
Mathematics and Music

In the ancient world, music was considered to be an important subject for
theoretical studies, on a level with pure mathematics itself. Boethius’ famous
de institutione musica is hardly concerned with the practical performance of
music. It has much more to do with describing (in a very roundabout way)
various rather trivial ideas about numbers. For example, he makes much of the
fact that the difference of the squares of two adjacent positive integers is the
sum of those numbers. Once you have worked your mind around all those words
— and Boethius goes on and on through many paragraphs in this fashion —
then you see that he is really just describing the simple relationship

(n + 1)2 − n2 = 2n + 1 = (n + 1) + n.

In more recent centuries, Euler published a system of musical ratios which,
although it may have had a certain mathematical elegance, was found to be
musically useless.

A modern book which attempts to reconstruct something of the practical

music theory of the ancient world is “Ancient Greek Music”, by M.L. West.
Also to be recommended in this connection is “The Mathematics of Plato’s
Academy”, by D.H. Fowler, which discusses the importance of the idea of ratio
throughout Greek mathematics — not just in music theory. As far as the
physical and mathematical basis of music is concerned, a good reference is the
internet website of the Physics Department of the University of New South
Wales in Australia. It is “http://www.phys.unsw.edu.au/music/”.

What I would like to do here is to explain why music is based on the diatonic
scale; that is, the white keys on the piano. Is this convention something which
is only peculiar to our culture1, or is it something which arises naturally from
the basic rules of arithmetic? One suspects that the later is the case.

Now it is true that there are “primitive” societies (such as ancient Greece)
which use musical scales which are very different from the diatonic scale. But
surely these strange scales represent a cultural departure from the normal, nat-
ural system given to us by the rules of arithmetic. The simplest way to verify
this fact is to observe the reactions of a cat2 to different kinds of music. Given
a simple tune on the diatonic scale, or even the practice of scales on an instru-
ment, then the cat will go to sleep and begin purring if the intonation is good.
However if the intonation is off, or if the music leaves the diatonic scale in an
unmotivated way, then the cat will fold it’s ears back uncomfortably and try to
leave the room as quickly as possible.

1Many composers in the 20th century seem to have become irritated by the fact that there
are lots of black keys in there as well. In a kind of “democracy of the keys” of the piano, they
created 12-tone music, where the different keys were depressed on the average for about an
equal period of time. Most people find such “music” to be somewhat offensive to the ear.

2Dogs are not good subjects for this experiment since, in order to please their masters,
they might pretend to like something which they don’t.
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1 The Harmonic Series

The difference between noise and music is that a musical tone is a periodic

sound wave. This sound wave can be represented as a continuous function, and
therefore we can use the theorem on Fourier series from the Analysis I lecture,
which states that any continuous periodic function can be represented as a sum
of sine (and cosine) functions whose periods are whole number fractions of the
period of the function. The relative strengths of these “overtones” determine
the sound of the tone.

Put another way, one can say that the tone can be thought of as being
produced by a number of “pure” instruments (which produce sine waves) which
are all playing at frequencies which are exact integer multiples of a basic lowest
frequency, say F . Then the first overtone is at a frequency of 2F , the second is
at 3F , and so on. On the other hand, if the intonation of these pure instruments
is bad, so that the frequencies are not exact multiples of a basic lowest frequency,
then the combined sound tends to degenerate into an unpleasantly jarring noise.

So to summarise: the harmonic series is simply

F , 2F , 3F , 4F , . . . ,

and two or more “pure” instruments playing together at exactly these frequen-
cies produce a tone which the ear accepts as being something different from
noise, hopefully pleasant. To simplify our thoughts, we can normalise things,
taking F = 1. Thus the harmonic series is the set N of natural numbers.

2 Symphona - Diaphona

Let us now consider two “impure” (more human) instruments, each of which
produces it’s own harmonic series. Let us say that one of the instruments has as
it’s basic frequency F1, and the basic frequency of the other is F2. The simplest
case is that F1 say, is an integer multiple of F2. So we let F1 = kF2, for some
k ∈ N. Then the harmonic series for the first instrument is

nF1 = (nk)F2,

for n = 1, 2, . . . . That is, it fits in perfectly with the harmonic series of the
second instrument; we have a pure sound.

Things become more complicated if neither F1 nor F2 is an integral multiple
of the other. Let’s consider the case that they are both multiples of some smaller
number F . Say F1 = aF and F2 = bF , so that

F1

F2

=
a

b
.

Obviously it is sensible to assume that this fraction is reduced, so that gcd(a, b) =
1. That is, F is the largest number with this property. But then the combined
wave produced by both instruments has a frequency of F . This is the reason
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that two tones which are close together produce an irritating “beating” noise
when played together. F is the frequency of the beats, and it can take on
the feeling of a rapid hammering if is F is small enough, say around 10 Hertz.
When F is somewhat greater, say around 30 or 40 Hertz, then one simply has
the feeling of a clash of tones. Thus, even in the case that the ratio of F1 to F2

is a rational number, we still can have a disharmony3; if the ratio is irrational,
harmony is impossible.

The ancient Greeks identified two distinct cases: symphona and diaphona,
that is harmony and disharmony. For them, the ratio 1:2 was clearly symphona
(and since one instrument is as good as another, we will say that the ratio 2:1
is symphona as well). But they also realized that a music consisting of nothing
but octaves is rather too boring for the human ear. Thus the next simplest
ratio, namely 2:3 (and thus 3:2) was also taken to be symphona. All else was
declared to be diaphona. Disharmonious.

3 Harmonious Numbers

Given that our basic starting point is some frequency F , which we will just
normalise to the number F = 1, then 2, 4, 8, and so on, can all be built up
from the simple ratio of 1:2. By the same token, we accept the fractions 1/2,
1/4, and so on. All of these numbers — musical octaves — are to be admitted
into the category of symphona.

But then we have 3/2, 9/4, 27/8, . . . , owing to the disturbing influence of
the ratio 3:2 in our symphona definition. And then if we remember the 1/2
interval, we must also admit the ratios 3/4, 9/8, and so on. In the end, we end
up with all ratios of the form 2m/3n and 3n/2m.

Obviously this gives us some rather close ratios which would not be admitted
into practical music. On the other hand, it does allow us to make the rule that
we will only think about the musical ratios which lie between 1 and 2. A ratio
such as 9/4 can be reduced into this interval by dividing by 2. Thus, in this
way of thinking, the harmonious number 9/4 is “really” the number 9/8. (Of
course, if we multiply 9/4 by 2/3 to bring us back into the interval 1 to 2, then
we return to the simple symphona interval 3/2, which we already had.) So the
rule we have is that a given ratio should be brought into the range 1 to 2 by
multiplying with some 2n, or 3n, for some n ∈ Z.

4 The Tetrachord

Actually, the ancient Greeks didn’t think in terms of all those numbers which
we have seen in the last section. In fact, they only thought of the three numbers:
1, 3/2, and 2. This gives the basis of the famous Greek tetrachord. All of Greek
music was based on the tetrachord.

3One sees that the numbers in a ratio cannot be small if one of them has a large prime
factor. In fact, all the prime numbers greater than 5 are bad for music.
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Now the ratio of the interval from 1 to 3/2 is obviously just the number 3/2.
On the other hand, the interval from 3/2 to 2 is

2
3

2

=
4

3
.

Therefore, we now have four numbers, 1, 4/3, 3/2 and 2. These give us two
large intervals, namely 1 to 4/3, and 3/2 to 2. But one immediately sees that
the higher interval here is again

2
4

3

=
3

2
,

so that we have a nice symmetry. The ratio 4/3 defines the bounds of the Greek
tetrachord. Within this interval, two further notes are to be placed.

But before doing that, we should note that the smaller interval from 4/3 to
3/2 gives us a new number, namely

3

2

4

3

=
9

8
.

So already we have four musical intervals: 9/8, 4/3, 3/2 and 2. In the Theory
of Music, these are called the second (or a whole note), the fourth, and the fifth,
and finally the octave.

Looking at the white keys on the piano, you should try to locate the c-key
somewhere around the middle of the keyboard. (It has a group of two black keys
directly to the right of it.) Then if we give this key the number 1, we find that
the adjacent white key to the right (the second one) has the number 9/8, then
the fourth white key to the right has the number 4/3, and the fifth white key
has the number 3/2. Finally, the eighth white key to the right has the number
2, and it is simply the c-key an octave higher.

5 What About the Other Three White Keys?

Well, they come into the picture if we allow ourselves to go slightly beyond the
bounds of symphona and accept the next prime number, namely 5.4 Admittedly,
we have now entered the realms of diaphona, and so we are constructing the
diatonic scale of music. On the other hand, looking at reduced ratios of positive
integers, it is clear that after 3/2 and 4/3, the smallest ratios must involve the
number 5. If we reduce the number 5 into the interval between 1 and 2 by
dividing by 4, then we obtain the number 5/4. Obviously another way to go
about things is to divide by 3, thus giving us 5/3.

So now we have the third white key to the right of our starting point on the
c-key. This is the number 5/4. Similarly, the sixth key is 5/3.

4It is interesting to note that jazz recognises the “blue” notes, which contain prime numbers
greater than 5. For example the interval 7/4 is played in jazz: a note somewhere between the
sixth and seventh notes (but not really on a black key).

4



What about the remaining seventh key, at the end of the scale? To under-
stand which number it has, we need only notice that a new ratio has already
appeared in the numbers which we have obtained so far. It is namely the case
that the third key is 5/4 and the fourth key is 4/3. This gives the ratio

5

4

4

3

=
15

16

which when multiplied by 2 gives 15/8. Therefore the seventh key is 15/8.
Note that there are two pairs of white keys which are adjacent to one another,

with no black key between them. These are the pair of keys (third, forth) and
(seventh, eighth). In numbers, these are the pairs (5/4, 4/3) and (15/8, 2). But
we have

4

3

5

4

=
16

15
=

2
15

8

,

so everything is Ok.
Or perhaps not quite. A little bit of arithmetic shows that there are two

kinds of adjacent white keys which have a black key in between. Namely the
pairs (1, 9/8), (3/2, 4/3), and (5/3, 15/8) have the ratio 9/8. The other two,
namely (9/8, 5/4) and (3/2, 5/3) have the ratio 10/9. Within the Theory of
Music, one says that the ratio 9/8 is a major whole tone, and the ratio 10/9 is
a minor whole tone.

So let’s summarise the work so far.

The diatonic scale of music.

note musical interval ratio
c — 1
d second 9/8
e third 5/4
f fourth 4/3
g fifth 3/2
a sixth 5/3
b seventh 15/8
c octave 2

6 Other Scales of Music

One puzzling question which arises here is:

“Why doesn’t the scale start with the letter a, rather than c?”

The simple answer to this question is that the scale does, in fact, start with a!
That is, if we start looking at the white notes on the piano starting at the a-key,
then we have the scale of a-minor. What we have been thinking about up to

5



now is the scale of c-major. In the old days, the minor scales were the big thing.
The major scales were not so important.

More generally, in medieval music, before the baroque period, people were
thinking about the Gregorian Modes of music. They were called things like the
“Dorian” mode, which starts at d; the “Phrygian” mode, which starts at e; the
“Lydian” mode, which starts at f, and so forth. But all the time, this is staying
on the white keys of the piano — the diatonic scale.

Actually, the reason those medieval people gave their musical modes such
funny-sounding Greek names was that they had become confused by the elab-
orate arithmetical contortions in Boethius’ de institutione musica. In reality
classical Greek music departed strongly from our simple diatonic scale.5

As we have seen, the Greek scale started with the intervals 1, 4/3, 3/2 and
2. And then both the lower half (from 1 to 4/3) and the upper half (from 3/2
to 2) were subdivided using two further notes, just as is done in our diatonic
scale. However the tetrachords of the Greeks were arranged according to the
enharmonic scale, where the two additional notes are squashed together in tiny
quarter-notes, right at the bottom of the interval, and also the chromatic scale,
where they are still rather squashed at the bottom, but not quite so much as in
the enharmonic scale. According to the classical writers, the enharmonic scale
was the true, hard, masculine, heroic form of Greek music. The chromatic scale
was really just for softies — for women (although I suspect that many men also
secretly preferred it!) Eventually, the Romans, who found other ways to parade
their heroic masculinity to the world, dropped the enharmonic scale altogether,
returning to the natural diatonic scale.

7 What About the Black Keys?

It seems to be a characteristic of the human mind that it seeks the new and the
bizarre, becoming dissatisfied with what has naturally been given to us. I am
reminded of a passage in the book The Silverado Squatters, by Robert Lewis
Stevenson, where he describes the idea of “two bits” in the monetary system of
the United States in the 19th century. Two bits was 25 cents. Therefore one bit
must be 12 1/2 cents. Yet the smallest unit of money in the United States is
one cent. This led to endlessly interesting conflicts in the bars of San Francisco
as to whether one bit was 12 or else 13 cents.

In a similar way, we see that the scale of music consists of seven intervals,
such that five of the intervals are approximately equal to twice the length of
the two shorter ones. Therefore, in order to add a bit of spice into things, it
was often found to be interesting to play a note about half-way between an
adjacent pair of notes which are a whole note apart. In particular, b-flat was
often added somewhere in between a and b. Given that, one can then make a
new, but slightly “imperfect” diatonic scale by starting at f and then playing
b-flat, rather than b. (I leave it as an exercise for the reader to determine what
number should best be assigned to this new note.) In any case, most of the

5Perhaps it was a good method of keeping the ancient Greek households free of stray cats!
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written music from the renaissance period seems to be either in the “natural”
scale starting with c (with no sharps or flats), or else in the scale of f, with one
flat (namely b-flat). Only seldom does one see music written with two flats.
The keys with sharps are even more seldom.

On the other hand, to cover all eventualities, the organs from this period had
black keys between all the pairs of white keys which are a whole note apart.6

Given that we accept the principle of the democracy of all the keys of the organ,
then we would wish to place the black keys in such a way that the whole and half
notes, starting from a given key, will produce a pure diatonic scale. However the
circumstances of simple arithmetic are such that this wish can never be fulfilled.

The question of how to tune the intervals of an organ, or in fact any keyboard
instrument with fixed tuning, was a subject of much theoretical debate. The
mean-tone system was widely followed. This attempted to optimise the possible
thirds which might come up in various keys. Not only Euler; many other math-
ematicians gave much thought to this problem. One practical baroque system
was described by Andreas Werckmeister (1645-1706). Another, somewhat later
system is that of Johann Philipp Kirnberger (1721-1783). It is thought that he
may have studied for a short period in Leipzig with the great Johann Sebas-
tian Bach. In any case, he became the private music master of Princess Anna
Amalie of Prussia, and at her request he wrote a book of music instruction,
including a system of keyboard tuning. The Kirnberger system — which may
well approximate the “well tempered” Klavier of Bach — kept the intervals for
the white keys (except for a) precisely at their “natural harmonic” values, as
we have described them. The black keys are somewhere in between. A good
reference for these developments is the book Zur musikalischen Temperatur, by
Herbert Kelletat.

Much of the charm of baroque music stems from the fact that the intervals,
starting at different keys, are all different. Therefore music written in one key
has an entirely different flavour from music written in another key. A theory
of the emotional moods of the various keys of music was developed, and it’s
practical application was brought to a sublime culmination in the music of
Bach.7

8 Equal Temperament

If, according to Kirnberger’s system, music written in the key of c-major — that
is, without sharps or flats — is nearly perfectly diatonic music, then it follows
that music written in other keys departs more or less strongly from the perfect
diatonic scale. In an age of democracy, this inequality of the scales is thought by

6It is interesting to note here that the ancient Romans built gigantic organs, in particular
to increase the splendour of the games in the Colosseum. How strange it is that the Christian
Church, whose early martyrs went to their deaths accompanied by blaring organ music, has
adopted the organ as the central instrument of it’s music.

7But it is interesting to remember that some of the greatest composers of Broadway musi-
cals — when creating the famous melodies which are a part of our modern cultural tradition
— composed their works entirely on the white keys, with one finger.
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many people to be unfair, if not intolerable. Therefore a movement developed
to secure the equality of all musical scales.

Given that there are 12 intervals if we count both the black and the white
keys on the keyboard, then it was decided to make all these intervals equal. How
can this be done? Clearly, each of the intervals must be exactly 12

√
2. Therefore,

a half note is 12
√

2 = 1.0594630944 . . . . A whole note is 6
√

2 = 1.1224620483 . . . ,
and so on. These are all irrational numbers, so the intervals can never be pure.

Still, people say that it’s good enough. Democracy is worth this small price
to pay. The intervals are so near to their theoretical values that nobody will ever
be able to hear the difference anyway. But is this true? For example consider
the musical interval which is a third. It is the ratio 5/4=1.25, exactly. On the
other hand, if you count the number of black and white notes you need to reach
a third along the keyboard of a piano, you will find that it is 4 equal intervals.
That is 24/12 = 1.2599210499 . . . . The difference between this and 5/4 is just
shy of 1/100.

Put another way, two instruments tuned to the equal temperament system,
playing notes a third apart (which is an extremely common interval in practical
music) are out of tune by a factor of approximately 1/100. Let us say that they
are playing somewhere in the middle of the treble staff, where most music is
found. That is, somewhere around 500 Hertz. But now, being 1/100th out of
tune means that the dissonance produces a beating of about 5 beats per second.
A beating of this kind gives a most unpleasant sound. Anybody would say that
it sounds terribly out of tune. Why is it that we are generally not aware of this
problem when listening to music?

There are a number of reasons. Most music involves many instruments,
playing various intervals simultaneously. Thus the intonation problems of two
of these instruments playing a third apart become submerged in the whole
vibrating sound of the music. On the other hand, things become more critical
when only two or three instruments are playing together. In order to hide these
disharmonies, the usual practice is to play with a more or less exaggerated
vibrato technique. That is, each individual instrument is played in such a way
that the frequency produced wobbles back and forth through an interval of
something less than 1/100th. The frequency of the vibrato is 4 or 5 wobbles per
second. The modern ear experiences this as a kind of “warmth” in the music.

But why is it that a piano, tuned to the equal temperament system does
not sound out of tune? There are a number of reasons which could be given.
Perhaps it is just that we are accustomed to the sound of the piano in this
tuning. But more to the point, a note played on the piano is not a continuous
tone. It starts with the impact of the hammer on the strings, producing an
initial complex wave. This progresses into a steadier vibration of the strings.
But then the fact that the strings, particularly in the low notes, are very thick,
means that the frequency changes as the amplitude of vibration of the strings
decreases.
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9 Just Intonation

There are other ways of producing a feeling of warmth in music. Not only in
classical music, even more so in the more popular forms of music, a true and
clear intonation is of the greatest importance. We are moved by a voice which
is just right for the song. Nobody likes to hear a voice which wobbles all over
the place!

Thus, in reality, a musician playing an instrument whose pitch can be varied
— that is, not a fixed, keyboard instrument — always tries to play in such a way
that everything fits together as perfectly as possible. This is something practical,
not theoretical! When playing in this way, it is said that the instruments are
playing according to the system of just intonation. In other words, the musicians
adjust their playing at each moment of the music so that the ratios of the
frequencies of their instruments are given by small numbers. They try to make
the music sound “good”, not “bad”.

Perhaps the clearest example of just intonation is given by Indian music. It
is played against the background of a plucked, twangy, droning sound. This
sound consists of a precisely given low frequency F , whose overtones kF are
very strong, even for larger k ∈ N. Then the melody instruments play with
this given, basic sound, finding one and another overtone. Music theoreticians
speak of microtonal ornaments. Such music is the very opposite of the equal
temperament system based on the irrational number 12

√
2.

With the advent of electronic music synthesisers, even keyboard instruments
today can enjoy the virtues of unequal intonation. At the touch of a button, the
system of tuning can be instantly altered. It is even possible to imagine a key-
board synthesiser which analysises the sounds of other instruments with which
it is playing, just as if it were itself a musician. Then it would be programed to
produce sounds which fit in perfectly — following the just intonation system —
with the other instruments.
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