period 27, it follows that the
restriction to the interval [—m, 7| can be removed, and so the convergence also
holds throughout R. ]

Remark. As with Weierstrass’ convergence theorem, the present theorem can
be extended to include all piecewise continuous periodic functions with period
27.

5We have

/’r 1 42
s sin(¢/2) tan(6/2)
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3.3.2 Fourier series

In the theory of Fourier series it is most convenient to think in terms of complex
valued functions. Let us say that V' is the set of all piecewise continuous functions
f:R — C with f(z) = f(z + 2m), for all z € R. Therefore V is a vector space
over the complex numbers with the usual addition and scalar multiplication of
functions. In addition to this, we have the scalar product:

(f.9)= 5 | T@s(@)iz,
™ Jo
for elements f, g € V. The following theorem follows trivially from this definition.
Theorem 3.17. For f, g, h€V and X € C we have
f+9,h)={f,h)+(9,9),
frg+h) =(f,9)+(f, ),
Afyg) =M/, 9),

if ||fll2 s defined to be [|flla = \/(f, f) then [[Afll2 = [A[l[f]]2,
If +gllz < Ifll2+ llgllz- (This ts theorem 2.62 from last semester.)

The last two properties suggest that the function || - ||z : V' — R might be a
norm. But it isn’t. The problem is that we might have f # 0, but nevertheless,
I|fll2 = 0. If f were assumed to be continuous then ||f||» could only be zero if
f was the zero function. However since we only assumed that f was piecewise
continuous, it might be that f happens to be non-zero at some finite number of
points, but zero everywhere else. If this were the case then we would still have
||fll2 = 0. Thus one says that || - || is @ “semi-norm”, rather than a norm.

Theorem 3.18. Assume that f and g € V with (f,g) =0. Then

1F+ gllz = I£115 + gl

Proof.

(f+a,f+a9) =1 +9,9 +{fi9)+gf)=({F)+99.

=0
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For each k € Z we define ‘
ex(z) = e*ke

1, k=1,
(er,€1) = {

Theorem 3.19.

0, k#L

Proof.

1 P S ik 1 2w 1

(ex, ex) = 7/ eheehegt — = [ 1gt= ~op=1.

2m Jo 27 Jo 27

For k # 1
L 27— i
(ex,€1) = %/0 etkzet?dt

1 2m
— 7/ ez(l—k):cdt
21 Jo
1 2m 1 ) 2m .
- = /0 cos((1 — k)z)dt + i /0 sin((l — k)z)dt = 0.
OJ

Given any function f € V, then the k-th Fourier coefficient (for any k € Z)
of f is defined to be

Cr = <ek) f>
Theorem 3.20. Gwen f € V, let F, = > __,ckex. Then for any P =

Sr__. ager, we have
<f - Fn) P> =0.

Proof. For any k with —n < k < n, we have

(f — Fn,ex) = (f,ex) — (Fn,ex) = Cx — Z (ej,ex) =Cr — ¢t = 0.

Therefore

n

o FoP)=(f—Fp S arer) = 3 awlf — Foyex) = 0.

k=—n k=—n
[

Theorem 3.21. Again take F, = >;__,crex and P = Y ;. arer. Then we
have

1f = Full2 < If = Plf2.

Proof. According to theorem 3.20, we have (f — F,,F, — P) = 0. Therefore
according to theorem 3.18 we have

1f = Pl5=I(f = Fa) + (Fo = P)I5 = |If = Full3 + || Fa — P35
—_—————
>0
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Therefore theorem 3.16 implies:
Theorem 3.22. lim, . ||f — F,|l2 = 0.
One says that the sequence (F,),cn converges to f in quadratic mean.

Remark. In theorem 3.16 we were concerned with periodic real functions,
and we approximated them with Fourier polynomaials, which were again real-
valued functions consisting of linear combinations of terms of the form sin(kz)
and cos(kz), for vartous non-negative integer values of k. So let

P(z) = ao+ > _(acos(kz) + by sin(kz))
k=1
be such a Fourier polynomial. Then we have

n

P(z)= Y ce™ = > cy(cos(kz) + isin(kz)),
k=—n k=—n
where ¢y = ag and we have ¢, = 3(ax — b)) and c_ = 3(ax +1by), for all k > 1.
It 1s now an ezercise to show that theorem 3.16 1s also true when applied
to complez-valued periodic functions.

Definition. Let f € V. The Fourier series of f 1s

lim F, =
Jim E: Cer-
k=—o00

Theorem 3.23. Let f € V and c, be the k-th Fourier coefficient of f for each
k€ N. Then

<Hf— D Crex ) (1£112)* = Z [

k=—n k=—n
Proof. Let g =>%__, cxer. Then
<fag> - Z Ck<f7ek> — Z Cka: Z ’ck’2-
k=—n k=—n k=—n
Also . . .
(9,9) = Z (g, er) = Z CrCr = Z |cx|?.
k=—n k=—n k=—n
Therefore

If =gl = (f—9.f—9)
= = 22 leel = X2 lexl + > el

k=—n k=—n k=—n
n

= 1fIB= 3 lel®
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Theorem 3.24 (Bessel’s inequality). For f € V with Fourier coefficients c, we
have the inequality

k_z_w|ck|2 <lfl= - [ 1f@)Pas.

Proof. This is a direct consequence of theorem 3.23, since we must have

2
)EO.

Theorem 3.25. Let f be a continuous periodic function with period 2w which
18 also piecewise continuously differentiable with f' being bounded. Then the
Fourier series of f converges uniformly to f. Therefore

k=—n

[

]

for all z € R.
Proof. With Bessel’s inequality, we have®
> er] < o0.
k=—o0

Since |ex(z)| = |exp(tkz)| = 1, it follows that the Fourier series is absolutely
convergent for each z. Let lim, ., F,(z) = g(z), thus defining a function

g:R—C.
For all z € R and n € N we have
9(z) — Fo(z)| = | Y. aew(z)| < D |aer(z) = > el
‘k‘:n—‘rl |k|:n—|—1 |k‘:m+1

5Partial integration gives

2m
7zka: _ 71kcc
— o [ f@e e = 2 p(e)e

2w "
etk gy — &
0 27rk/ f= T

7: 21T )
=5 /O f'(:r:)e_ZkIda:.

| | | 1 . 2 | |2
C )’ + |7 .
k k 2 A k

But both > oo, 1/k? and Y oo |vx|? converge.

say, where

Then we have
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Thus the sequence of continuous functions (F,).cn is uniformly convergent. Ac-
cording to theorem 2.47, it follows that the function g must be continuous.

Therefore (remembering theorem 3.22), we have both lim, . |[f — Fyr|l2 = 0
and lim,, .. ||F% — g||2 = 0. In other words, for all € > 0 there exists an N € N
with both [|f — F,|l» < €/2 and [|[F, — g[[> < €/2. Using Minkowski’s inequality,
we have

€ €
1f = glla = [I(f = Fo) + (Fa = g)ll2 < |If = Fulla +[[Fa — gl < 5 + 5 =

Since this is true for all € > 0 we must have ||f — g||» = 0. That is,

1 2T
o | 1f(@) - 9(a)Pde =0,
This can only be true if f = g. Therefore

F, — f.

n—oo

3.3.3 ((2) =7?%/6

The Riemann “zeta” function is defined to be
((z)=>_n"*%
n=1

for z = z +1y € C with z > 1. In section 2.23.1 of these notes (from last
semester), we saw that this series converges for all such z. It diverges for all z
with real part less than or equal to 1. Yet within the theory of complex analysis,
it may be extended to the whole complex plane (except for the isolated singularity
at z = 1). The most famous unsolved problem in present-day mathematics is the
Riemann Hypothesis. That is that all the non-trivial zeros of the zeta function
are confined to the line 2 = z + 1y, with £ = 1/2. Anybody who is able to prove
the Riemann Hypothesis will achieve immortal fame!

A far simpler question is that of obtaining the values of {(n), for various integers
greater than 1. In particular we can use the theory of Fourier series to calculate
the value of ¢(2). For this, we take the function f : R — R with f(z) = z?, for
|z| < 7, and we specify that f(z + 27) = f(z), for all z € R. Thus f is a periodic,
continuous function with period 2w. Therefore we must have

f(z) = i crett® = i cr(cos(kz) + tsin(kz)) = ¢ + 2 i cr cos(kz).

k=—o00 k=—oc0 k=1

Here we use the fact that f is symmetric (f(z) = f(—z) for all z). But

1 m 2
cp = 7/ Pt — T
2T —T 3
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It is an exercise to show that for £ > 1 we have

1 L2
Cr = %/_rt cos(kt)dt = (—1) e

Thus 5
o % + 2 Z(—l)k? cos(kz).

2 [e'S)
s T 1
= —+44 Z —.
3 = k2
Therefore
£1_w
k2 6

3.4 Partial derivatives

Let G C R™ be some open set, and let the function f : G — R be given. Then
if we take some arbitrary element x € G, we can write x = (z1,...,z,). Take
some j € {1,...,n} and consider the elements (zi,...,z; +h,...,z,), for various
values of h € R. Since G is open, there must exist some § > 0, such that for
all h with |h| < &, we have (z1,...,2; + h,...,Z,) € G. Or we can use the
notation of linear algebra: let {ei,...,e,} be the canonical basis for R", so that
(z1,...,z;+h,...,z,) = x+ he;. Then if

lim f(x+ he;) — f(x)

ns h

exists, it is called the partial derivative of f with respect to z;, and it is written
0;f(x), or D;f(x). Sometimes it is also written as if it were a fraction, namely

9f(x)
Gacj '

If the partial derivative 0, f(x) exists for all x € G, then we can further think
about whether or not the partial derivative in the z; direction exists, for some
k € {1,...,n}, when applied to the function 8,f : G — R. If so, then we obtain a
new function 8,0;f : G — R. In particular, we write

& f(x)
if k=7.
One also writes
8% f(x)
BfEkaII]‘ !
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or

6%f(x)

oz
if k=7.

Physicists enjoy using these partial derivatives in order to describe the various
laws of classical physics. For this, they have developed a number of traditional
words to describe certain special combinations of partial derivatives. For example,
if we have the function f : G — R such that all the partial derivatives 9, f(x) exist

at some point x € G, then the vector

grad f(X) = (alf(x)’ R anf(x))

is called the “gradient” of f at x. Sometimes people also write “V f(x)” for the
gradient.
A wvector field is a mapping F' : G — R™. Then, since F(x) € R", for each
x € GG, we can write
F(x) = (Fi(x),..., F.(x)),
so that we obtain n new functions F; : G — R, for 2 = 1,...,n. If they all have
partial derivatives, then we can take

div F(x) = 01 F1(x) + - - - + 8, Fn(x).

This is called the “divergence” of F' at x.

These two things can be combined by observing that if we have a twice differen-
tiable function f : G — R, then the gradient is a vector field, and the divergence of
that is again simply a real function. This is called the “Laplace operator”, namely

div grad f(x) = 82f(x) + --- + 82 f(x).

It is often written Af(x), and it plays an important role in “potential theory” of
mathematical analysis.

Also, particularly in Maxwell’s equations of classical electrodynamics, if we
have the special case of a vector field in 3-dimensional Euclidean space R3, then
physicists use another combination of partial derivatives, called the “curl” of the
vector field. This is sometimes written “V x F”, where F : G — R?® is the vector
field. But the curl operator is not really a part of mathematics, so I will simply
ignore it from now on.”

It is interesting to know that much of this, and particularly the curl operator, arises in a very
natural and elegant way if we consider analysis based on the system of quaternion numbers. This is
a kind of 4-dimensional generalization of the 2-dimensional complex number system which we have
already gotten to know. In the quaternion system, the “imaginary” part has 3-dimensions, while
the “real” part has just one dimension, as with C. When Hamilton discovered the quaternions in
1843, he believed that he had found the true secret behind all of physics. The world consisted
simply of quaternions, with “space” being the imaginary part of the quaternions, and “time”
being the real part. It all seemed quite compelling, but unfortunately, physics has now progressed
beyond such things, and quaternions play no role in modern physics. However, in order to honor
the memory of Sir William Hamilton, today’s physicists continuously use something called the
“Hamiltonian” in their descriptions of quantum field theory.
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3.4.1 Partial derivatives commute if they are continuous

Theorem 3.26. Let G C R™ be open, and let f : G — R be such that all second
partial deriwatives exist and are continuous. Then for all x € G, and for all
1, 7=1,...,n we have

alajf(x) = Bjaﬁf(x)

Proof. Without loss of generality, we prove the theorem in the case n = 2 and
1=1,7 = 2. Let x = (21, z). For simplicity, and again without loss of generality,
we also just prove the theorem in the special case x = 0 = (0, 0).

Therefore, since G is open, and x = 0 is contained within G, there exists some
& > 0, such that the square

H = (—5,+8) x (=8, +0)

is contained in G. In particular, for all A with |h| < §, we have that (h,h) is
contained in G.
Let the function F : (—6,+6) — R be defined to be

F(h) = (f(h,h) — f(h,0)) — (f(0,h) — £(0,0)).
We can write this as
F(h) = g(h) — 9(0),
where
g9(t) = f(t, h) — f(¢,0).

Then the mean value theorem (2.34), shows that there must exist some ¢ between
0 and A (h # 0), with

g(h) —¢(0)

7 = gl(f) = alf(f, h) - alf(gx 0)'

Using the mean value theorem again on the continuously differentiable function
alf(é) ) : (_61 +5) - R)

we find some p between 0 and h with

alf(fa h‘) - alf(é) 0)
h

= 3231f(§, ﬂ)-
That is

F(h)=g(h) — g(0) = g'(§)h = (81 (&, h) — B1f(€,0))h = 8,01 f (€, 1) - I,

or, noting that (¢, x) — (0,0) as A — 0, we see that

. F(h
}LIE)% }52 ) = agalf(o, O)
h#0
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But we could start the other way around, by observing that
F(h) = k(h) — k(0),

where
Then there exists some [ between 0 and h, such that
k(h) — k(0)

= k(B) = 0:f(h, i) - 6:£(0, ).

Arguing as before, we obtain a £ between 0 and k with

F(h) = k(h) — k(0) = K'(§)h = (8:f(h, i) — 82£(0, A)h = B8:8: f (€, ) - h°.
But then, again, we have

. F(h)
im —

h£0

- 3132f(0, O)

Since the limit

F(h
’llim }52)
20

is the same in both cases, we finally obtain

3132f(0) — 8281f(0)

]
Corollary. Gwven that f has suffictently many continuously differentiable par-
tial derivatives, then for a given m, and a given permutation o : {1,...,m} —
{1,...,m}, we have

3i1 a‘ig ce 3¢mf(x) = aia(l)aia(z) e aia(m)f(x)’

forallx € G.

3.4.2 Total derivatives

Let G C R™ be open, and let f : G — R™ be a function. That is to say, for
each x € G, f(x) € R™. Therefore we can write f(x) = (fi(x), ..., fm(x)), where
fi: G — R, for each 2 = 1,...,m. It may be that each of these functions has
partial derivatives. If so, then we can consider

filz,...,zj+ h,o.o zn) — fi(ze, .. 2, ..., Th)
h 1)

0;fi(x) = lim
h£0
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foreach 7=1,...,nand 2 =1,...,m. This gives us an m x n matrix, namely

Oifi(x) - Gufi(x)

Bufn(x) - Bufml(x)

which is called the Jacob: matriz for the function f at the point x € U. If f is
totally differentiable at x, then we write D f(x) to denote its total derivative, and
in fact, the total derivative is the Jacobi matrix. But let’s begin with the general
definition. First note that since G is an open set, there exists some § > 0, such
that x + ¢ € G, for all ¢ € R™ with ||¢]| < 4.

Definition. Let f : G — R™ be a function, and take some point x € G. Then
f 1s said to be totally differentiable at x if there erists an m x n matriz A,
such that if we take § > 0 to be suffictently small that x+¢& € U, for all £ € R™
with ||€|| < &, then the function ¢ : B(x,0) — R™ from the ball around x with
radius 6 to R™ given by

fx+€) = f(x) + AL+ ¢(£)

1 such that

lim@ =0.
&8 [l

Rather than writing the complicated expression lime .o eld) — 0, 1t 2s usual to

» £ 40 €]
write

(&) = o(li€]])-

Remark. Although this definition may look more complicated than the famal-
1ar definition for the deriwvative of a function in one dimension, in reality it 1s
Just the same. For if we have the function f : (a,b) — R being differentiable
at the point ¢ € (a,b), with deriwative f'(z), then let a new function ¢ be
defined for sufficiently small h to be

e(h) = (f(z + h) = f(z)) - f'(z)h.
But we have
o @B~ ()

A h

= f'(=),

or, put another way

leimf($+h)_f($)_f/($)h:

h—0 h—0 h,
h#0

0.

That 1s to say, also here we have that f s differentiable at the point = if there
exists some real number f'(z), such that

f(z+h) = f(z)+ f'(z)h + of|A]).
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Theorem 3.27. Let G C R™ be open, and let f : G — R™ be a function.
Assume that f is differentiable at the point x € G, with matrizc A. Then f
15 continuous at z, and furthermore, all partial deriwatives 0; f;(x) exist at x,
and we have a;; = 0, f;(x).

Proof. Since ¢(§) = o(||¢|]), we have limg .0 p(§) = 0. But also lim, ,o A = O.
The fact that f is continuous at x then follows, since

lim (o -+ ) = lm(F(0) + 4€ + 9(§) = F(x).

&1
Given { = | : | € R”, and some 7 = 1,...,m, let ¢;({) be defined to be

£
0lE) = Filx + ) — Filx) - z aints.
In particular, if we take ¢ = he;, then we have
fi(x + hej) = fi(x) + haij + i(he;),
with o(¢) = o(||¢])), that is v;(he;) = o(|A]). Therefore
£i(x + he;) — £i(x)

hai; + pi(he;)

9;fi(x) = |im h = h -
h=£0 h=£0

O

Theorem 3.28. Again, f: G — R". This time assume that all partial deriva-
tives 0; f; exist and are continuous in some neighborhood of x € G. Then f
18 totally differentiable at x.

Proof. Let 6 > 0 be sufficiently small that the ball around x with radius ¢ is
contained within G. That is, B(x,0) C G. Let £ = (&;,...,&) € B(x,9). Thus,
||€]] < 6. For each £ =0,1,...,n, let

k
Pr = X+ kaek,
=1

where {ey,...,e,} is the canonical basis for R*. So py = x and p, = x + &.
According to the intermediate value theorem, for each k, there exists some
6x € [0, 1], such that

fi(pr) — fi(Pre-1) = Ok fi(Pr—1 + Ox€rer)&r-

That is, if £, # 0, then we can write this in the more familiar form

fi(pe-1 + &kex) — fi(Pr—1)
3

= Ok fi(Pr—1 + Oxérer).
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Therefore, we have

filx 6 — fi(x) = ki(fi(pk) — f(pe))
= i Orfi(Pr—1 + Or€rer)és
3 B + 0i(6),

where

pi(€) = i(akfi(pkfl + Opérer) — O fi(X))Ek-
k=1

Then the fact that the function ;. f; is continuous at x means that we must have
(&) = o(||¢]]) for each z. So finally, if we take A = Df to be the Jacobi matrix
of partial derivatives, we obtain the desired expression:

fx+€) = f(x) + AL+ ¢(6).

That is
filx+¢§) f1(x) €1 ©1(£)
: = : +A] [+ : )
fn(x+¢§) fa(x) n on(€)
with
901(5)
to | =€) = o(lElD)-
on(€)

3.4.3 The chain rule in higher dimensions

Theorem 3.29. Let G C R™ and H C R™ be open subsets, and let g : G — R™
and f : H — RF be functions such that g(G) C H. Therefore, we can consider
the combined function fog:G — R, with (f og)(x) = f(g(x)) for all x € G.
Now let x be some point particular point in G, and assume that g s totally
differentiable at x, and furthermore, f is totally differentiable at g(x). Thus
the differential of g at x is the m X n matriz Dg(x), and the differential of f
at g(x) is the k x m matriz Df(g(x)).

Then f o g 1s totally differentiable at x, and we have that D(f o g) is the
k x n matriz

Df(g(z)) - Dg(z).

Proof. Let £ € R™ be a sufficiently small vector so that
9(x+ &) = 9(x) + Dg(x)¢ + ¢(£)
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with ¢(€) = o(||€|]). Then let
¢=g(x+¢) —g(x) = Dg(x)¢ + »(8),

so that fb(g(X) +¢) = f(9(x)) + Df(g9(x))¢ + ¥(¢), with 9(¢) = o([[<]])-
We obtain

(Feg)x+¢) =

where

x(&) = Df(g(x))e(€) +¥(¢)
= Df(g9(x))p(§) + ¢¥(Dg(x)¢ + (£)).

So the problem is to show that x(&) = o(||¢]]).
To begin with, since D f(g(x)) is a matrix, representing a linear mapping, we
have that for any vector v € R™ there is a constant L such that

IDf(g())vl < Lilvl.

Therefore since )
@
1m =
&6 [l
i 2F9(x))e(€)

£50
e

The problem now is to show that

i PPIF)E + 0(€))

=0.
€50
££0 €]l

0,

it follows that
=0.

For this, we begin by observing that since ¢(§) = o(||€||), there must exist a con-
stant K with ||@(§)]| < K||€||, and also there exists a constant H with ||[Dg(x)¢|| <
H]|¢||, for all ¢ within a given neighborhood of 0. Thus

1<l = 1Pg(x)€ + »(&)I < HIE]| + KI€]] = (H + K)I]]-
On the other hand, since ¥(¢{) = o(||(]|), if we write

_ ¥
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then ¢;(¢) - 0as { — 0.
We can also write 9(¢) = [|¢][%1(¢), so that (| ({)[| = [[C] - [[#2(<)]]- We have

19Ol = [[¥(Dg(x)€ + () < (H + K)[E]] - [[#1(Dg(x)€ + @),

or

"¢(Dg("||)§||+ P < (b 1 K)o (D)€ + 0(O))]]
Therefore
[9(Dg()E + @Il 0
1€]] €50

3.4.4 The directional derivative

This is a simple case of the chain rule. Let G C R™ be an open subset and let
f : G — R be a continuously differentiable function. Now take any vector v € R"
with ||v|| = 1. So v points us in some specific direction in the space R™. The
directional derwative of f in the direction v at the point x € G is then defined
to be )
lim - (f(x + hv) — f(x)).

h—0 h,

h£0

Theorem 3.30. D, f(x) = (gradf(x),v). That is, it is the scalar product of v
with gradf(z).

Proof. We define the function g : R — R™ to be

va(X) =

g(t) =x+tv.
Then clearly g is totally differentiable everywhere, and in particular we have
Dg(0) = v.
Writing it out in coordinates, this is
91(0) !
Dg(0)=| : |=]:
9,(0) Un

But also we have
Df(y) = (8:f(y)-+ 8 (),

a 1 x n matrix, for arbitrary points y € G. The directional derivative of f at x is
given by the derivative of the real function f o g at zero. Therefore we have

D,f(x) = Df(g(0))Dg(0)

= (a(6(0) - 8.7(s(0))) -

= (gradf(x),v).
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3.5 Taylor’s formula in higher dimensions

Taylor’s formula in higher dimensions is really nothing more than a simple appli-
cation of the chain rule. Unfortunately it looks unpleasantly complicated owing
to the fact that everything must be formulated in terms of the messy notation of
linear algebra.

The situation to be described is the following. Let G C R"™ be some open set,
and let f: G — R be a function. To say that f is m-times continuously differen-
tiable means that at all points of G, all partial derivatives 8" - - - 8i™ f(zy, ..., z,)
exist and are continuous for each combination of partial derivatives such that
0<zy) forall 7 =1,...,n and 2(1) + --- + i(n) < m. (Of course if we have
1(y) = 0 for some 7, then that simply means that the j-th partial derivative is not
taken at all.)

Theorem 3.31. Let f : G — R be m-times continuously differentiable. Let
x € G be some given point, and let £ = (&1,...,&,) € R™ be such that

{x+t:0<t<1}CG.

A new function g : [0,1] — R s now given by the rule g(t) = f(x + t€).
have that g 1s m times continuously differentiable, and

| 1 . (1 :
dM)= e = % RO Rk

dtm 1) T (m)=m 1(1)!

Proof. Induction on m. For m = 1, the derivative is nothing more than the
directional derivative, namely

S =30 (x+1)e = 3 - - O 8 f(x+ ) 6

Jj=1 1(1)+--+i(n)=1

Now assume m > 1 and that the theorem is true for m. Then

n 1 1 , i1 ,
9 = 2o, <z<1>+ > m(l),m(n)!ai( Vo g (et )8 )~~~f:5">> 3
- ( 2y 0 m'( OO B+ ) »:5”))
7=1 \{(1)++i(n)=m
(m+1)!

_ S W@i(l) U f(x tf)ﬁ'(l) gl
m+1 . '

i(1)4+i(n)=

Here we have used theorem 3.26, and also a standard theorem of combinatorics,
namely the multinomzal theorem. At the beginning of the last semester, we saw
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the binomaal theorem. That was that we have
™o (m n m!
(a+0b)" = ( >am’°b’c =Y ————a™ "k
kz::o k ,;) (m — k)k!
The multinomial theorem is the appropriate generalization for the expression
(a+b+---+c)™.

Or, in other words,

m m' i(1) ¢ 7, n
(@ + - +a,)™ = Z (1)|()!a1( )a2(). ()
z(l)+ +i(n)=m

In the present instance we have

m!

B4+ )" fx+E= > oM™ . 5 f(x + €).

i) rimy=m UL ()
O
But now the Taylor formula (theorem 2.49) gives, in its alternative formulation

Theorem 3.32. Gwven the conditions of theorem 3.31, then there exists some
6 with 0 <0 <1, such that

m— (m)(g m=1 0(B)(0) ¢(™)(@
g ()_1mzzg () . g™(6)

| | |
: m' k:O k;- m.

fx+&)=9(1)=

Substituting the appropriate expressions from theorem 3.31 for the terms g(*)(0)
gives the complicated-looking formulation of Taylor’s formula found in most text-
books.

Note that the last term in this formula can be written
g™(6)  ¢™)(0)

ml - ml +R(€)7
where
(m)(g (m)
R - 97O 47O
= ()m'z()' O (f(x+68) — F(x) &Y - g
1)+ tiln)=m
= o([l¢l™)

since f is taken to be m-times continuously partially differentiable.
Therefore we have

focre) =3 £ IO g,

m!

where R(£) = o([[¢]|™). That is, lim¢_,., R(£)/][¢]| = 0.
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3.5.1 The Hessian Matrix

It is often considered interesting to take the Taylor formula for the case m = 2.
Solet f : G — R be twice continuously partially differentiable at the point x € G,
and open subset of R™. Let £ € R” be such that x+t£ € G, for all ¢ € [0,1]. Then
writing g(t) = f(x + t£), we obtain a function g : [0,1] — R which is continuous,
and twice continuously differentiable in (0, 1). According to Taylor’s formula, we
then have

fx+&) = 9(1)
= 4(0) +9'(0)(1 ~ 0) + 39"(6)(1 ~ 0

= 9(0) +9'(0) + 54"(0) + R(€)

where 0 < 8 < 1 and R(¢) = o(||€]]?).
But ¢'(0) is simply the directional derivative at x in the direction of . Fur-
thermore, according to theorem 3.31, we must have

9'(0) = 3032 06, f(x)E;

Therefore, we obtain

Flx+8) = F(x) + (gradf(x),€) + (€, A2) + R(),

where R(¢) = o(||€|]?) and A is the Hessian matriz. That is:
Definition. The n x n matric

3131f(x) ce Blanf(x)

8n81f(x) o ananf(x)
15 called the Hessian matrix of f at the point x.

Since for all 7 and j we have 0,0;f(x) = 9;0,f(x), we see that the Hessian
matrix is symmetric. But from linear algebra we know that every real symmetric
matrix is similar to a diagonal matrix. Thus there exists an orthonormal basis for
R™, with respect to which the Hessian matrix is diagonal.

What this means is that we can find a new basis for the vector space R", such
that with respect to this new basis, the Hessian matrix is diagonal

A 00
0 0 A
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Expressing the vector £ as a linear combination of these new basis vectors (and
&
simply writing £ = | : | again), we have

én
E Af) = Zkfz

If\;, >0forallz =1,...,n, then we say that the matrix A is positive definite.
If we only have \; > 0 for allz =1,...,n, then A is called positive semi-definite.
Similarly, A is called negative definite if A; < 0 for all z, and negative semz-
definite if \; <0 for all 2. Otherwise, the matrix A is called indefinite.

Put another way, if A is positive definite, then (£, A¢) > 0 for all £ # 0. Also
if A is negative definite, then (¢, A¢) < 0, for all £ # 0. This is true regardless of
which basis is chosen for representing vectors in R”, so we may simply return to
the canonical basis.

All of this is of most interest in the case that gradf(x) = 0. Then we have:

Theorem 3.33. Let G C R™ be open, and let f : G — R be twice continuously
differentiable at some point x € G, such that gradf(x) = 0. If the Hessian
matriz 1s positive definite, then x 1s an 1solated local minimum of the function.
On the other hand, if the Hessian matriz 1s negative definite, then x 15 an
1solated local mazimum.

Remark. If the Hessian matriz is indefinite, then one says that x 1s a saddle-
point of the function.

3.6 Implicit Functions

3.6.1 An example
Let F : R? — R be given by

F(z,y) =2+ ¢

The set of points (z, y) satisfying F(z,y) = 1 is then obviously the unit circle. On
the other hand, we can ask the question: What function g satisfies the relation

F(z,9(z)) =17

Simply by looking at the circle, we see that the answer is given by taking the
function g : [-1,+1] — R with either g(z) = —+v/1—22% or g(z) = +v1 —z%
Thus the function g is given tmplicitly by the conditions F(z,g(z)) = 1 and
F(z,y) = 2% + y°

But assuming that we were not able to so easily see what g was, how should
we proceed?
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Assuming that there is some solution g, let h(z) = F(z, g(z)). Since we assume
that ¢ is such that F(z,g(z)) = 1, it follows that hA(z) = 1, for all relevant z.
Therefore, h'(z) = 0, or, using the chain rule, we get

W(z) = 8:F(z,9(z))z’ + 8,F (z,9(z))g'(z) = 2z + 29(z)g'(z) = 0.

Or
T

!
9(z) = ———.
(@) 9(z)
Clearly, the functions g(z) = £+/1 — z? satisfy this equation.
This little calculation can be generalized to higher dimensional spaces in the
following, rather complicated way.

3.6.2 The same method in higher dimensions

This time, let G; C R* and G, C R™ be open subsets, and let
F G]_ X G2 — R™

be a mapping into R™ such that F' is totally differentiable at some point (a, b) €
G1 x G2. Thus DF(a,b) is an m x (k + m) matrix.

It is convenient to consider this matrix as consisting of two parts, namely the
first k£ columns, giving an m x k matrix, and then the m columns after that,
giving an m x m matrix. Thus for various points x = (zy,...,2x) € G; and
y = (¥1,-.-,Ym) € G, the total derivative of F is

oF, ., ORm 0m OF
Oz Oz Oy1 0Yym
DF=| : - : D . | = (9F OF
- . . . . . : - aX ay )
0Fy . OFn 0OFn . 0Fn
8z Oz Oy1 Oym
where
oR(xy) .. OR(xy) OF(xy) .. OFi(xy)
8F Bz1 Oz 8F Oy OYm
Cey)=| o =
ox () " By
8Fm(x,y) e 8Fm(x,y) BFm(x,y) “ e BFm(x,y)
Oz Oz, Oy1 OYm

Given all this, then we have. ..

Theorem 3.34. Assume g : G1 — G, is a mapping, totally differentiable® at a,
with g(a) = b, such that F(x,9(x)) =0, for all x € G,. Assume furthermore

8The proof of this theorem is made somewhat more complicated if we only assume that g is
continuous at (a,b), rather than being totally differentiable. However, with this seemingly more
general assumption, we can still prove that g is totally differentiable there, so nothing is gained.
In particular, our proof of theorem 3.38 will only be sufficient to show that the function g which
is obtained is continuous. Interested students are referred to the appropriate part of Forster’s
Analysis 2 for the relevant proof.
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that g—l;(a, b) is a non-singular matriz and that F(x,g(x)) =0, for all x € G;.
Then we have

&(a) = — <ay(a, b)) &(a, b),

where 991 (a) ... 99(y)
ag Bz1 Oz
Dg(a) = a—x(a) = : ) :

RO HC)

Proof. Despite all these complicated matrices, the situation is really the same as
in the more simple case when £ = m = 1, which we have already seen. We can
consider the mapping h : G; — G, given by

h(x) = F(x,9(x)) = 0.

Since h is the constant mapping to 0, we have that Dh(x) exists everywhere, and
it is simply the m x m zero matrix, which we can denote by 0. Therefore, using
the chain rule, we have

. _8F . Ba OF, _ 8
O_h’(a)_ ax(aib)ax+ ay(aib)ax a)'

But % is the m x m unit matrix. Therefore we have

oF OF dg B
87X(a’ b) + g(a: b)&(a) = 0.

3.6.3 Finding an implicitly given function

The technique used to find an implicitly given function involves finding a series
of functions which converge to the specific function which we are looking for.
The same technique is also used when we prove that certain kinds of differential
equations have unique solutions.

The functions are considered to be vectors in a real vector space. From the-
orem 2.47 we know that if the functions are continuous, then the vector space is
complete with respect to the supremum norm.

Theorem 3.35 (Banach’s fixed point theorem). Let V' be a complete normed
vector space,® and let f : V — V be such that there exists some constant
0< L <1 with

1£(w) = F(W)| < Lilw —vl],

for allw, v € V. Then there exists a unique fized point w € V, with f(w) = w.

9That is, all Cauchy sequences converge.
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Proof. Choose some arbitrary vector vy € V. Then recursively define v, =

f(vn_1), for all » € N. Thus the sequence (v,)ncny is @ Cauchy sequence, whose

limit is some particular vector w € V. It is now an exercise to show that f(w) = w.
If w' is some other vector with f(w') = w’ then we have

lw" —wl| = || f(w) = f(w)]| < Lljw" - w]|.
Since L < 1, this can only be true if ||w’ — w|| = 0, that is, w’' = w. O

The next idea which we need is a generalization of the mean value theorem
(2.34) to higher dimensions. To begin with, recall that the one-dimensional version
of the mean value theorem can be formulated in the following way. Let f : [a, b] —
R be continous and differentiable in (a, ). Then there exists some 6 with 0 < 8 < 1
such that

f(®) - f(a) _ fla+(b—a)) - f(a)

. . = f'(a + 6(b — a)).

Or, taking £ = a and h = b — a, we have
flz+h) = f(z) = f'(z+6h) A

On the other hand, using the fundamental theorem of calculus, and the substitu-
tion rule for integrals, we have

f(:1:+h)—f(a:):/:+hf( du—/fa:+thhdt (/f(x+th)dt)

The mean value theorem in higher dimensions will be a generalization of this
formula.

Theorem 3.36 (Mean value theorem for higher dimensions). Let G C R™ be
open, and let f : G — R™ be continuously differentiable. Take some x € G
and £ € R™ such that x +t§ € G, for all t with t € [0,1]. Then we have

flx+€) - (/ Dfx+t§)dt>

Proof. To begin with, note that the matrix inside the integral here consists of an
m x n array of real functions, namely the functions 9, f;(x+t¢). Taking the integral
of this matrix involves integrating each of these individual functions, giving us an
m X n matrix of real numbers, representing a linear mapping R* — R™.

For each i € {1,...,m}, let g;(t) = fi(x+t£), fort € [0,1]. Thenfor0 <t < 1
we have

g:(t) = (gradfi(x + t€),&) = > 9; fi(x + t€)&;.
j=1
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Therefore

filx+8&) = fi(x) = (1) — 9:(0)
= /09’(t)dt

= /01 (z::l 0, fi(x + t§)§j> dt
= 2 ([ artcrwa)e,

and [ 8; fi(x + t€)dt is the i, j-th element of the matrix [ Df(x + t€)dt, O

Theorem 3.37. With the same conditions as in the previous theorem, let
M = sup {||Df(x+t€) -yl : y € R with ||y|| = 1}.
0<t<1
Then

[f(x+&) = F)I < MIIE]].

Proof. Foreacht € [0, 1] let us say that M (%) is the norm of the matrix D f(x+t£).
That is to say, given some linear mapping

¥ R" — R™,
the norm of ¥ (or of the matrix representing ) is defined to be
19]] = sup [|%(Q)]]-
CER™
li¢l=1

Then given any non-zero vector y € R™, we have

wwm:WW¢(ywsmww.

[yl

It is a simple exercise in linear algebra to show that for a linear mapping between
two finite dimensional normed vector spaces, the norm of the mapping, as defined
here, must exist.'°

0For example, if the canonical basis vectors of R™ are ey, ..., e,, then we can write
(=C(e1+ -+ (pen.

Since ||¢|| = 1 we must have |(j| < 1forall y=1,...,n. Then

19Ol < [Glllg(e)ll + -+ + [éalllP(en)ll < [%(ea)l] + -+ + [[%(en)l-
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Since our mapping f : G — R™ is assumed to be continuously differentiable,
it follows that the function ¢ — M(t) is continuous on [0, 1], thus the supremum
M must exist. Therefore we have

176+~ fll = [( [ Droe+ o) ¢
- H/:Df(xﬂg).gdtH
< [ 1D+t gl

[ miglia
= Mgl

[\

(Note that the first inequality here follows from the triangle inequality in R™.) [
We are now able to prove the theorem on implicit functions.

Theorem 3.38. Let G; C R* and G, C R™ be open subsets such that the
product Gy x Gy contains a particular point (a,b) € G1xGs. Let F: G1 xGy —
R™ be a continuously differentiable function such that F(a,b) = 0, and such
that Z—I;(a, b) is an wnvertible m x m matriz. (We use the same notation
here as in theorem 3.34.) Then there are open neighborhoods Vi C G; and
Vo C Gy, with a € V; and b € V;, and a continuous mapping g : Vi — Vs
with F(x,9(x)) = 0 for all x € V;. Furthermore, for all points (x,y) with
F(x,y) =0), we have y = g(x).

Proof. For simplicity, and without loss of generality, we assume that a = 0 € R*
and b = 0 € R™. And then we will simply denote the matrix Z—I;(O, 0) by B.
A new mapping H : G; x G, — R™ is given by the rule

H(x,y) =y — BT'F(x,y).

Clearly if F(x,y) = 0, then we must have H(x,y) = y. But also if H(x,y) =y
then we must have F(x,y) = 0, since after all, F(x,y) is simply a vector in R™,
and since B is an invertible matrix, if F(x,y) were non-zero, then also B ' F(x,y)
would be non-zero. Therefore

Flx,y)=0 & H(xy)=Yy,

and so our goal is now to find a function g with H(x, g(x)) = g(x).
Because F' is continuously differentiable, it follows that the same is true of H,

and we have
O0H OoF

= —1-B12— .
dy (x,y) By (x,¥)

Here, 1 stands for the m x m identity matrix. So we have
0H

5(0, 0) — O,
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where 0 is the m x m zero matrix.

Since F' was continuously differentiable, it follows that also the functions which
are the elements of the matrix %—I;(x, y) are continuous. They are all zero at (0, 0),
therefore there exist §; > 0 and §, > 0 such that

0H 1
Hay(xa Y)H < 5)

for all ||x|| < 0; and ||y|| < é2. Here, ) %—Ij(x, y)H is the norm of the matrix.
But also, since H is continuous, we may choose ¢; sufficiently small that also

0.
|H(x,0)] < 2,

for all ||x]| < d3.
Let Vi = {x € RF : ||x]| < 8;} and V3 = {y € R™: ||y|| < d2}. The function

g:Vi—>V
is then constructed by means of an iteration. To begin, let
go(x) =0,
for all x € V. Then for each n € N, let
gn(x) = H(X, 9n-1(x)).

We obtain

19n11(x) = g (x| 1H(x, gn(x)) — H(X, gn-1(x))]]

< 2@ 9009) ~ (@9n 1)
1
= Sln6) — gna )
1
< l9ix) — o0
1
= oGl
1 52
< g

Note that the first inequality here follows from theorem 3.37, and the further
inequalities follow from the fact that

Og
191(x) = go ()l = llg: ()} <
and for each subsequent iteration, the difference is halved.
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Therefore, for all x € V; and n € N, we have

195Gl = 19 = g0
5™ (9i(x) — 91—1(X))H

=1
n

< 2 llgx) = gma (x|

1

s

1 0
= 21—1 2
< 0.

<

Therefore g,(x) € Vs, for all x € V; and for all n € N.

All of the functions g, are continuous, and according to theorem 3.35, they
converge uniformly to the unique continuous function g : V; — V5 which must
satisfy H(x, g(x)) = g(x) for all x € V;. That is, F(x,g9(x)) =0forallx € V. [

We have only shown that g is continuous. However, as noted in theorem 3.34,
the fact that F'(x, g(x)) = O can be shown to imply that also g is totally differen-
tiable at (a,b), and thus the formula there will also apply.

3.7 Lagrange Multipliers

Theorem 3.39. Let G C R™ be an open set and let f : G — R be continuously
differentiable. Assume that M = {x € G : f(x) = 0} # 0. Leta € M
with V f(a) # 0. Assume furthermore that h: G — R s another continuously
differentiable function such that in some open neighborhood V C G witha eV
we have h(a) > h(x), for allx € M NV. Then there exists some A € R with

Vh(a) = AV f(a).
Remark. The number A in this theorem 1s called a Lagrange multiplier.

Proof. Since Vf(a) # 0, we must have 9,f(a) # 0, for some 7 € {1,...,n}.
Without loss of generality, assume that ¢ = n. For a = (a4,...,a,), take &’ =
(a1,...,0,_1), so that a = (a/,a,).

According the the theorem on implicit functions (3.38), there exists a neigh-
borhood V' x V" of a (so that both V' C R™! and V" C R are open sets, and
a' € V' and a, € V") such that there exists a continuously differentiable function
g:V' = V" with

MNn(V' xVY={xeV'xV":z,=9(z1,...,zn_1)}

This means that we have

f(x',9(x)) =0,
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for points x' = (z1,...,Z, 1) in an open neighborhood of a’. In particular, for
each z € {1,...,n — 1} we must have

o.f(a’,g(a")) = 8;f(a) + 8, f(a)d;g(a’) = 0.
Let the function H : V' — R be
H(x") = h(X, g(x)).

Then the condition on h, namely that h(a) > h(x), for all x € M NV, means that
H(x') > H(a'), for all x’' in an open neighborhood of a’ in V’. Therefore we have

8iH(a’) = 0,
for all 2 € {1,...,n —1}. But
9;H(a") = 8;h(x, g(x")) = 8;h(a) + 8,h(a)8;g(a’) = 0.

Therefore, since 8, f(a) # 0, we can write

Ouh(a) = ~Ouh(a)dig(a) = 5 ") (-0 f(@)oig(a) = A0if(a),
with 8, h(a)
A= 6: (o)
Furthermore, we obviously have
Ouh(a) = 200, 1(a) = 20,1 (a),

Therefore, taking all the 2 = 1,...,n together, we have
Vh(a) = AV f(a).
]

The condition f(x) = 0 represents a comstraint on the set of possible points
which are to be brought into consideration in the given situation, constraining
things to the set M. Then h is a function whose value we are interested in on the
constrained set M. The point a is “optimal”!! under h with respect to the other
points of M. (Of course the theorem also works just as well if we say that a is
a minimal — rather than a maximal — value under h.) Then the theorem says
that the gradient, V f, which, according to theorem 3.30, gives the direction of the
greatest increase of the function, is the same as the gradient Vh.

The proof used a number of theorems which we proved a while ago, and so
you may find it difficult to get a clear picture of what’s going on here. Let’s think

1That is, it is a (local) maximal value.
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about the function f first. Since f(x) = 0 everywhere throughout M, it is obvious
that the gradient of f at a must lie perpendicularly to M. But it M has dimension
n — 1; therefore there is only one single direction perpendicular to M. On the
other hand, thinking about h, consider the set M) = {x € G : h(x) = h(a)}. If
Vh(a) # 0, then the fact that f(a) is a local extremum in M means that we can’t
have M}, crossing through M at a. The two “hyper-planes” must be tangent to
one another at a, and so the perpendicular direction is the same for both. On the
other hand, if Vh(a) = 0 then obviously the theorem is true if we simply take the
Lagrange multiplier A to be zero.

All of this gives a method for finding a necessary condition that a point be a
(locally) extreme point for the function A under the constraint f(x) = 0. It is
namely the case that for such a point, the gradients of A and f must have the
same directions (or opposite directions if the Lagrange multiplier A is a negative
number).

3.8 Ordinary differential equations

The kinds of differential equations which we will investigate here are of the form

Y = f(z,v),

where f : G — R is some continuous function and G C R? is an open subset.
A solution to such a differential equation is a differentiable function ¢ : I — R,
where I C R is some open interval and (z, ¢(z)) € G for all z € I, such that

¢'(z) = f(z, ¢(z)),

forall z € I.
The simplest case is that the function f depends only upon z. That is, we
have the differential equation
¥ = f(=).
But we already know how to solve this equation. The solution is simply an anti-
derivative to the function f. And we already know that all possible anti-derivatives

are given by the integral of f, plus a constant. That is, the solution to this simple
form of differential equation is

p(z) = /0 F(t)dt + yo.

Here, yo € R is a constant, and the solution ¢ has the initial value ¢(zo) = Yo.

Of course if we express the anti-derivative as an integral in this way, we only
obtain values of ¢(z) for z > z,. But we can also extend the anti-derivative to
values of z less than zy by considering the integral

- / “ f()at.
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But what can we do in the more general case? For example consider the
differential equation
v =uy.
Remembering the properties of the exponential function, we can guess that a
solution is

¢(z) = exp().
But then, a little further thought convinces us that also k exp(z) is a solution, for

any constant k € R. Are there further solutions? And more generally, can we solve
differential equations of the form y' = g(y), where g is any continuous function?

3.8.1 Separation of variables

The natural thing is to investigate differential equations of the form

y = f(z)-9(y),

where both f and g are continuous functions. This is a differential equation which
has separation of its variables.

Theorem 3.40. Let I, J C R be open intervals, f : I - Randg:J — R
continuous functions with g(y) # 0 for all y € J. Let (zo,Y0) € I X J be some
“inttial value”, and take

z v ds

Fm:/ )it and G :/—,

@=[ 1 W=
forx € I and y € J. Further, assume that I' C I 1s some open interval
contained in I such that zo € I' and F(I') C G(J). Then there ezists a unique

continuously differentiable function ¢ : I' — R, such that ¢(zo) = yo and

¢'(z) = f(2)g9(o(z)),
for allz € I'. And we have G(p(z)) = F(z) for allz € I'.

Proof. Assuming such a ¢ exists, then we have

F@—LJ@ﬁ—Lﬂwm“—L 25 = Ge@):

That is to say, G(¢(z)) = F(z). The second equation here follows from the
assumed equation ¢'(z) = f(z)g9(¢(z)), and the third equation follows from the
substitution rule for integrals.

Next we prove that ¢ is unique. Since G'(y) = ﬁ # 0, for all y € J, and since
G is continuous, it follows that G is a bijection between J and its image G(J) C R.
Thus there must be an inverse function H : G(J) — J, with H(G(y)) = v, for all

y € J. But then

p(z) = H(G(p(2))) = H(F(z)) = H (/

0

F(e)dt)
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and it follows that ¢(z) is uniquely determined.

So the final question is: is p(z) = H ( I f (t)dt) really a solution of the differ-
ential equation?

Well, we need only differentiate the equation G(¢(z)) = F(z) in order to obtain

/ / _ Qol(m) — F'(z) = T
¢'(z)G (p(z)) = 3(o(@) = F'(z) = f(z),

or ¢'(z) = f(z)g9(¢(z)), as required. Furthermore, we have

olao) = H ([ f(t)dt) = H)

0

But G(yo) = 0. Thus

p(zo) = H(0) = H(G(¥0)) = Yo

3.8.2 An example: ¥y =z -y

The equation 4’ = z - y obviously has separation of variables. We take I = R and
J=R; ={z € R:z > 0}. Then we have

z 2 .2
F(x):/ tat="2"%0
- 2
and i
v y
G(y) =/ 7 = 1n(y) —In(yo) =1n <> :
Yo Yo

Since the function G is the logarithm, its inverse function H must be the expo-
nential function. In fact, we have

Yo - €XP <1n <y>> =y,
Yo

for all y > 0. Therefore the solution with the initial value ¢(zy) = yo, where
Yo > 0, is

o(@) = H(F@) = vooup ([ 1dt) = voer ( - ) .

3.8.3 Another example: homogeneous linear differential equa-
tions

The general first order homogeneous linear differential equation has the form
y' =a(z) v,
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where a is a continuous function. This is again a case of separation of variables,
and so, using the methods we have developed, the general solution

©(z) = yo - exp ( / CL(t)d’f)

is immediately obtained. Note that if ©(zo) = yo # 0, then since exp(w) is always
positive for all w € R, it follows that ¢(z) # 0, for all possible z.

z

0

3.8.4 Variation of constants

This is the method used to solve inhomogeneous first order linear differential
equations. That is, equations of the form

y' =a(z) y+b(z).
To begin with, let ¢ be a solution to the homogeneous linear differential equation
y' = a(z) - y, with initial value ¢(z,) = 1. Thus
¢'(z) = a(z)p(z),
with solution

o(z) = exp (/m: a(t)dt> .

Next, we assume that the inhomogeneous equation with the extra term b(z) has
some solution 7, so that

¥'(z) = a(z) - ¢(z) + b().
Given this, then we simply define a new function ¢ to be
()
o(z)
That is, ¥(z) = ((z)p(z); but remember that ¢'(z) = a(z)p(z). Therefore,
putting it all together, we obtain
Y'(z) = {(2)o(z)+ ()¢ (2)
= {(z)e(z) + {(z)a(z)p(z)
= a(z)y(z) + b(z)
= a(z){(z)e(z) + b(z).

Subtracting the term ((z)a(z)y(z) from both sides, we the obtain
('(z)e(z) = b(z),

¢(z)

or
b(z)
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Thus ( is simply an anti-derivative of ;((i)), that is

0
¢(z) = /ED PORR

where K € R is some suitable constant. Choosing K = vy, gives us the solution

¥(z) = C(@p(a) = e [ alt)ar) ( [ oo iy yo> ,

Zo

which satisfies the initial value ¥(z¢) = vyo.

3.8.5 The equation vy = f (3>

z

To round off our discussion of special classes of first-order ordinary differential
equations, we consider the equation

-1(2)

We are looking for a solution ¢ : I — R with an interval I C R, such that 0 &€ I.
Here again, f is taken to be continuous and defined on an appropriate open interval
of R. Given this, then we have:

Theorem 3.41. There exists a solution ¢ : I — R with

o) = 1 (4]

T

if and only +f

o) - TWE) ~9()

T

where P(z) = 22),

z

Proof. Assume first that ¢'(z) = f ("D(”)). Then we have

z

V(z) ©'(z) p(z)

1:z<:f <(p(§)2> _ %0(33)>
_ i(f(zp(a:))—ww))-

Conversely, if we assume ¢'(z) = M, then since we have ¢(z) = ¢(z) - z,
it follows

o'(z) = Y'(z) z+9¥(z)

z

= f(¥(z))
. <‘pf)> .
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Therefore, in order to solve the equation

v-r(2)

the first thing to do is to solve the equation

2= ()~ 2).

The equation with z is a case of separation of variables, and we have already seen
how to solve such equations. Therefore we obtain a solution z, and the solution y
for the original equation becomes y = = - 2.

3.9 The theorem of Picard and Lindelof

In our discussion of the method of the variation of constants, we simply assumed
that some solution to the differential equation must exist. But how do we know
if this assumption is a reasonable one? To answer this question we need to give
some thought to the general theory of differential equations.

3.9.1 Systems of first order differential equations

In the discussion so far, we have considered single equations of the form y' =
f(z,y), where we are looking for a solution of the form ¢ : I — R. More generally,
we can look at a set of n equations which are all linked together.

yi - fl("E’yl)"'Jyn)
y; — f2($7y1)"')yn)

yll — f1($7y1) o ,yn)

We can think of these n components v, ..., ¥y, as being the coordinates of a vector
y € R”, and so the differential equation can be written as if it were a kind of vector
equation: y’ = f(z,y), or in other words

yi fl (:B, y)
Yn fa(z,y)

This differential equation is determined by the function f, so it is necessary to say

what it is.

Let G C R x R™ be an open subset (of R™™), and f : G — R™ a continuous
function. Given some z, € R and y, € R™ with (zg,y0) € G, then a solution to
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the differential equation y’ = f(z,y), with initial value (zo, yo), is a differentiable
function ¢ : I — R", for some open interval I C R, such that z, € I, ©(zo) = yo,
and (z,¢(z)) € G for all z € I, and finally, the function ¢ satisfies the differential
equation. That is,

¢'(z) = f(z, p(z)),
for all z € I.

3.9.2 The Lipschitz condition

Definition. Again, let G C R x R™ be an open subset, and let f : G — R" be a
function. The function f 1s said to satisfy a Lipschitz condition with Lipschitz
constant L > 0 if for all (z,y), (z,¥) € G, we have |[f(z,y)—f(z,¥)|| < L|ly-¥I|-

In the theory of differential equations, we usually generalize things somewhat,
assuming that the function f only satisfies a local Lipschitz condition. That is to
say, the function satisfies a local Lipschitz condition if for every (z,y) € G, there
exists some open neighborhood U C G with (z,y) € U, such that f satisfies a
Lipschitz condition in U.

For simplicity in the discussion here, let us assume that we have a global
Lipschitz condition, and furthermore it will be assumed that we have just a single
first order ordinary differential equation. Thus G C R2.

3.9.3 Uniqueness of solutions

Theorem 3.42. Let G C R? be an open subset and let f : G — R be a contin-
uous function satisfying a Lipschitz condition with Lipschitz constant L > 0.
Assume (zo,Y0) € G, I C R is an open interval with o € I, and we have two
functions @, ¥ : I — R which are both solutions of the differential equation
v = f(z,y), with initial value (zg,v0). That s, ©(zo) = ¥(zo) = yo. Then we
have ¢(z) = y(z) for all z € I.

Proof. We have ¢'(z) = f(z,¢(z)). Therefore p(z) = [ f(t, o(t))dt + yo, and
the same is true of the function 7. Thus for each z > z, we have

o@)-v@| = | [ (fte®) - ftve))e
< [l o) - 5t wi)at
< Lo [ lo) - v(o)at

For each ¢ € I with = > z¢, let

M(z) = sup{|p(t) — P(t)| : 2o < t < z}.

In particular, for all ¢ between zq and z, we have
©'(t) = 9" (O)] = [F (¢, @) — F(E9(E)) < L- o) — ¥(t)| < L- M(z).
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Therefore
o) = (&) < L - M(z).
Then, using the intermediate value theorem and noting that ¢(zo) = ¥(zo), we
see that
o(t) —9(t)| < [t — 2o - L - M(z),

for all ¢ between zy and z. In particular, this implies that
M(z) <|z—zo|- L- M(z).
But if we choose z to be sufficiently close to zy so that

1

|IE—$0| < ﬂ,

then we obtain .

This can only be true if M(z) = 0, or in other words, ¢(t) = 9 (¢) for all £ > z,,
with |t — zo| < 1/2L.

Now take z; = sup{¢ € I : p(t) = ¥(¢),Vt € [zo,&]}. There cannot be any
elements of I greater than z; since for all points ¢ of I nearer than 1/2L to z;, we
must have ¢(t) = ¥(t). Thus, for all elements of I greater than z,, we must have
@ and ¥ being equal.

The argument can also be extended to show that for all elements of I less than
To, the two functions are equal. For this we need only note that we would have

o(@) =~ [ 7t et + o,

and the analogous expression for ¥(z). O

Examples

e Linear differential equations ¢’ = a(z) - y + b(z) obviously satisfy a local
Lipschitz condition. For let £ be an element of the open interval I where
the equation is defined. Then let I' C I be a finite closed interval such
that z is contained in the interior of I'. Since the function a is assumed to
be continuous, it is uniformly continuous on I’. Let L > 0 be chosen with
L > a(z'), for all 2’ € I'. Then we have

(a(z) -y + b(z)) — (a(z) - § + b(z))| < Lly — 7.

e The standard example of a differential equation which does not satisfy a
Lipschitz condition is

¥ =/lyl.
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For example, if we take §j = O, then in order to have

iyl = idl] = /lvl < Dy — 91 = Liy),

we would have to have

1

L .
|yl

Yet, as y — 0, the fraction 1//|y| — oo.

Specifically, we can think of a number of different solutions. For example
the function o(z) = 0 obviously satisfies the equation 3’ = |/|y|. Another
solution is ¢;(z) = z?/4. Obviously we have ¢y(0) = ¢;(0) = 0. That is
to say, given the initial value (zq,%0) = (0,0), then we have two different
solutions of the differential equation, starting from the same initial value.
More generally, for all k € R, the function

(z) 0, Tz < —k
r) =
4 (o) S

4 -

is a solution to the differential equation y' = \/m (But note that this
differential equation is of the form “seperation of variables”. Thus, according
to theorem 3.40, the solution is unique if we start with an initial value such
that y # 0, and confine the solution to a region where it remains not equal
to zero.)

3.9.4 Existence of solutions

Theorem 3.43. Again, G C R? open; f : G — R continuous, satisfying a
Lipschitz condition with constant L > 0. Let (zg,y0) € G. Then there exists
an open interval I C R with o € I, and a continuously differentiable function
¢ : I = R, such that o(zo) = yo, (z,9(z)) € G and ¢'(z) = f(z, p(z)), for all
zel.

Proof. We show how to find ¢(z), for £ > z,. The procedure for z < z; is
analogous.
To begin, since G is open, there must exist some § > 0 such that the square

S(z00)(0) = {(z,y) : |z — 0| < and |y — yo| < 6} C G.

Since f is continuous, there must exist some M > 0, such that |f(z,y)| < M, for
all (z,Y) € S(zo,9)(0).) So let

€ = min 5i i
N "M’ 2L
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and then take
I=(zo—¢€,z0+€).

The next thing to do is to define recursively a sequence of functions ¢, : I — R
as follows. We start with the constant function

©o(Z) = Yo.

Then, for each n € N, we take

Pn() =/ F(¢, ona(t))dt + yo.
zo
Obviously ¢,(zo) = ¥o, for all n. Furthermore, we also have

(ZIJ, (pn(x)) € S(wo,yo)(é) C G,

for all n. In order to see this, we begin by observing that (z, ¢o(z)) = (2, %) €
S(zo,0)(0) for all z € I, since we must have |z — x| < € < 4.

So now let » € N be given, and we assume inductively that (z,p,_1(z)) €
S(zo,y0)(0) for all z € I. Then we have

on@) —wl = || flt o a(t))at
< [Iftpns)lat
< |lz—zo|- M
4]
< M
= 0.

Therefore (z, ,(z)) € G, for all n.

The next step is to show that the sequence of functions ¢,, converges uniformly
to a function ¢ : I — R which is a solution to the differential equation 3’ = f(z, y).
Writing || - || for the supremum norm, we have

[Pni1(T) — @n(z)| =

[ (5t 0n(®) ~ 1t pus ()i

o]

< [ Llpat) - ons(®)t
Zo
< L-fz ol - pn — pnil
1
< Lo || — @n_
e

5 ||
2 Qon (pnfl .

Since this is true for all z € I with = > z,, we have

1
6nss = @all < 5llon = Pnsll
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Thus we see that the sequence of continuous functions ¢, is a Cauchy sequence
with respect to the supremum norm. Therefore it converges uniformly to a function
@ : I — R. We have ¢(z¢) = yo and (z,¢(z)) € G, for all z € I. Furthermore,
using theorem 2.48, we obtain

n—00

p(z) = lim p(z) = lim / F(t, ons(t))dt = / (¢, o(t))dt,

and so we must have
¢'(z) = f(z, p(z))
for all z € I. OJ

Remarks

e In this proof, we have assumed that z > z,, but as has been repeatedly
remarked, it is a simple matter to alter the proof in order to deal with the
values of z in I which are less than zg.

e Since we confined things to the small square S(;,,4,)(d) around the point
(zo,Y0) € G, it is clear that we only needed to have a Lipschitz condition in
that square. That is, the theorem is also true if the function f only satisfies
a local Lipschitz condition.

e Our interval I, which contains the initial value zg, is taken to be small in
order to ensure that the sequence of functions ¢, do not bring us out of
the region G. Also I must be sufficiently small to ensure that we have the
contraction ||@n41 — @n|| < 2{|@n — @n_1||. But then, given that the solution
© is defined along the interval I, we can take a point near the end of I and
use that as the initial value, constructing an extension of the domain os ¢.
In general this procedure allows us to extend the interval along which ¢ is
defined, in fact going out to the edge of the region G. Such ideas are dealt
with more fully in the many books on differential equations in the library,
and also in the lecture devoted to differential equations in our faculty.

e The method of proof describes a practical method for finding solutions of
differential equations. Given an initial value (zq,%o) € G, we take the first
approximation to be simply the constant function ¢q(z) = v, for all z € I.
Then the sequence ¢, for n € N should converge to a solution. This is called
the Picard-Lindelof iteration method.

e When dealing with systems of first order differential equations, we have vec-
tors in R”, rather than just numbers in R. The iteration step is then a vector
equation

on(z) = / £(t, 0 +(£))dt + yo.
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Here z € I C R, but f(¢, ¢, 1(t)) € R and y, € R™. The integral becomes
an integral over a vector-valued function.

z

fi(t on1(2))

[ it 00t = | dt,

Zo

Falt 0na (1))

and each of the components f;(¢, ¢, 1(t)) is just a function f; : I — R. So
we integrate each of the components separately.

3.10 Ordinary differential equations of higher or-
der

These are equations of the form

y(n) — f(m’ y’ y/) A ’y(n_l))’

where y(™ is the n-th derivative. That is, given an initial value (o, 3o), then we
are looking for a solution ¢ : I — R, with ¢(z,) = yo and

oM (2) = f(z,9(2), ¢'(2),..., 0" (2)),

forall z € I.
The method is to convert this into a system of n first-order differential equa-
tions in the variables yi,...,y,. To begin with, let y; = y. then take

?/1 = Y2
ylz = Us
y',n—l = Yn

y7l7, - f(xayla"')yn)-

This reduces the problem to that of solving systems of first order equations. And
given a solution
o1(z)

o(z) = 902.(33)

)

¢n(z)
then ¢; : I — R is clearly a solution to the original equation

y™ = f(z,y,9¢,..., 4" V).
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Example

Consider the simple equation y” = —y. This describes (without bothering about
additional constants) the harmonic oscillator. In order to solve the equation, we
reduce it to a system of two first order equations, namely

yl1 = Y2
yé = U

But we have already seen in an exercise that the solution (with the initial value
©(0) = 1) is p(z) = cos(z).

3.11 Partial differential equations

Ordinary differential equations depend on one parameter, z. The most general
form for such an equation would be

F(m,y,y',...,y(”)):o.

Thus, for example if we have an equation of the form

Y = f(z,v),

this becomes
F(z,y,9)=vy - f(z,y) =0.

Perhaps is is natural to think of such equations as describing the movement of a
particle through space, where the parameter z describes the time. For example,
Gauss spent huge amounts of time, involving hundreds of thousands — even mil-
lions — of arithmetical operations, trying to calculate the paths of various astroids
in their movements about the sun.

It is also possible to consider differential equations which depend on more than
one parameter, say zi,Zs,...,Z,. We then have the theory of partial differential
equations. Such an equation will be of the form

F(fBl, Toy...,Tn,Yy, 81y, . ,any, 8181y, 8182}’, ey Bnany, e ) =0.

Here, a solution to the equation is a function ¢ : G — R™, where G C R” is
some open subset, and the function F' has some finite number of possible partial
derivatives.

Special classes of partial differential equations, such as the Laplace equation

0ip(z1,...,Tp) + -+ 820(T1,...,T,) = 0,

with given boundary values, have been studied theoretically. But in general, it is
impossible to find exact solutions. Instead, people use numerical methods to find
approximate solutions.
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Such things are very important in many practical situations. For example when
people design an airplane, then it is necessary to calculate the flow of air over the
wings using the partial differential equations of fluid dynamics. And then, of course
the stresses within the wing itself must be calculated in order to determine what
strengths the various components must have. For this, one uses the method of
“finite element analysis”, which again is a way of finding an approximate solution
to a system of partial differential equations. In the early 1800s, when Gauss was
active, such calculations were hardly feasible, at least for “normal” people. But
these days, such methods are applied all the time, using computers and standard
software libraries.

All of this is beyond the scope of the Analysis 2 lectures. Still, it may be
interesting to have a quick look at some methods which are used for dealing with
ordinary differential equations.

3.12 Numerical methods for solving ordinary dif-
ferential equations

3.12.1 Euler’s method

Given the differential equation y' = f(z,y), and the initial value (zg,yo), then
Euler’s method for finding an approximate solution is to look at things in a discrete
sequence of steps

To, To + Az, o + 2Az, o + 3Az,. ..

That is to say, things are calculated at the points
:1;01 $1, :1;2) $37 s
where
Tp =Tp_1+ AZE,
and Az is some fixed distance between one calculation and the next.

But what are the corresponding values of y for each of these z,7 The rule is:

Yn = Yn—1 + Az - f(m'n,—la yn—1)7

progressing through increasing values of n in N. In this way we obtain a sequence
of points

(330, yo), (3?1, yl); (51?2, y2), cee

and then connecting the points with straight line segments, we hope to get some
sort of approximation to the correct solution.
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A simple example: v =z

If the initial value is (0, 0), then we are looking for the function ¢ : R — R with
©(0) = 0 and ¢'(z) = z, for all z € R. Obviously, the correct solution is

1 2
o(z) = 593

as can be seen by observing that this is the anti-derivative of the function z.
So what does Euler’s method make of this problem if we take the discrete step
length to be Az = 17 We obtain the sequence of points

(0, 0)
(1, 0)
(2, 1)
(3, 3)
(4, 6)
etc.

But the correct solution ¢(z) = %m2 goes through the points

AN TN AN N N
N =
B DD O
~—

>
co

N N N s

So we see that Euler’s method is not particularly good in this case.

3.12.2 The Runga-Kutta method

The simplest version of the Runga-Kutta method is to use the rule

Az
Yn = Yn—1 + 7 <f($n1; ynfl) + f(xnfl + AJZ, Yn—1 + A.’Ef(.’l)n,]_, ynl))> .

This gives the sequence of points

N =
B DD O

N O N e
N

>
co

And we see that this is gives us precisely the points of the correct solution!
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Of course this example is rather special. Experimenting with more general
examples, one usually finds that this simple Runga-Kutta method is superior to
the Cauchy method, but it is also not particularly efficient.

There are various possibilities for obtaining a better calculation, depending on
the details of the given equation which is to be solved. One such method uses a
4-step iteration.

Given the equation y' = f(z,y), with initial value (zo,yo), let ¢ be a solution.
In particular, we have that the initial value is satisfied: ¢(z¢) = yo.

Now let A > 0 be the discrete step length. The problem is to calculate a
sensible approximation to the number k, such that ¢(zo + k) = yo + k. Then, of
course we can set £; = £g + h and y; = yo + k and continue the calculation from
there. By taking h to be small, and using the fastest computer obtainable, one
hopes to piece together a reasonably good solution to the given equation.

The method for finding &, given f and (zo, %o), is given by the following scheme.
Begin by setting £ = 7 and y = yo. Then we have

yr=y+k/2, ki=f(z,y)h

Yy =Y +ki/2, ku=f(z+h/2,y1)h

Y =Y+ ki, ki = f(z +h/2,ym1)h
krv = f(z + h,yrr)h

and then finally,

1
k= 6(k[ + 2k + 2k + krv),

so that we have the starting point for the next step in the calculation, namely

Ty =2+ h, and y; =y + k.

3.13 The variational calculus: a sketch

The most general way to think about the variational calculus is to imagine that
we have some abstract set X, together with a real-valued function F' : X — R
which is bounded below. The problem is then: find some z, € X (if such a thing
exists!) such that F(z,) < F(z), for all possible z € X. That is, z, is an element
with the minimal possible value.

If we are looking for an element with the mazimal value, then that is the same
as looking for some z, such that —F(z,) has a minimal value.

For example, in the theory of economics, it might be imagined that we have a
factory which produces various things which can be sold at various prices. Should
more workers be employed, or should some be made redundant? Which combina-
tions of raw materials at what prices should be bought? And so on and so forth.
Each of the possible combinations is an element of the set X of different possible
ways of running the factory. In the end, the amount of profit the factory makes
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is some number F(z), which might be calculated for each of the possible elements
of X. Economists then imagine that the factory manager will choose to run the
factory according to the method z, € X, which gives the greatest profit.

But such a level of generality brings us away from practical mathematics. Let
us therefore restrict ourselves to the kind of variational calculus which describes
practical situations in the physical world, and which are described in terms of
differential equations.

Examples

e The problem which was posed by the mathematician Johann Bernoulli in the
journal Acta Eruditorum in June 1696, and which led to the formulation
of the theory of the variational calculus, was the Problem of the Brachys-
tochrone. He wrote:

“I, Johann Bernoulli, address the most brilliant mathematicians in the world.
Nothing is more attractive to intelligent people than an honest, challenging
problem, whose possible solution will bestow fame and remain as a lasting
monument. Following the example set by Pascal, Fermat, etc., I hope to gain
the gratitude of the whole scientific community by placing before the finest
mathematicians of our time a problem which will test their methods and the
strength of their intellect. If someone communicates to me the solution of
the proposed problem, I shall publicly declare him worthy of praise.”

The problem was the following:

“Given two points A and B in a vertical plane, what is the curve traced out
by a point acted on only by gravity, which starts at A and reaches B in the
shortest time.”

Many mathematicians accepted the challenge. For example it is said that
Newton (who at that time was the Director of the Royal Mint)

“in the midst of the hurry of the great recoinage, did not come home till four
(in the afternoon) from the Tower very much tired, but did not sleep till he
had solved it, which was by four in the morning.”

e Another problem, which is perhaps more practical, is the following: What
is the shape of a telephone wire which hangs steadily, in equilibrium under
gravity between two points A and B?

The general form of such problems is: find some function y of z such that the
value of

F(y)= /f(w,y,y’)dw

is as small as possible.

For example, looking at Bernoulli’s problem, imagine that the point A has the
coordinates (z1,¥:) in the Euclidean plane R?, and the point B has the coordinates
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(z2,v2). It is natural to imagine that z; < z, and that y; > y,. Furthermore, it
seems clear that the optimal curve would not switch directions, or loop around
itself. Thus it could be described as a function ¢ : [z;,z22] — R, presumably
sufficiently smooth to be differentiable to any desired degree, such that ¢(z;) = y;
and ¢(z3) = yo. Then for each z, the value of the function ¢(z) gives the point
(z,y) through which the curve passes, where y = ¢(z). If y < y;, then the speed
at the point ¥y’ = ¢'(z) is given by equating the potential energy which has been
lost with the kinetic energy which the point would have in its passage through
(z,y). Since the problem is to find the curve giving the shortest time from z; to
Z,, the function f should measure the speed in the horizontal direction.

Returning to the more general problem, let G C R® be some open subset,
and let f : G — R be a function which is at least twice continuously partially
differentiable. Then the problem is to find a function ¢ : I — R such that
(z,0(z), ¢'(z)) € G, for all z € I with I = [a, b], such that

F(o) = [ 1@ 0(2), ¢/(@))dz

is as small as possible.

One way to do this is to think of other possible functions ¢ : I — R, and
compute the values of F(§), checking to see if they are always greater than, or
equal to F(¢). Writing

’dj - @ -y,
we obtain a new function % : I — R which is such that ¢(a) = ¥(b) = 0. (It is
assumed that all of these functions are at least continuously differentiable.)

Generalizing things slightly, let us take (—6,+6) to be a small open interval

around zero. Then we can examine the functions ¢ + s, for various values of
s € (—0,446). This gives us a new function

I':(=9,+6) = R,
such that
r(s) = Flp+ s9) = [ £(2,0(2) + 9(@),0(@) + s9/(2) ) da.

Since f is continuous, it follows that I' is differentiable, and if ¢ is a solution to
our variational problem then it must be that

I'(0) = 0.
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We then have

I'(0)

Here:

;g By /ab f(:ll, o(z) + sy(z), ¢'(z) + 3¢’(m)> dz
f(a:, o(z) + sy(z), ¢'(z) + 3¢'($)> dz

b d
N /adSso

- [ (¢(w>af<w, ()@ + ¥(0) g 13, 0(0), #(0) ) o

— / ( (a:)—f(a: o(z), ¢'(z) >d$+/ <¢’ - f(z, (), w(w))>
_ <¢($)ayf<x,¢(x>,¢f(x)>> o~ [ (W0) & (0010, 9(0)))
= [[40) (@0l 00D - 5 g (o0l (@) ) do

The first equation is just the definition of the function I'.

The second equation follows by observing that if we have a function g which
depends on two variables, z and s, then

d b .
%/a g(z,s)dz = }L%h/ (z,s+ h) — (:z:,s))d:r
_ lim/ g(:z:,s—l—h}z (a:,s)dx

h—0Jg

And if g is continuously partially differentiable, then as h — 0 we have
uniform convergence of the fraction

g(z,s+ h) —g(z,s)
h

to 5
%g(x,s).

In the third equation, the notation a%f(m,(p(:z:),(p’(m)) means the partial

derivative with respect to the second component of f, and a%/ is the partial
derivative with respect to the third component. The fact that the third
equation is true is a consequence of the chain rule for derivatives.

The fourth equation is trivial.

The fifth equation follows using partial integration and the fact that ¥(a) =
¥(b) = 0.
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e Finally, the sixth equation is trivial.

Since this must hold for all possible variational functions 1, we conclude that the
Euler-Lagrange differential equation

o £(@ (@), #(2)) ~ 5 o F(@0(e), ¥(a) =

must hold for a solution ¢ to our variational problem. (This follows from the
so-called Fundamental Lemma of the variational calculus, which is an exercise.)
How do we evaluate the expression

f( p(2),¢'(2)) ?

For this we can think of ‘9 f as defining a function of three variables, let’s call it
g for simplicity. Then we have

0
We use the chain rule to obtain that

9 0@ @) = 5@ 0@, ¢ (@) + (@) 500 0(e), ¢'c)

d,:z: oy’

+¢h)aﬂxﬂﬂw@n

So the Euler-Lagrange equation becomes
2

0 /
aiyf(xayay) o axay,

This still looks rather complicated. Things become simpler if our function f

does not depend explicitly upon z. In this case Bf—;yf(:z:,y,y’) = 0, and we can

simply write f(y,v'), rather than f(z,y,y’). Therefore

@0, 9) — ¥ = F(e, 0,4 — ¥ (e, y) = O
7y7y 86/ yy ayl2 )yiy - .

2

3f(y y) -y 0 fly,v)—9" il fly,y)=0
oy oyoy' " 7’ oy'2” 7’ '

Since
2

d / /a / R 8 ! a 82 ! —
dm(f(y,y)—y 6,y,f(y,y)> =y (ayf(y,y) Y oyay W y)-y ay,2f(y,y)> =0,

it follows that

0
! ! !
= —k
fv,v)—y ay,f(y,y) ,
for some constant & € R. That is, substituting ¢(z) for y, we obtain the equation
0
fle(2), p(z)) — w(w)'ajj,f(w(x), p(z)) =

(Of course we must maintain the notation a% f to indicate the partial derivative
with respect to the second term in f.)
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Examples

e We begin with the brachystochrone. Let A = (z;,y;) and B = (z2,¥2).
In order to simplify the notation, let us say that z; = 0 and y; = 0, and
furthermore, y increases as we go downwards. According to the principles

of classical physics, the velocity v of the particle will be

:\/@)

where g is the gravitational constant.'?> But the velocity v is a function of
time . Let us consider the velocity v, in the horizontal direction, and v, in

the vertical direction. Then we have v =, /v2 + vZ. Writing

dz dy
Vo = and Uy = o
we obtain p
Yy _0Y _
. —ds y'(z).
Thus

U= \/@:vzw/l—i—y’2 = Zw/1+y’2.

This leads to the equation

1_|_y12
T = /dt _/ z,

where T is the time it takes for the particle to travel horizontally to z,.

Therefore we can write

VITy?

flz,y,9) = N

and we see that z does not specifically occur in f. Using the equation

1 Ia n o __
f(y,y)—y@f(y,y)—k,

we obtain )

vyl +y?)

which finally gives us the differential equation

— k,

1

yI: kTy—].

12If the mass of the particle is m then the change in the potential energy when falling the distance

y is given by the product gmy. The kinetic energy which the particle then has is %va

we assume that v is zero when y is zero, it follows that %va = gmy.
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A substitution now shows that the solution is a cycloid:
z=r(0 —sinf), y=r(1—coséh),

where 6 can be considered to be a function of z, and r is some appropriate
constant.

e As far as calculating the shape of a freely hanging telephone wire is con-
cerned, the idea is that a solution must be such that the potential energy of
the wire must be as small as possible. If the wire has a weight of m kilograms
per meter, and if the wire follows the curve ¢ : [a,b] — R, then the potential

energy is given by
b
| mgp(@)/1+ (¢/(2))dz,

where g is the gravitational constant. Setting both of the constants g and m
to 1, we obtain the variational problem

F(o) = [ @)1+ (v(@)faz,

But there is a further complication, owing to the fact that we assume the
length of the wire to be fixed.!® So let the length be L, a number greater
than the distance between the two endpoints A and B. This gives us the

further condition ,
/ 1+ (¢'(z))2dz = L.

In order to solve this problem, we use the method of Lagrange multipliers.

The idea is that since L remains the same for all the possible functions ¢
which come into question, it must be that a solution will satisfy the varia-
tional problem given by the integral

F(o)= [ (0@) + N1+ (w@)ds,

for some constant A € R. That is, if T'(s) = F(p+s%), for possible variations
¥, then we will have I'(s) = 0.

So here, the Euler-Lagrange equation is
fy,y) - y’if(y y)=k
) ay, ) )

with
f,y) =Y+ A)y1+y2

130f course one could make things even more complicated by assuming that the weight of the
wire varies along its length, and that it is elastic, like a rubber band. But for our present purposes,
a fixed weight and a fixed length will be assumed.
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Therefore

/ (y + A)y”?
+ A/ 1+ y? — =

or
Y+ A=ky/1+y>
The solution has the form

K,
y:kcosh(m p )—)\,

where k, € R is another constant.
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