
NWI: Mathematics
Literature

• These lecture notes!

• Various books in the library with the title Linear Algebra I, or Analysis I. (And also Linear
Algebra II, or Analysis II.)

• The lecture notes of some of the people who have given these lectures in the past. In partic-
ular:

http://www.techfak.uni-bielefeld.de/fachschaft/skripten.html

http://www.math.uni-bielefeld.de/ mspiess/Lehrealt.html

http://www.math.uni-bielefeld.de/ froyshov/nwi2/index.html

http://www.math.uni-bielefeld.de/ froyshov/nwi/index.html

Some standard logical symbols commonly used in mathematics

• “a ∈ X” means, X is a set, and a is an element of X .

• “∅” is the empty set, which contains no elements.

• “X ∪ Y ” is the union of the sets X and Y . It is the set which contains the elements of X
and also the elements of Y .

• “X ∩ Y ” is the intersection. It is the set consisting of the elements which are in both X and
Y .

• “X \ Y ” is the set difference. It is the set containing the elements of X which are not in Y .

• “X ⊂ Y ” means that X is a subset of Y . All the elements of X are also elements of Y .
Note that many people use the notationX ⊆ Y to expressly say that equalityX = Y is also
possible. But I will assume that when writing X ⊂ Y , the case X = Y is also possible.

• “∀” means “for all”, as for example: “∀x, x ≥ 0”. That means: “for all x, we have the
condition x ≥ 0”.

• “∃” means “there exists”.

• “P ⇒ Q” means that P and Q are logical statements, and if P is true, then Q must also be
true. (If P is false, then the combined statement “P ⇒ Q” is true, regardless of whether or
not Q is true.)

• “P ⇔ Q” means that both P ⇒ Q and also Q⇒ P are true. That is, P and Q are logically
equivalent; they are simply different ways of saying the same thing. (Although often it is
not immediately clear that this is the case. Thus we need to think about why it is true,
constructing a proof.)
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Chapter 1

Numbers, Arithmetic, Basic Concepts of
Mathematics

To begin with, we have the “usual” and simple systems of numbers:

• The natural numbers N = {1, 2, 3, 4, . . . }
• The whole numbers, or integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
• The rational numbers Q = {ab : a ∈ Z, b ∈ N}

But then we have somewhat more unusual systems:

• The real numbers R

• The complex numbers C

• The residue classes modulo n, for n ∈ N, namely Z/nZ

1.1 How computers deal with numbers

A computer deals with information by manipulating many tiny transistors, each of which either
does, or does not, have a particular electrical potential applied to it. We can think of this as the
transistor representing either the digit “0”, or else the digit “1”. In this way, natural numbers can
be represented according to the following scheme.

1 : 1
2 : 10
3 : 11
4 : 100
5 : 101
6 : 110
7 : 111
8 : 1000

etc.

This is arithmetic to the base 2. The binary system of arithmetic. Earlier “computers”: mechanical
adding machines, often had toothed wheels for representing numbers. Thus some of the wheels
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might have had 10 teeth, representing the numbers in our decimal system. Also persons counting
numbers on the fingers of their two hands represent numbers in the decimal system. Mechanical
clocks have toothed wheels with 60 teeth, representing the numbers to the base 60. This system
continues the tradition of arithmetic used by the Babylonians in the ancient world.

All of these machines — clocks, mechanical calculators, fingers, computers — are finite sys-
tems. Therefore, since the set of natural numbers N is infinite, it follows that there is a limit to
how much can be represented in each machine. For example, a mechanical clock generally goes
through a cycle of 12 hours, then at midnight, or noon, it starts over again from the beginning.

Similarly, the standard unit of a computer, a byte, consists of 8 transistors, so it can only
represent 28 = 256 different numbers. The usual convention is to think of these as being the
integers from 0 to 255.

How do we do arithmetic in the system of numbers from 0 to 255? Well, for example 2+2=4
is OK, since both the numbers 2 and 4 are represented in one byte. Namely, we have

00000010 + 00000010 = 00000100

in binary arithmetic. But how about 200+200? Unfortunately, 400 is not represented in the byte,
since the number 400 is greater than 255. In fact, when the computer reaches 256, it simply cycles
back to zero. Specifically, we have that 200 is 11001000 in the binary system. Therefore 200+200
is

11001000 + 11001000 = 1 10010000︸ ︷︷ ︸
8 places

.

Unfortunately, there are 9 places (or bits) in 110010000. This is too much to fit into a byte.
Therefore the last bit is simply removed, discarded. So we have

11001000 + 11001000 = 10010000.

Or, expressed in the more usual decimal notation, we have

200 + 200 = 144.

What we are doing here is modular arithmetic, modulo 256.

1.2 The system Z/nZ for n = 256

We have seen that in the system of modular arithmetic modulo 256, we have the equation

200 + 200 = 144.

Another way to think about this is to say that in the usual integer arithmetic of Z we have

200 + 200 = 400 = 1× 256 + 144.

More generally, given any integer x, and any natural number n, we have two unique integers a and
b, such that

x = an+ b,

where 0 ≤ b < n. The number a is the result of the whole number division of x by n, and b is
the remainder which results from this whole number division. For example, in the C language, the
whole number division of x by n is given by the instruction
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a = x / n;

The remainder term is given by the instruction

b = x % n;

In mathematics, we use the notation
b = x mod n.

In particular then, we have the equation1

144 = 400 mod 256.

Arithmetic generally has four operations: addition, subtraction, multiplication, and division.
So let us say we have two numbers, x and y in our system Z/nZ. That is, we can assume that
0 ≤ x, y < n. Then we simply define the sum of x and y to be

(x+ y) mod n.

Similarly, the difference is
(x− y) mod n,

and the product is
(x× y) mod n.

All of this is easy, since x± y and x× y are always integers. However, what about division? The
number xy is only occasionally an integer. And what do we do when y = 0?

The solution to this problem is to think of division as being the problem of solving a simple
equation. Thus the number xy is really the solution z of the equation

z × y = x.

For example, what is 1
3 in our modular arithmetic modulo 256? That is, the problem is to find

some number z with 0 ≤ z < 256, such that

1 = (z × 3) mod 256.

The answer? It is z = 171, since 171× 3 = 513, and 1 = 513 mod 256.
On the other hand, what is 1

2 modulo 256? That is, let z be such that

1 = (z × 2) mod 256.

What is z? The answer is that there is no answer! That is to say, the number 1
2 does not exist in the

modular arithmetic modulo 256. The reason for this is that for all z we always have z × 2 being
an even number, yet since 256 is also an even number, it must be that the equation 1 = y mod 256
can only have a solution when y is an odd number.

So we see that arithmetic modulo 256 gives us problems when it comes to division. In fact,
all of this discussion just shows that arithmetic in computers is much more complicated than we
might at first have thought.

1Actually, for historical reasons, it is more correct to write “b ≡ x mod n” here. That is, we have an “equivalence
relation”. I will come back to this later. But for the moment, we should just think of the number “x mod n” as being
the result of the arithmetical operation of finding the remainder after dividing x by n. This is always a number between
0 and n− 1.
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1.3 Equivalence relations, equivalence classes

Definition. Let M be a set. The set of all pairs of elements of M is denoted by M ×M . Thus

M ×M = {(a, b) : a, b ∈M}.
This is called the Cartesian product of M with itself.2 An equivalence relation “∼” on M is a
subset of M ×M . Given two elements a, b ∈ M , we write a ∼ b to denote that the pair (a, b) is
in the subset. For an equivalence relation, we must have:

1. a ∼ a, for all a ∈M (reflectivity)

2. if a ∼ b, then we also have b ∼ a (symmetry)

3. if a ∼ b and b ∼ c the we also have a ∼ c (transitivity)

If a ∼ b, then we say that “a is equivalent to b”.

Examples

1. Given any set M , the most trivial possible equivalence relation is simply equality. Namely
a ∼ b only when a = b.

2. In Z, the set of integers, let us say that for two integers a and b, we have a ∼ b if and only if
a− b is an even number. Then this is an equivalence relation on Z.

3. Again in Z, this time take some natural number n ∈ N. Now we define a to be equivalent to
b if and only if there exists some further number x ∈ Z with

a− b = xn.

That is, the difference a − b is divisible by n. And again, this is an equivalence relation on
Z.

(Obviously, the example 2 is just a special case of example 3. In fact, it is the equivalence
relation which results when we take n = 2.)

Definition. Given a set M with an equivalence relation ∼, then we have M being split up into
equivalence classes. For each a ∈M , the equivalence class containing a is the set of all elements
of M which are equivalent to a. The equivalence class containing a is usually denoted by [a].
Therefore

[a] = {x ∈M : x ∼ a}.
Note that if we have two equivalence classes [a] and [b] such that their intersection is not empty

[a] ∩ [b] 6= ∅,
then we must have [a] = [b]. To see this, assume that x ∈ [a] ∩ [b]. Then x ∼ a and x ∼ b.
But x ∼ a means that a ∼ x, since the equivalence relation is symmetric. Then a ∼ b since it is
transitive. If then y ∈ [b], then we have y ∼ b. But also b ∼ a, and so using the transitivity of the
equivalence relation again, we have y ∼ a. Thus y ∈ [a]. So this shows that [b] is contained in [a].
i.e. [b] ⊆ [a]. A similar argument shows that also [a] ⊆ [b]. Therefore we have shown that:

Theorem 1.1. Given an equivalence relation ∼ on a set M , then the equivalence relation splits
M into a set of disjoint equivalence classes.

2More generally, if X and Y are two different sets, then the Cartesian product X × Y is the set of all pairs (x, y),
with x ∈ X and y ∈ Y .
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1.4 The system Z/nZ revisited

In fact, rather than thinking about Z/nZ as the set of numbers {0, . . . , n− 1}, it is more usual to
say that Z/nZ is the set of equivalence classes with respect to the equivalence relation given by
x ∼ y if and only if x− y is divisible by n. Thus

Z/nZ = {[0], . . . , [n− 1]}.

But rather than writing x ∼ y, it is more usual to write

x ≡ y mod n

when describing this equivalence relation. One says that “x is congruent to y modulo n”.
Addition and multiplication in Z/nZ are given by the simple rules

[x] + [y] = [x+ y]

and
[x]× [y] = [x× y],

for any two numbers x, y ∈ Z.
However, we are still left with the problem of division in Z/nZ. That is, given a, b ∈ Z, does

there exist an x ∈ Z such that ax ≡ b mod n?

1.5 The greatest common divisor function

To solve this equation, we first need to think about greatest common divisors.

Definition. Let x, y ∈ Z. Then we say that x is a divisor of y if there exists z ∈ Z with y = xz.
Given two numbers a, b ∈ Z, the number d is a common divisor of a and b if d is a divisor of both
a and b. The greatest common divisor of a and b, is denoted by gcd(a, b).

Obviously, every integer is a divisor of the number zero. Furthermore, if x divides y, then
obviously x also divides −y. Thus we can restrict our thinking to the integers which are either
zero, or else positive. Given two integers a and b, not both zero, then obviously the number 1 is a
common divisor. Therefore we always have gcd(a, b) ≥ 1.

Theorem 1.2. Given any two integers a and b, not both zero, then there exist two further integers
x and y, such that

xa+ yb = gcd(a, b).

Proof. If one of the integers is zero, say a = 0, then obviously gcd(a, b) = b (we assume here that
b is positive). So we have3

gcd(a, b) = b = 0 · a+ 1 · b,
and the theorem is true in this case.

Let us therefore assume that a and b are both positive integers. If the theorem were to be false,
then it must be false for some pair of integers a, b ∈ N. Assume that a ≤ b, and that this pair is the
smallest possible counterexample to the theorem, in the sense that the theorem is true for all pairs
of integers a′ ≤ b′, with b′ < b.

3From now on I will use the more usual notation a · b, or even just ab, for multiplication, rather than the notation
a× b, which I have been using up till now.
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But we can immediately rule out the possibility that a = b, since in that case we would have
gcd(a, b) = b, and again we would have the solution

gcd(a, b) = b = 0 · a+ 1 · b.

Thus the pair a, b would not be a counterexample to the theorem. Therefore we must have a < b
So let c = b − a. Then c ∈ N and the theorem must be true for the smaller pair c, a. Thus

there exist x′, y′ ∈ Z with

gcd(a, c) = x′a+ y′c = x′a+ y′(b− a) = (x′ − y′)a+ y′b.

But what is gcd(a, c) = gcd(a, b − a)? Obviously, any common divisor of a and b is also a
common divisor of a and b − a. Also any common divisor of a and b − a must be a common
divisor of both a and b. Therefore gcd(a, c) = gcd(a, b), and so we have

gcd(a, b) = (x′ − y′)a+ y′b,

which contradicts the assumption that the pair a, b is a counterexample to the theorem. It follows
that there can be no counterexample, and the theorem must always be true.

Solving the equation ax ≡ b mod n

So let a, b ∈ Z be given, together with a natural number n ∈ N. The question is, does there exist
some x ∈ Z with ax ≡ b mod n? That is to say, does n divide the number ax− b? Or put another
way, does there exist some y ∈ Z with

ax− b = yn ?

That is the same as
b = xa+ (−y)n.

Therefore, we see that the equation ax ≡ b mod n can only have a solution if every common
divisor of a and n is also a divisor of b. That is, we must have gcd(a, n) being a divisor of b.

On the other hand, assume that gcd(a, n) does, in fact, divide b. Say b = z · gcd(a, n). Then,
according to the previous theorem, there must exist u, v ∈ Z with

gcd(a, n) = ua+ vn.

Therefore, we have

b = z · gcd(a, n) = z(ua+ vn) = (zu)a+ (zv)n = xa+ (−y)n,

when we take x = zu and y = −zv.
To summarize:

Theorem 1.3. The equation ax ≡ b mod n has a solution if and only if gcd(a, n) is a divisor of
b. If b = z · gcd(a, n) then a solution is x = zu, where gcd(a, n) = ua+ vn.
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The system Z/pZ, when p is a prime number

The prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, . . . . A prime number p ∈ N is such that it
has no divisors in N other than itself and 1. Or put another way, for all 1 ≤ a < p we have
gcd(a, p) = 1. Therefore, according to the previous theorem, for all [a] ∈ Z/pZ with [a] 6= [0]
there must exist some [b] ∈ Z/pZ with [a][b] = [1]. That is to say,

ab ≡ 1 mod p

so that in the modular arithmetic modulo p, we have that 1
a is b. Therefore it is always possible to

divide numbers by a. In fact, dividing by a is simply the same as multiplying by b.
On the other hand, if n is not a prime number, then there exists some a with 1 < a < n and

gcd(a, n) > 1. In this case, according to the theorem, there can be no solution to the equation

ax ≡ 1 mod n.

Therefore it is impossible to divide numbers by a in modular arithmetic modulo n when n is not a
prime number and gcd(a, n) > 1.

1.6 Mathematical induction

An example

The formula
n∑

k=1

1
k(k + 1)

=
n

n+ 1

is true for all n ∈ N. How do I know that this is true??

Well, first of all, I know that it is true in the simple case n = 1. For here we just have
1∑

k=1

1
k(k + 1)

=
1

1(1 + 1)
=

1
1 + 1

.

But then I know it’s true for n = 2 as well, since
2∑

k=1

1
k(k + 1)

=
1

2(2 + 1)
+

1∑

k=1

1
k(k + 1)

=
1

2(2 + 1)
+

1
1 + 1

=
2

2 + 1
.

Note that the second equation follows, since I already know that the formula is true for the case
n = 1.

More generally, assume that I know that the formula is true for the case n, for some particular
n ∈ N. Then, exactly as before, I can write

n+1∑

k=1

1
k(k + 1)

=
1

(n+ 1)((n+ 1) + 1)
+

n∑

k=1

1
k(k + 1)

=
1

(n+ 1)((n+ 1) + 1)
+

n

n+ 1

=
(n+ 1)

(n+ 1) + 1
.
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Therefore, the proof that the formula is true progresses stepwise through the numbers 1, 2, 3, . . . ,
and so we can conclude that the formula is true for all n ∈ N.

This is the principle of mathematical induction (or vollständige Induktion in German). Let
P (n) be some statement which depends on the number n, for arbitrary n ∈ N. Then P (n) is true
for all n ∈ N if:

• First of all, the special case P (1) can be proved, and

• then it can be proved that if P (n) is true for some arbitrarily given n ∈ N, then also P (n+1)
must be true.

We will be using mathematical induction very often here in these lectures! It is one of the most
basic principles of mathematics.

1.7 The binomial theorem: using mathematical induction

The binomial theorem is concerned with what happens when the expression (a+ b)n is multiplied
out. For example, we have

1 : a+ b
2 : a2 + 2a+ b2

3 : a3 + 3a2b+ 3ab2 + b3

4 : a4 + 4a3b+ 6a2b2 + 4ab3 + b4

5 : a5 + 5a4b+ 10a3b2 + 10a2b3 + 5ab4 + b5

etc.

Gradually we see a pattern emerging, namely Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

and so on. . .
Writing out the expression (a + b)n as a sum, one uses the binomial coefficients,

(
n
k

)
. Thus

one writes

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk.

So looking at Pascal’s triangle, we see that
(
2
0

)
= 1,

(
7
4

)
= 35, and so forth. The binomial theorem

is the formula that says that for all n ∈ N and 0 ≤ k ≤ n, we have
(
n

k

)
=

n!
k!(n− k)! .

But for the moment, let us simply define the number
(
n
k

)
to be n!

k!(n−k)! , and then see if these are
truly the binomial coefficients.
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The expression n! is called “n-factorial”. For n ∈ N it is defined to be

n! = n · (n− 1) · (n− 2) · · · · · 3 · 2 · 1.

That is, just the product of all the numbers from 1 up to n. In the special case that n = 0, we
define

0! = 1.

So let’s see how this works out in the case
(
7
4

)
. We have

(
7
4

)
=

7!
4!(7− 4)!

=
7 · 6 · 5 · 4 · 3 · 2 · 1

(4 · 3 · 2 · 1) · (3 · 2 · 1)
= 35,

in agreement with Pascal’s triangle.

But how do we prove it in general?

Theorem 1.4. As in Pascal’s triangle, we have
(
n+ 1
k

)
=

(
n

k − 1

)
+

(
n

k

)
,

that is
(n+ 1)!

k!((n+ 1)− k)! =
n!

(k − 1)!(n− (k − 1))!
+

n!
k!(n− k)! ,

for all n ∈ N and 1 ≤ k ≤ n.

Proof.

n!
(k − 1)!(n− (k − 1))!

+
n!

k!(n− k)! =
k · n!

k!(n− k + 1))!
+

(n− k + 1) · n!
k!(n− k + 1)!

=
k · n!

k!(n− k + 1))!
+

(n+ 1) · n!− k · n!
k!(n− k + 1)!

=
(n+ 1) · n!

k!(n− k + 1))!

=
(n+ 1)!

k!((n+ 1)− k)!

Theorem 1.5. For all n ∈ N and 0 ≤ k < n, we have

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk,

with (
n

k

)
=

n!
k!(n− k)! .

9



Proof. Induction on n. For the case n = 1, the theorem is trivially true. Therefore we assume
that the theorem is true in the case n, and so our task is to prove that under this assumption, the
theorem must also be true in the case n+ 1. We have:

(a+ b)n+1 = (a+ b) · (a+ b)n

= (a+ b)

(
n∑

k=0

(
n

k

)
an−kbk

)

= a ·
(

n∑

k=0

(
n

k

)
an−kbk

)
+ b ·

(
n∑

k=0

(
n

k

)
an−kbk

)

=
n∑

k=0

(
n

k

)
an−k+1bk +

n∑

k=0

(
n

k

)
an−kbk+1

=
n∑

k=0

(
n

k

)
an−k+1bk +

n+1∑

k=1

(
n

k − 1

)
an−(k−1)bk

=
(
n

0

)
an+1 +

n∑

k=1

((
n

k

)
+

(
n

k − 1

))
a(n+1)−kbk +

(
n

n

)
bn+1

=
n+1∑

k=0

(
n+ 1
k

)
a(n+1)−kbk

Here we have:

• the first equation is trivial,

• the second equation is the inductive hypothesis,

• the third and fourth equations are trivial,

• the fifth equation involves substituting k − 1 for k in the second term,

• the sixth equation is trivial, and

• the seventh equation uses the theorem which we have just proved and, also the fact that(
n
0

)
=

(
n
n

)
= 1, for all n ∈ N.

1.8 The basic structures of algebra: groups, fields

Now that we have gotten the binomial theorem out of the way, let us return to thinking about
numbers. We have N ⊂ Z ⊂ Q. The set of natural numbers N has addition and multiplication, but
not subtraction and division.4 The set of integers Z has addition, subtraction and multiplication,
but division fails. However, in the set of rational numbers Q, all of these four basic operations can
be carried out. (Of course, we exclude the special number zero when thinking about division.)

4Subtraction fails in N: for example 1− 2 = −1, but −1 is not an element of N. Also division obviously fails: for
example 1/2 is also not an element of N.
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Furthermore, in the arithmetical system Z/nZ we have addition, subtraction and multiplica-
tion. If (and only if) n is a prime number, then we also have division.

Arithmetical systems in which these four operations can be sensibly carried out are called
fields. (In German, Körper.) In order to define the concept of a field, it is best to start by defining
what we mean in mathematics when we speak of a group. But in order to do that, we should first
say what is meant when we speak of a function, or mapping.

Definition. Let X and Y be non-empty sets. A function f : X → Y is a rule which assigns to
each element x ∈ X a unique element f(x) ∈ Y .

Examples

• For example, f : N→ N with f(n) = n2 is a function.

• But f(n) = −n is not a function from N to N, since −n 6∈ N, for all n ∈ N.

• On the other hand, f(n) = −n is a function from N to Z. That is, f : N→ Z.

Definition. A group is a set G, together with a mapping f : G×G→ G satisfying the following
three conditions:

• f((f(a, b), c)) = f((a, f(b, c))), for all a, b and c in G.

• There exists an element e ∈ G with f((e, g)) = f((g, e)) = g, for all g ∈ G.

• For all g ∈ G there exists a element, usually denoted by g−1 ∈ G, such that f((g−1, g)) =
f((g, g−1)) = e.

Actually, this mapping f : G × G → G is usually thought of as being an abstract kind of “mul-
tiplication”. Therefore, we usually write ab or a · b, rather than this cumbersome f((a, b)). With
this notation, the group axioms become

• (ab)c = a(bc), for all a, b and c in G (The Associative Law).

• There exists a special element (the “unit element”) e ∈ G, with eg = ge = g, for all g ∈ G
(The existence of the unit, or “neutral” element).

• For all g ∈ G there exists an inverse g−1 ∈ G with g−1g = gg−1 = e. (The existence of
inverses).

If, in addition to this, the Commutative Law holds:

• ab = ba, for all a and b in G,

then the group G is called an “Abelian group”.

Remark

When thinking about numbers, you might think that it is entirely natural that all groups are Abelian
groups. However this is certainly not true! Many of the groups we will deal with in these lectures
are definitely not Abelian. For example the matrix groups — which are used continuously when a
computer calculates 3-dimensional graphics — are non-Abelian groups.

But now we can define the idea of a field.
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Definition. A field is a set F , together with two operations, which are called “addition” and
“multiplication”. They are mappings

+ : F × F → F

· : F × F → F

satisfying the following conditions (or “axioms”).

• F is an Abelian group with respect to addition. The neutral element of F under addition is
called “zero”, denoted by the symbol 0. For each element a ∈ F , its inverse under addition
is denoted by −a. Thus, for each a, we have a+ (−a) = 0.

• Let F \ {0} denote the set of elements of F which are not the zero element. That is, we
remove 0 from F . Then F \ {0} is an Abelian group with respect to multiplication. The
neutral element of multiplication is called “one”, denoted by the symbol 1. For each a ∈ F
with a 6= 0, the inverse is denoted by a−1. Thus a · a−1 = 1.

• The “Distributive Law” holds: For all a, b and c in F we have both

a(b+ c) = ab+ ac, and

(a+ b)c = ac+ bc.

Some simple consequences of this definition are the following.

Theorem 1.6. Let F be a field. Then the following statements are true for all a and b in F .

1. Both −a and a−1 (for a 6= 0) are unique.

2. a · 0 = 0 · a = 0,

3. a · (−b) = −(a · b) = (−a) · b,
4. −(−a) = a,

5. (a−1)−1 = a, if a 6= 0,

6. (−1) · a = −a,

7. (−a)(−b) = ab,

8. ab = 0⇒ a = 0 or b = 0.

Proof. This involves a few simple exercises in fiddling with the definition.

1. If a+ a′ = 0 and a+ a′′ = 0 then a′ + (a+ a′′) = a′ + 0. Therefore

a′′ = 0 + a′′ = (a′ + a) + a′′ = a′ + (a+ a′′) = a′ + 0 = a′.

The fact that a−1 is unique is proved similarly.
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2. Since 0 + 0 = 0, we have a(0 + 0) = a · 0 + a · 0 = a · 0. Then

0 = a · 0 + (−(a · 0))
= (a · 0 + a · 0) + (−(a · 0))
= a · 0 + (a · 0 + (−(a · 0)))
= a · 0 + 0
= a · 0.

The fact that 0 · a = 0 is proved similarly.

3. 0 = a · 0 = a(b+ (−b)) = ab+ a(−b). Therefore we must have −ab = a(−b). The other
cases are similar.

4. −a+ (−(−a)) = 0. But also −a+ a = 0, and from (1) we know that additive inverses are
unique. Therefore a = −(−a).

5. (a−1)−1 = a is similar.

6. We have
0 = 0 · a = a(1 + (−1)) = 1 · a+ (−1) · a = a+ (−1)a.

Therefore (−1)a = −a.

7.
0 = 0 · (−1) = (1 + (−1))(−1) = −1 + (−1)(−1).

Therefore
1 + 0 = 1 = 1 + (−1) + (−1)(−1) = (−1)(−1).

Then
(−a)(−b) = ((−1)a)((−1)b) = ((−1)(−1))ab = 1 · ab = ab.

8. If a 6= 0 then
b = 1 · b = (a−1a)b = a−1(ab) = a−1 · 0 = 0.

Which groups and fields are important for these lectures?

The groups we will use:

• Of course fields are themselves groups under addition. So all fields — that is to say, all the
number systems we will consider — are themselves groups.

• Linear algebra is concerned with vectors. A system of vectors is called a vector space. Each
vector space is a group, with respect to vector addition.

• The set of linear transformations (rotations, inversions, changes of perspective) of a vector
space are described using invertible, square matrices. These matrices form a non-Abelian
group under matrix multiplication.

• When dealing with determinants of matrices, we will consider the group of permutations of
n objects. This is also a non-Abelian group.
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The fields we will use:

• We have already seen the two fields which give us the most basic number systems in math-
ematics: namely the rational numbers Q and the modular system Z/pZ, for prime numbers
p.

• The real numbers R are constructed by “filling in the gaps” in Q. This is the basis of real
analysis, which will constitute half of these lectures.

• But after constructing R, we see that something is still missing. Many polynomials, for
example the polynomial x2 + 1, have no roots in the system of numbers R. To solve this
problem, the system of complex numbers C will be constructed.

1.9 Analysis and Linear Algebra

Mathematics, as it is taught today in universities, always begins with two separate series of lectures.
Namely Analysis and Linear Algebra. Only later, particularly when it comes to the subject of
functional analysis, do we see that analysis and linear algebra are, in many ways, just two different
aspects of the same thing. But, unfortunately (or fortunately??) you, as students of information
technology, will probably leave pure mathematics before reaching that stage. In any case, I will
continue these lectures by talking about analysis and linear algebra as if they were two entirely
different subjects. In these lecture notes, they will be dealt with in two different chapters, which
will be developed simultaneously.

Analysis

Analysis can be thought of as being the study of the real and the complex numbers. The idea of
functions plays the important role. Which functions are continuous, or differentiable? How does
integration work? How do we solve simple systems of differential equations? How should we
define the basic functions, such as the exponential function, the logarithm function, the trigono-
metric functions, etc.? For this, we need to think about whether or not a given infinite series of
numbers converges, or not.

Linear Algebra

This is concerned with geometry. How can a computer work out movements, perspective in 3-
dimensional space, and then represent these on a 2-dimensional screen? What is a basis for a
coordinate system? When is a set of vectors linearly independent? How are linear mappings of
vector spaces represented by matrices? And then, taking a step away from geometry, how do we
solve systems of linear equations using the methods of linear algebra? This last question is very
important when it comes to the use of computers in economics.
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Chapter 2

Analysis

2.1 Injections, Surjections, Bijections

The subject of mathematical analysis is mainly concerned with functions, or mappings.1 We have
already seen that a function is a rule f , which assigns to each element x ∈ X of a set X , a unique
element f(x) ∈ Y of a set Y . One writes

f : X → Y.

Given such a function f from X to Y , one says that X is the domain of f . Furthermore, the set
{f(x) : x ∈ X} ⊆ Y is the range of f . One writes f(X) for the range of X . Thus,

f(X) = {f(x) : x ∈ X}.

Given any element y ∈ Y , one writes f−1(y) to denote the subset of X consisting of all the
elements which are mapped onto y. That is,

f−1(y) = {x ∈ X : f(x) = y}.

Of course, if f is not a surjection, then f−1(y) must be the empty set, for some of the elements of
Y .

Definition. Let X and Y be sets, and let f : X → Y be a function. Then we say that:

• f is an injection if, given any two different elements x1, x2 ∈ X with x1 6= x2, we must
have f(x1) 6= f(x2). Or put another way, the only way we can have f(x1) = f(x2) is when
x1 = x2.

• f is a surjection if, for all y ∈ Y , there exists some x ∈ X with f(x) = y. That is, if
f : X → Y is a surjection, then we must have f(X) = Y .

• f is a bijection if it is both an injection, and also a surjection.

1That is, “Funktionen” and “Abbildungen” in German. The words function and mapping both mean the same thing
in mathematics. Perhaps some people would say that a mapping f : X → Y is a function if the set Y is some sort of
system of “numbers”, otherwise it is a mapping. But we certainly needn’t make this distinction.
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Examples

Consider the following functions f : Z→ Z:

• f(a) = 2a, for all a ∈ Z. This is an injection, but it is not a surjection since only even
numbers are of the form 2a, for a ∈ Z. For example, the number −3 is in Z, yet there exists
no integer a with 2a = −3.

• f(a) =

{
a/2, if a is even,
(a+ 1)/2, if a is odd,

is a surjection, but it is not an injection. For example, f(0) = 0 = f(−1).

• f(a) = −a, for all a ∈ Z, is a bijection.

Theorem 2.1. Let f : X → Y be an injection. Then there exists a surjection g : Y → X .
Conversely, if there exists a surjection f : X → Y , then there exists an injection g : Y → X .

Proof. Assume that there exists an injection f : X → Y . A surjection g : Y → X can be
constructed in the following way. First choose some particular element x0 ∈ X . Then a surjection
g : Y → X is given by the rule

g(y) =

{
x, where f(x) = y if y ∈ f(X),
x0, if y 6∈ f(X),

for all y ∈ Y .
Going the other way, assume that there exists a surjection f : X → Y . Then an injection

g : Y → X can be constructed in the following way. Since f is a surjection, we know that the set
f−1(y) ⊂ X is not empty, for each y ∈ Y . Therefore, for each y ∈ Y , choose some particular
element xy ∈ f−1(y). Then the injection g : Y → X is given by the rule g(y) = xy, for all
y ∈ Y .

Remark: This procedure of choosing elements from a collection of sets is only valid if we use
the “axiom of choice” in the theory of sets. This is certainly the usual kind of mathematics which
almost all mathematicians pursue. However it is perfectly possible to develop an alternative theory
of mathematics in which the axiom of choice is not true. In this alternative mathematics, this proof
would not be valid.

Furthermore, we have the following theorem about bijections.

Theorem 2.2 (Schröder-Bernstein). Let X and Y be sets. Assume that there exists an injection
f : X → Y , and also there exists a surjection g : X → Y . Then there exists a bijection
h : X → Y .

Proof. An exercise.

2.2 Constructing the set of real numbers R

2.2.1 Dedekind cuts

The simplest method for defining real numbers is to use the technique of Dedekind cuts.
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Definition. A Dedekind cut of the rational numbers Q is a pair of nonempty subsets A, B ⊂ Q,
such that if a ∈ A and x < a, then x ∈ A as well. Furthermore, if b ∈ B and y > b, then y ∈ B
as well. Also A ∪ B = Q and A ∩ B = ∅. Finally, we require that the subset A has no greatest
element.

Then the set of real numbers R can be defined to be the set of Dedekind cuts of the rational
numbers. One may think of each real number as the “point” between the “upper” set B and the
“lower” set A. If the given real number happens to be a rational number, then it is the smallest
number in the set B.

For example, it is well known that the number
√

2 is irrational.

Theorem 2.3. There exists no rational number a
b with

(
a
b

)2 = 2.

Proof. Assume to the contrary that there does indeed exist such a rational number a
b . Perhaps

there exist many such rational square roots of 2. If so, choose the smallest one, ab , in the sense that
if a

′
b′ is also a square root of 2, then we must have b ≤ b′.

Now, since a
b is a square root of 2, we must have

(a
b

)2
= 2.

Therefore,
a2 = 2b2.

But this can only be true if a is an even number. So let us write a = 2c, with c ∈ Z. Then we have

a2 = 4c2 = 2b2.

Or
b2 = 2c2.

Therefore b is also an even number, say b = 2d. But in this case we must have c
d = a

b , so c
d is also

a square root of 2. But this is impossible, since d < b and we have assumed that ab was a smallest
possible square root of 2.

Given any rational number q ∈ Q, we have q2 being also a rational number. So we can make
a Dedekind cut by taking the pair (A,B), with B being all the positive rational numbers b with
b2 > 2. Then A is the rest of the rational numbers. That is, A is the set of rational numbers less
than

√
2, and B is the set of rational numbers greater than

√
2. So this Dedekind cut defines the

real number
√

2.
Of course the rational numbers themselves can also be represented in terms of Dedekind cuts.

For example the number 2 is simply the Dedekind cut (A,B), with A = {q ∈ Q : q < 2} and
B = {q ∈ Q : q ≥ 2}. So here, the number 2 is the smallest number in the set B.

The reason Dedekind brought in this definition in the 19th century is that with it, it is possible
to define the real numbers without, having to use the axiom of choice.

2.2.2 Decimal expansions

For example, we have
1
3

= 0.333333333333333 . . . .

Also √
2 = 1.414213562373095 . . . .
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Another well-known irrational number is

π = 3.141592653589793 . . . .

As we know, a rational number has a repeating decimal expansion. On the other hand, irrational
numbers do not repeat when written out as decimal expansions.

One might say that, for example, the number

0.999999999999999999 . . .

is the same as the number
1.000000000000000000 . . . ,

which, of course, is really just the number one. But if we exclude decimal expansions which
end in a never-ending sequence of 9s, then the decimal expansion for each real number is unique.
Therefore, an alternative way to define the real numbers is to say that they are nothing more than
the set of all possible decimal expansions which do not end with an infinite sequence of 9s.

2.2.3 Convergent sequences

But the most usual method of defining the real numbers is as equivalence classes of convergent
sequences. We need the idea of convergent sequences in any case, so let us take the set of real
numbersR as given (using either of the previous definitions), and consider the theory of sequences,
either in Q or in R itself.2

2.3 Convergent sequences

A sequence is simply an infinite list of numbers. For example, the sequence

1, 2, 3, 4, 5, 6, 7, . . .

is certainly easy to think about, but obviously it doesn’t converge. The numbers in the sequence get
larger and larger, increasing beyond all possible finite bounds. Another example is the sequence

1,−1, 1,−1, 1,−1, 1,−1, . . .

This sequence remains bounded, just jumping back and forth between the two numbers 1 and −1.
But it never converges to anything; it always keeps jumping back and forth.

An example of a convergent sequence is

1,
1
2
,
1
3
,
1
4
,
1
5
,
1
6
,
1
7
, . . .

This sequence obviously converges down to zero.
In general, when thinking about abstract sequences of numbers, we write

a1, a2, a3, . . .

So a1 is the first number in the sequence. a2 is the second number, and so forth. A shorter notation,
for representing the whole sequence is

(an)n∈N.

But when thinking about the concept of “convergence”, it is clear that we also need an idea of
the distance between two numbers.

2Again — and this is the last time I will mention this fact — the theory of convergent sequences requires the axiom
of choice.
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Definition. Given a real (or rational) number x, the absolute value of x is given by

|x| =
{
x, if x ≥ 0,
−x, if x < 0.

So one can think of |x| as being either zero, if x is zero, otherwise |x| is the distance of x from
zero. More generally, given two numbers a and b, the distance between them is |a− b|.

It is a simple matter to verify that the triangle inequality always holds. That is, for all x, y ∈ R,
we always have

|x+ y| ≤ |x|+ |y|.
Definition. The sequence (an)n∈N converges to the number a if, for all positive numbers ε > 0,
there exists some sufficiently large natural numberNε ∈ N, such that |a−an| < ε, for all n ≥ Nε.
In this case, we write

lim
n→∞ an = a.

If the sequence does not converge, then one says that it diverges.

This definition is rather abstract. But, for example, it doesn’t really tell us what is happening
with the simple sequence 1,−1, 1,−1, 1,−1, . . . Although this sequence does not converge —
according to our definition — still, in a way it “really” converges to the two different points 1 and
−1.

2.3.1 Bounded sets

Given the set of all real numbers R, let us consider some arbitrarily given subset A ⊂ R.

Definition. We will say that A ⊂ R is bounded above, if there exists some K ∈ R, such that
a ≤ K, for all a ∈ A. The number K is called an upper bound for A. Similarly, A is bounded
below if there exists some L ∈ R with a ≥ L, for all a ∈ A. Then L is a lower bound for A. If A
is bounded both above and below, then we say that A is bounded. In this case, clearly there exists
some M ≥ 0 with |a| ≤M , for all a ∈ A.

If A 6= ∅, and if A is bounded above, then the smallest upper bound is called the least upper
bound, written lub(A). Similarly, glb(A) is the greatest lower bound. The least upper bound
is also called the Supremum, that is, sup(A). The greatest lower bound is called the Infimum,
written inf(A).

Examples

• Let [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. Then [0, 1] is bounded, and the least upper bound is 1;
the greatest lower bound is 0.

• This time, take [0, 1) = {x ∈ R : 0 ≤ x < 1}. This is of course also bounded, and the least
upper bound is again 1, even though 1 is not contained in the subset [0, 1).

• N ⊂ R is bounded below (with greatest lower bound 1), but it is not bounded above.

• Z ⊂ R is not bounded below, and also not bounded above.
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2.3.2 Subsequences

Definition. Let i : N → N be a mapping such that for all n, m ∈ N with m < n, we have
i(m) < i(n). Then given a sequence (an)n∈N, a subsequence, with respect to the mapping i, is
the sequence (ai(n))n∈N.

For example, let’s look again at the sequence ((−1)n)n∈N. Then take the mapping i : N→ N
with i(n) = 2n. In this case, we have the subsequence

((−1)i(n))n∈N = ((−1)2n)n∈N =
((

(−1)2
)n)

n∈N = (1n)n∈N = (1)n∈N.

But this is just the trivially convergent constant sequence of 1s, which obviously converges to 1.
So we see that in this example, the sequence really consists of two convergent subsequences,

one of them converges to the number 1, and the other converges to the number −1.

On the other hand, the sequence (n)n∈N has no convergent subsequences. All subsequences
simply diverge to “infinity”. The problem is that it just keeps getting bigger, increasing beyond all
bounds. To avoid this, we have the following definition.

Definition. The sequence (an)n∈N is called bounded if the set {an : n ∈ A} is bounded in R.
(Similarly, we say the sequence is bounded above, or below, if those conditions apply to this set.)

Theorem 2.4. Let (an)n∈N be a bounded sequence in R. Then there exists a convergent subse-
quence, converging to a number in R.

Proof. Since the sequence is bounded, there must exist two real numbers x < y, such that

x ≤ an ≤ y,
for all n ∈ N. Let z = (x + y)/2. That is, z is the point half way between x and y. So now the
original interval from x to y has been split into two equal subintervals, namely the lower one from
x to z, and the upper one from z to y. Since our sequence contains infinitely many elements, it
must be that there are infinitely many in one of these two subintervals. For example, let’s say there
are infinitely many elements of the sequence in the lower subinterval. In this case, we set x1 = x
and y1 = z. If only finitely many elements of the sequence are in the lower subinterval, then there
must be infinitely many in the upper subinterval. In this case, we set x1 = z and y1 = y.

Then the interval from x1 to y1 is divided in half as before, and a subinterval x2 to y2 is chosen
which contains infinitely many elements of the sequence. And so on. By this method, we construct
two new sequences, (xn)n∈N and (yn)n∈N, and we have

x ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ · · · ≤ y4 ≤ y3 ≤ y2 ≤ y1 ≤ y
We have

yn − xn =
y − x
2n

.

Therefore the two sequences approach each other more and more nearly as n gets larger.
Now take (A,B) to be the following Dedekind cut of the rational numbers Q.

B = {q ∈ Q : q ≥ xn, ∀n}.
Then set A = Q \B. Let us say that a ∈ R is the real number which is given by the Dedekind cut
(A,B). Then clearly there is a subsequence (ai(n))n∈N with

lim
n→∞ ai(n) = a.
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Definition. The sequence (an)n∈N is called monotonically increasing if an ≤ an+1, for all n; it
is monotonically decreasing if an ≥ an+1, for all n; finally, one simply says that it is monotonic if
it is either monotonically increasing, or monotonically decreasing.

It is a simple exercise to show that theorem 2.4 implies that the following theorem is also true.

Theorem 2.5. Every bounded, monotonic sequence in R converges.

Conversely, we have that

Theorem 2.6. Every convergent sequence is bounded.

Proof. This is really rather obvious. Let the sequence (an)n∈N converge to the point a ∈ R.
Choose ε = 1. Then there exists some N(1) ∈ N with |a − an| < 1, for all n ≥ N(1). We have
the numbers |a1|, |a2|, . . . , |aN(1)|. Let M be either the largest of these numbers, or else |a| + 1,
whichever is larger. Then we must have |an| ≤ M , for all n ∈ N. Thus the sequence is bounded
below by −M , and above by M .

2.3.3 Cauchy sequences

Definition. A sequence (an)n∈N is called a Cauchy sequence if for all ε > 0, there exists a number
N(ε) ∈ N such that |an − am| < ε, for all m, n ≥ N(ε).

It is again an exercise to show that:

Theorem 2.7. Every convergent sequence is a Cauchy sequence.

The alternative, and more usual way to define the real numbers is as equivalence classes of
Cauchy sequences of rational numbers. The equivalence relation is the following.

Let (an)n∈N and (bn)n∈N be two Cauchy sequences, with an and bn ∈ Q, for all n. Then we
will say that the they are equivalent to one another if — and only if — for all ε > 0, there exists
some N(ε) ∈ N, with |an− bn| < ε, for all n ≥ N(ε). The fact that this is, in fact, an equivalence
relation is also left as an exercise. Then R is defined to be the set of equivalence classes in the set
of Cauchy sequences in Q.

But not all Cauchy sequences converge!!

If we always think about the set of real numbers R, then of course every Cauchy sequence con-
verges. As we have seen, this is simply a way of defining the set of real numbers!

But if we think about other sets which are not simply all of R, then it is definitely not true that
all Cauchy sequences converge. For example, let us consider the set

(0, 1] = {x ∈ R : 0 < x ≤ 1}.

Within this set, the sequence (1/n)n∈N is a Cauchy sequence. Considered in R, it converges to
the number 0. But considered within (0, 1] alone, it doesn’t converge, since 0 is not an element of
(0, 1].

Similarly, if we consider the set of rational numbersQ, then there are many Cauchy sequences
which converge to irrational numbers, when considered in R. Yet those irrational numbers do not
belong to Q. Therefore they do not converge in Q.
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On the other hand, all Cauchy sequences do converge in R.

For let (an)n∈N be a Cauchy sequence in R. Let A = {q ∈ Q : ∀N ∈ N, ∃n ≥ N, with q < an}.
Then let B = Q \ A. If it happens to be the case that A has a largest element, say x0, then that
should be transferred over to B. That is, we change A to A \ {x0} and B to B ∪ {x0}. This gives
a Dedekind cut of Q, representing the real number a ∈ R, say, and then we must have the Cauchy
sequence (an)n∈N converging to a.

To see this, let ε > 0 be chosen. The problem is to show that there exists some N ∈ N, such
that |a− an| < ε, for all n ≥ N .

Let us start by choosing some rational number q ∈ A with |a − q| < ε/6. Then there must
exist some other rational number p ∈ B, with |p − q| < ε/3. Looking at the definition of the set
A, we see that the number p must be such that for sufficiently large n, all the numbers an are less
than p. On the other hand, given such an an which is greater than q, then it must be between q and
p. That means that the distance between q and an must be less than ε/3.

Since the sequence (an)n∈N is a Cauchy sequence, there exists a number N(ε/3) ∈ N such
that for all n, m ≥ N(ε/3), we have |an − am| < ε/3. Then setting N = N(ε/3), and taking
m ≥ N with q < am, we have for all n ≥ N

|a− an| = |(a− q) + (q − am) + (am − an)|
≤ |a− q|+ |q − am|+ |am − an|
<

ε

3
+
ε

3
+
ε

3
= ε.

Therefore we have the theorem:

Theorem 2.8. All Cauchy sequences converge in R.

2.3.4 Sums, products, and quotients of convergent sequences

Let (an)n∈N and (bn)n∈N be two convergent sequences in R with

lim
n→∞ an = a and lim

n→∞ bn = b.

Then the sequence (an + bn)n∈N also converges, and

lim
n→∞(an + bn) = a+ b.

To see this, let ε > 0 be given, and let Na(ε), Nb(ε) ∈ N with |a− an| < ε/2 and |b− bm| < ε/2,
for all n ≥ Na(ε) and m ≥ Nb(ε). Then take N(ε) = max{Na(ε), Nb(ε)}, that is, the larger of
the two numbers. For any k ≥ N(ε) we then have

|(a+ b)− (ak − bk)| = |(a− ak) + (b− bk)|
≤ |(a− ak)|+ |(b− bk)|
<

ε

2
+
ε

2
= ε.

Here, we have used the triangle inequality for the absolute value function. Obviously, the differ-
ence of two sequences also converges to the difference of their limit points.

As for multiplication, again take the convergent sequences (an)n∈N and (bn)n∈N as before.
We have limn→∞ an = a and limn→∞ bn = b. Now let Ma > 0 be such that |a| and |an| ≤ Ma,
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for all n ∈ N. Also let Mb > 0 be such that |b| and |bm| ≤ Mb, for all m ∈ N. (These numbers
must exist, since convergent sequences are bounded.) Then, given ε > 0, choose Na(ε) such that
for all n ≥ Na(ε) we have

|a− an| < ε

2Mb
.

Similarly, Nb(ε) is chosen such that for all m ≥ Nb(ε) we have

|b− bn| < ε

2Ma
.

Then take N(ε) = max{Na(ε), Nb(ε)}. So again, For any k ≥ N(ε) we have

|a · b− ak · bk| = |a · b− a · bk + a · bk − akbk|
≤ |a · b− a · bk|+ |a · bk − akbk|
= |a||b− bk|+ |bk||a− ak|
< |a| ε

2Ma
+ |bk| ε

2Mb

≤ ε

2
+
ε

2
= ε.

Finally, assume that (an)n∈N is a convergent sequence such that the limit a is not zero. Then
the sequence (1/an)n∈N (at most finitely many elements of the sequence can be zero, and so we
disregard these zero elements) converges to 1/a. In order to see this, let M > 0 be a lower bound
of the sequence of absolute values (|an|)n∈N, together with |a|. Given ε > 0, this time choose
N(ε) ∈ N to be so large that for all n ≥ N(ε), we have |a− an| < εM2. Then

∣∣∣∣
1
a
− 1
an

∣∣∣∣ =
∣∣∣∣
a− an
aan

∣∣∣∣

=
1
|aan| |a− an|

<
εM2

|a||an| ≤ ε.

Then, in order to divide a convergent sequence by a convergent sequence which does not
converge to zero, we first take the convergent sequence of the inverses, then multiply with that.

In summary, we have

Theorem 2.9. Convergent series can be added, subtracted, multiplied and divided (as long as
they do not converge to zero), to obtain new convergent sequences which converge to the sum,
difference, product, and quotient of the limits of the given sequences.

2.4 Convergent series

Given a sequence (an)n∈N, we can imagine trying to find the sum of all the numbers in the se-
quence. Thus writing

∞∑

n=1

an,
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we have the series given by the sequence (an)n∈N. Obviously, many series do not converge. For
example the series

∞∑

n=1

n = 1 + 2 + 3 + 4 + 5 + 6 + 7 + · · ·

does not converge. Also the series

∞∑

n=1

(−1)n = −1 + 1− 1 + 1− 1 + 1− 1 + · · ·

does not converge. Why is this?

Definition. Given the series
∑∞

n=1 an, the n-th partial sum (for each n ∈ N) is the finite sum

Sn =
n∑

k=1

an.

The series
∑∞

n=1 an converges, if the sequence of its partial sums (Sn)n∈N converges. If the series
does not converge, then one says that it diverges.

So what are the partial sums for the series
∑∞

n=1(−1)n? Clearly, we have

Sn =

{
−1, if n is odd,
0, if n is even.

Therefore, the partial sums jump back and forth between -1 and 0, never converging.

A delicate case: the series
∑∞

n=1 1/n

But what about the series

∞∑

n=1

1
n

= 1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+
1
7

+ · · ·

Obviously the partial sums get larger and larger: Sn+1 > Sn, for all n ∈ N. But the growth of the
sequence of partial sums keeps slowing down. So one might think that this series could converge.
But does it?

In fact, it actually diverges. We can see this by looking at the sum split into blocks of ever
increasing length.

∞∑

n=1

1
n

= 1 +
1
2

+
1
3

+
1
4︸ ︷︷ ︸

>1/2

+
1
5

+
1
6

+
1
7

+
1
8︸ ︷︷ ︸

>1/2

+ · · ·

That is to say, for each n ∈ N, we have

2n∑

k=2n−1+1

1
k
>

2n∑

k=2n−1+1

1
2n

=
1
2
,

so we have an infinite series of blocks, each greater than 1/2. Therefore it must diverge.
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The geometric series

This is the series ∞∑

n=0

an,

for various possible numbers a ∈ R. (Note that it is sometimes convenient to take the sum from 0
to infinity, rather than from 1 to infinity. Also note that by convention, we always define a0 = 1,
even in the case that a = 0.)

Theorem 2.10. For all real numbers a with |a| < 1, the sequence (an)n∈N converges to zero. For
|a| ≥ 1, the sequence diverges.

Proof. Without loss of generality, we may assume that a > 0. If a < 1 then the sequence
(an)n∈N is a strictly decreasing sequence. That is, an+1 < an, for all n ∈ N. This follows, since
an+1 = a · an, and 0 < a < 1.

So the sequence (an)n∈N gets smaller and smaller, as n gets bigger. And of course, it starts
with a, so it is confined to the interval between 0 and a. We can define a Dedekind cut (A,B) of
Q as follows.

A∗ = {x ∈ Q : x < an, ∀n ∈ N},
and B∗ = Q \ A∗ (the set difference). Finally, if A∗ has a greatest element, say x0, then take
A = A∗ \ {x0} and B = B∗ ∪ {x0}. Otherwise simply take A = A∗ and B = B∗. The pair
(A,B) is then a Dedekind cut.

So let ξ be the real number represented by this Dedekind cut. Then we must have 0 ≤ ξ < 1.
If ξ = 0 then the sequence converges to zero, and we are finished. Otherwise, we must have ξ > 0.
Now since 0 < a < 1, it must be that the number 1/a is greater than 1. Thus

ξ < ξ · 1
a
.

But from the definition of ξ, there must be some m ∈ N with

ξ < am < ξ · 1
a
.

However, then we have

am+1 = a · am < a · ξ · 1
a

= ξ,

and this contradicts the definition of ξ. Therefore the idea that we might have ξ > 0 simply leads
to a contradiction. The only conclusion is that ξ = 0, and so the sequence converges.

If a > 1, then, using what we have just proved, we see that the sequence
(

1
an

)
n∈N converges

to zero. Clearly, this implies that (an)n∈N diverges (or, in this case, “converges to infinity”).

Theorem 2.11. The geometric series converges for |a| < 1, and it diverges for |a| ≥ 1.

Proof. We have

(a− 1)

(
n∑

k=0

ak

)
= an+1 − 1.

Therefore, if a 6= 1, we have
n∑

k=0

ak =
an+1 − 1
a− 1

,
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for all n ∈ N.
For |a| < 1, we know that the sequence (an)n∈N converges to zero. Thus

∑∞
n=1 a

n is a
convergent series for 0 < a < 1, and we have

∞∑

n=0

an =
−1
a− 1

=
1

1− a.

If |a| > 1, then the series diverges since
∑n

k=1 a
k = an+1−1

a−1 , and the sequence (an)n∈N
diverges.

2.5 The standard tests for convergence of a series

2.5.1 The Leibniz test

Theorem 2.12. Let (an)n∈N be a decreasing sequence of numbers, that is, an+1 ≤ an, for all n,
such that the sequence converges, with limn→∞ an = 0. Then the alternating series

∞∑

n=1

(−1)nan

converges.

Proof. Consider the partial sums Sn for this series. If a1 6= 0, then S1 = (−1)a1 is a negative
number. But then S3 = −a1 + (a2 − a3), and we see that we must have S1 ≤ S3 since a2 ≥ a3,
and therefore a2 − a3 is a positive number or zero. More generally, if n is an odd number, say
n = 2m+ 1, then we must have Sn+2 ≥ Sn. This follows, since

Sn+2 = Sn + (−1)n+1an+1 + (−1)n+2an+2

= Sn + (−1)(2m+1)+1an+1 + (−1)(2m+1)+2an+2

= Sn + (an+1 − an+2),

and an+1 − an+2 ≥ 0. Therefore the sequence of odd partial sums is an increasing sequence.

S1 ≤ S3 ≤ S5 ≤ S7 ≤ · · ·

On the other hand, we have that the sequence of even partial sums is a decreasing sequence.

S2 ≥ S4 ≥ S6 ≥ S8 ≥ · · ·

This is proved analogously to the situation with the odd partial sums. Furthermore, it is easy to see
that

S2m ≥ S2m+1,

and
S2m+1 ≤ S2m+2,

for all m ∈ N. Therefore the even partial sums are always greater than, or equal to, the odd partial
sums. On the other hand, the distance between adjacent partial sums is |Sn+1−Sn| = |an+1|, and
we know that limn→∞ |an| = 0. Thus the even and the odd sums must converge from above and
below to some common limit point, which is then the limit of the series.
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An example

We have already seen that the series
∑∞

n=1
1
n diverges. But according to Leibniz test, the alternat-

ing series
∞∑

n=1

(−1)n

n

must converge. In fact, if we write T =
∑∞

n=1
(−1)n

n , then we know from the proof of theorem 2.12
that T must lie somewhere between the first and the second partial sums. That is

S1 = −1 < T < −1
2

= −1 +
1
2

= S2.

In other words, the sum of the whole series is a negative number lying somewhere between −1
and −1

2 .

Reordering the terms in the series

While all of what has been said above is true, there is a strange twist to the story which makes one
realize that it is important to be careful.

To begin with, note that we have the following.

1
4

<
1
2

+
1
4

1
4

<
1
6

+
1
8

1
4

<
1
10

+
1
12

+
1
14

+
1
16

1
4

<
1
18

+
1
20

+
1
22

+
1
24

+
1
26

+
1
28

+
1
30

+
1
32

etc.

Therefore, if we rearrange the terms in the sum, we get

∞∑

n=1

(−1)n

n

???= −1 +
(

1
2

+
1
4

)

−1
3

+
(

1
6

+
1
8

)

−1
5

+
(

1
10

+
1
12

+
1
14

+
1
16

)

−1
7

+
(

1
18

+
1
20

+
1
22

+
1
24

+
1
26

+
1
28

+
1
30

+
1
32

)

−1
9

+ etc.

Obviously the sum is getting bigger and bigger. It suddenly doesn’t converge! The problem
is that our original sum is convergent, but not absolutely convergent. It is only conditionally
convergent. Conditionally convergent series can be made to converge to practically anything — or
else they can be made to diverge — if we allow ourselves to rearrange the order of the terms in the
sum in any way we want.

But let’s look at the other convergence tests, before coming back to this problem.
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2.5.2 The comparison test

Theorem 2.13. Let ∞∑

n=1

cn

be a series which is known to be convergent, where cn ≥ 0, for all n. Furthermore, let

∞∑

n=1

an

be some other series, where 0 ≤ an ≤ cn, for all n. Then the series
∑∞

n=1 an is convergent, and
the limit of the series is no greater than the limit of the series

∑∞
n=1 cn.

Proof. This is obvious. Let Sn be the n-th partial sum of the series
∑∞

n=1 an, and let

∞∑

n=1

cn = C,

say. Then we have that the sequence of partial sums (Sn)n∈N is monotonically increasing, and it
is bounded below by zero, and above by C. Thus it must converge to a number between zero and
C.

2.5.3 Absolute convergence

Definition. The series ∞∑

n=1

an

is called absolutely convergent if the series consisting of the absolute values of the individual terms

∞∑

n=1

|an|

converges.

Theorem 2.14. Each series which is absolutely convergent is also convergent.

Proof. Assume that the series
∑∞

n=1 |an| converges, where an ∈ R for all n. Let

∞∑

n=1

|an| = C,

say, and let S∗n be the partial sums of this series. Since |an| ≥ 0 for all n, it must be that the
sequence (S∗n)n∈N is monotonically increasing. Therefore, for each ε > 0, there exists some
N(ε) ∈ N such that |C − S∗n| < ε, for all n ≥ N(ε). But then, in particular, we must have
|S∗n − S∗m| < ε, for all n, m ≥ N(ε). But (assuming that m ≤ n), we have

|S∗n − S∗m| =
n∑

k=m+1

|ak| < ε.
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So now we can show that the sequence of partial sums Sn for the original series
∑∞

n=1 an is a
Cauchy sequence. For all n, m ≥ N(ε) (and again, we assume without loss of generality that
m ≤ n) we have

|Sn − Sm| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣

≤
n∑

k=m+1

|ak|

< ε.

The first inequality here is simply the triangle inequality for the absolute-value function, and the
second inequality is |S∗n − S∗m| < ε, which we have already found.

Theorem 2.15. Let
∑∞

n=1 an be an absolutely convergent series, and let
∑∞

n=1 bn be the same
series, but with the terms possibly rearranged in some way. Then

∑∞
n=1 bn is also absolutely

convergent, and we have
∞∑

n=1

an =
∞∑

n=1

bn.

But first we prove the following lemma.

Lemma. Let
∑∞

n=1 cn be a convergent series with cn ≥ 0 for all n. If
∑∞

n=1 dn is the same
series, but perhaps with the terms rearranged in some other order, then we still have

∑∞
n=1 dn

being convergent, and
∞∑

n=1

cn =
∞∑

n=1

dn.

Proof. In both cases, the sequence of partial sums is monotonically increasing. Given the partial
sum

∑N1
n=1 cn, for some N1 ∈ N, then we can find some N2 ≥ N1 which is sufficiently large that

all the numbers c1, . . . , cN1 appear in the list d1, . . . , dN2 . Therefore we must have

N1∑

n=1

cn ≤
N2∑

n=1

dn.

But we can just as easily show that for all N3 ∈ N, there exists some N4 ≥ N3 with
N4∑

n=1

cn ≥
N3∑

n=1

dn.

Therefore we must have the limits of the sequences of partial sums being equal.

Proof. (Of theorem 2.15)
Let ∞∑

n=1

an =
∞∑

n=1

a+
n −

∞∑

n=1

a−n ,

where

a+
n =

{
an, if an ≥ 0,
0, otherwise,

a−n =

{
an, if an ≤ 0,
0, otherwise.

15



Similarly,
∞∑

n=1

bn =
∞∑

n=1

b+n −
∞∑

n=1

b−n .

But, according to the lemma, we must have

∞∑

n=1

a+
n =

∞∑

n=1

b+n

and ∞∑

n=1

a−n =
∞∑

n=1

b−n .

2.5.4 The quotient test

Theorem 2.16. Assume that the series
∑∞

n=1 an is such that there exists some real number ξ ∈ R
with 0 ≤ ξ < 1, such that ∣∣∣∣

an+1

an

∣∣∣∣ ≤ ξ,

for all n ∈ N. Then the series is absolutely convergent, hence also convergent.

Proof. We have already seen that the geometric series

∞∑

n=1

ξn

converges. So if we simply multiply each term by the number |a1|, we see that also the series

∞∑

n=1

|a1|ξn

converges. In fact it converges to the number

|a1|
( ∞∑

n=1

ξn

)
.

Now since |a2/a1| ≤ ξ, we must have |a2| ≤ |a1|ξ. Also, since |a3/a2| ≤ ξ, we must have
|a3| ≤ |a2|ξ. That is, |a3| ≤ |a2|ξ ≤ |a1|ξ2. Similarly, we have |a4| ≤ |a1|ξ3, and in general, for
each n, we have

|an| ≤ |a1|ξn−1.

Therefore, using the comparison test, we see that the series

∞∑

n=1

|an|

converges.
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Corollary. Let N ∈ N be given, and we assume that the series
∑∞

n=1 an is such that there exists
some real number ξ ∈ R with 0 ≤ ξ < 1, such that

∣∣∣∣
an+1

an

∣∣∣∣ ≤ ξ,

for all n ≥ N . Then the series is absolutely convergent, hence also convergent.

Proof. This follows, since the argument in the proof of the previous theorem can be applied to the
numbers greater than or equal to N . So the series

∞∑

n=N

an

is absolutely convergent. However we can then simply add in the finitely many terms

a1 + a2 + · · ·+ aN−1,

and this cannot change the fact that the whole infinite series is absolutely convergent.

Example: the exponential series is convergent everywhere

Rather than always taking the sum in a series from 1 to∞, it is often convenient to sum from 0 to
∞. In particular, for each x ∈ R we have the famous exponential series

∞∑

n=0

xn

n!
.

Using the quotient test, it is easy to see that the exponential series is absolutely convergent, for all
x ∈ R.

For let some arbitrary x ∈ R be given. Now if we happen to have x = 0, then the exponential
series is obviously absolutely convergent. Therefore we assume that x 6= 0. Then let N ∈ N be
the smallest integer with N ≥ |x|. We have

∣∣∣∣∣∣

xn+1

(n+1)!
xn

n!

∣∣∣∣∣∣
=

∣∣∣∣
x

n+ 1

∣∣∣∣ ≤
∣∣∣∣

x

N + 1

∣∣∣∣ < 1,

for all n ≥ N , and it follows that the exponential series must be absolutely convergent in this case
as well.

2.6 Continuous functions

Let A ⊂ R be some interval. For example we might have A = [a, b], for a < b. That is the closed
interval from a to b. The open interval from a to b is (a, b) = {x ∈ R : a < x < b}. Then we
have the half closed, and half open intervals [a, b) and (a, b]. We can also consider the whole of R
to be the interval (−∞,∞). That is also an open interval. For most of the time, we will consider
functions

f : A→ R
from some open interval A ⊂ R into R.

Definition. The function f : A→ R is continuous in the point x0 ∈ A if for all ε > 0, there exists
some δ > 0 such that |f(x) − f(x0)| < ε, for all x ∈ A with |x − x0| < δ. If the function f is
continuous in x0 for all x0 ∈ A, then one simply says that f is continuous.
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Examples

For these examples, we consider in each case a function f : R → R. That is, our open interval is
A = R. We will specify f by specifying what f(x) is, for each x ∈ R.

• If there exists some constant number c ∈ R, such that f(x) = c, for all x ∈ R, then f is a
constant function. Obviously, f is then continuous.

• If f(x) = x for all x, then f is continuous. For let x0 ∈ R be some arbitrary real number.
Let ε > 0 be given. Then choose δ = ε. With this choice, if we have x ∈ R with |x− x0| <
δ = ε, then we must have |f(x)− f(x0)| = |x− x0| < δ = ε. Therefore f is continuous in
x0, and since x0 was arbitrary, f is continuous everywhere.

• If f(x) = xn, for some n ∈ N larger than one, then f is also continuous. This is not quite
as trivial to prove, so we will put off the proof till later.

• This time let

f(x) =

{
1, if x ≥ 0,
0, if x < 0.

Then f is continuous for all x0 6= 0, but f is not continuous at the point 0.

An alternative way to describe continuity

Theorem 2.17. The function f : A → R is continuous in the point x0 ∈ A if and only if for
all convergent sequences (an)n∈N with an ∈ A for all n, and limn→∞ an = x0, we have that
(f(an))n∈N is a convergent sequence with limn→∞f(an) = f(x0).

Proof. Assume first that f is continuous at x0 ∈ A. Let (an)n∈N be a sequence with an ∈ A for
all n, and limn→∞ an = x0. That means that for all δ > 0, there exists some N(δ) ∈ N with
|x0 − an| < δ for all n ≥ N(δ). Now let ε > 0 be given. Since f is assumed to be continuous
at x0, there must exist some δ > 0 with |f(x) − f(x0)| < ε, for all x ∈ A with |x − x0| < δ.
Therefore, given our N(δ), we must have |x0 − an| < δ for all n ≥ N(δ). That means that for all
n ≥ N(δ) we have |f(x)− f(x0)| < ε. Therefore limn→∞ f(an) = f(x0).

Now assume that limn→∞ f(an) = f(x0) for all convergent sequences (an)n∈N in A with
limn→∞ an = x0. In order to obtain a contradiction, assume furthermore that f is not continuous
at x0. That would mean that there must exist some ε0 > 0, such that for all δ > 0 some uδ ∈ A
must exist with |x0 − uδ| < δ, yet |f(x0)− f(uδ)| ≥ ε0. In particular, we can progressively take
δ = 1/n, for n = 1, 2, 3, . . . .

That is, we take the sequence (an)n∈N with an = u 1
n

, for all n. Then we have limn→∞ an =
x0, yet |f(x0)− f(an)| ≥ ε0, for all n. Therefore the series (f(an))n∈N cannot possibly converge
to f(x0). This contradicts our assumption.

2.6.1 Sums, products, and quotients of continuous functions are continuous

Theorem 2.18. Assume that f, g : A → R are two continuous functions from A to R. Then
f + g is also continuous. Here, f + g is the function whose value at each x ∈ A is simply
(f + g)(x) = f(x) + g(x).
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Proof. Let x0 ∈ A be given. The problem then is to show that the function f + g is continuous
at x0. For this we will use theorem 2.17. Let (an)n∈N be some convergent sequence in A with
limn→∞ an = x0. Then, since f is continuous at x0, we have limn→∞ f(an) = f(x0). Similarly,
we have limn→∞ g(an) = g(x0). But then, according to theorem 2.9, the series

(f(an) + g(an))n∈N

converges to f(x0) + g(x0) = (f + g)(x0). Therefore, again according to theorem 2.17, the
function f + g must be continuous at x0.

Of course, this also means that the difference of two continuous functions f − g is also con-
tinuous.

Theorem 2.19. The functions f and g are given as before. Then also their product f · g is con-
tinuous. Here, the product is simply the function whose value at x ∈ A is given by (f · g)(x) =
f(x) · g(x), for all such x.

Proof. The same as for theorem 2.18

Similarly we have

Theorem 2.20. The functions f and g are given as before, where we assume that g(x) 6= 0, for
all x ∈ A. Then the quotient f/g is continuous, where the quotient is the function whose value at
x ∈ A is given by (f/g)(x) = f(x)/g(x), for all x ∈ A.

Theorem 2.21. Assume that A ⊂ R and B ⊂ R, and we have two functions f : A → R
and g : B → R such that f(A) ⊂ B. We can consider the function f ◦ g : A → R, where
f ◦ g(x) = g(f(x)), for all x ∈ A. Then if f is continuous at x0 ∈ A, and g is continuous at
f(x0), it follows that f ◦ g is continuous at x0.

Proof. Let (an)n∈N be a sequence in A, converging to x0. Then, since f is continuous at x0, the
sequence (f(an))n∈N must converge to f(x0) in B. But then since g is continuous at f(x0), the
sequence (g(f(an)))n∈N must converge to g(f(x0)) = f ◦ g(x0).

All polynomials are continuous

This is now obvious. Let

f(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n

be some polynomial. Then, as we have seen, the constant function c0 is continuous. Also the
identity function x → x is continuous. Therefore the product c1x gives a continuous function.
Also the product x · x = x2 is a product of two continuous functions, therefore continuous. So
c1x

2 is continuous. And so forth. Finally the polynomial is seen to be just a sum of continuous
functions, therefore itself continuous.

2.7 The exponential function

We have already seen that the series
∞∑

n=0

xn

n!

converges for all x ∈ R. This gives the exponential function
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Definition. The exponential function exp(x), often written ex, is defined for real numbers x ∈ R
to be exp(x) =

∑∞
n=0

xn

n! . The defining series here is called the exponential series.

Obviously, by looking at the exponential series, we see that exp(0) = 1. But what is exp(x)
for other values of x? Let us take another look at the exponential series and then think about the
following points.

• As already seen, we have exp(0) = 1.

• For x > 0 we must have exp(x) > 0 since all terms in the exponential series are positive.

• In fact, if we have two positive numbers 0 < x < y, then we must have 1 < exp(x) <
exp(y). This follows, since we must have xn < yn, for all n; therefore the exponential series
for y dominates the exponential series for x. Therefore, for non-negative real numbers, we
see that the exponential function is a strictly monotonically increasing function.

• But for negative numbers x < 0, the situation remains unclear.

Theorem 2.22. For all x and y ∈ R we have exp(x+ y) = exp(x) · exp(y).

Proof.

exp(x+ y) =
∞∑

n=0

(x+ y)n

n!

=
∞∑

n=0

1
n!

n∑

k=0

(
n

k

)
xn−kyk

=
∞∑

n=0

1
n!

n∑

k=0

n!
(n− k)!k!x

n−kyk

=
∞∑

n=0

n∑

k=0

xn−kyk

(n− k)!k!

=
∞∑

n=0

(
n∑

k=0

xn−k

(n− k)! ·
yk

k!

)

=

( ∞∑

n=0

xn

n!

)
·
( ∞∑

n=0

yn

n!

)

= exp(x) · exp(y)

Note here that:

• The second equation is our Binomial theorem (theorem 1.4).

• The sixth equation is our Exercise 6.1.

• The other equations are nothing but the definitions of the various things, and simple arith-
metic operations.
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Consequences of this “functional equation” for the exponential function

• Let x < 0 be a negative number. Then we know that −x is a positive number, and thus
exp(−x) > 0. But also

exp(x) exp(−x) = exp(x− x) = exp(0) = 1.

Therefore it follows that
exp(x) =

1
exp(−x) > 0

and we see that exp(x) > 0 for all real numbers x ∈ R.

• In fact, if x < y < 0 then we have

exp(y)− exp(x) =
1

exp(−y) −
1

exp(−x) =
exp(−x)− exp(−y)
exp(−y) exp(−x) > 0,

since the exponential function is strictly monotonically increasing, and −x > −y.

Therefore, the exponential function is strictly monotonically increasing for all R.

• Let x ∈ R be a real number with 0 ≤ x < 1. Then the sequence
(
xn

n!

)

n∈N

is a strictly decreasing sequence of positive real numbers. Therefore, looking at the proof
of Leibniz test (theorem 2.12), we see that the exponential series for −x must converge to
some real number between 1− x and 1− x+ x2/2. That is, we must have

1− x < exp(−x) < 1− x+
x2

2
< 1.

In particular, given any real number y ∈ (−1, 0], then we must have

| exp(y)− exp(0)| < |y|.

• On the other hand, if x is a positive number with x ∈ (0, 1/2), then we must have

| exp(x)− exp(0)| =
∣∣∣∣

1
exp(−x) − 1

∣∣∣∣ <
∣∣∣∣

1
1− x − 1

∣∣∣∣ =
∣∣∣∣

x

1− x

∣∣∣∣ <
∣∣∣∣∣
x
1
2

∣∣∣∣∣ = 2|x|.

• Putting these two things together, we have that if |x| < 1/2, that is |x − 0| < 1/2, then
| exp(x) − exp(0)| < 2|x|. Therefore, the exponential function must be continuous at the
point 0 ∈ R.

• Finally, take any other element y ∈ R. Let (yn)n∈N be some convergent sequence, with
limn→∞ yn = y. Then if we take zn = yn − y for all n, we must have that (zn)n∈N is a
convergent sequence, with

lim
n→∞ zn = 0.

Therefore, since the exponential function is continuous at 0, we must have (exp(zn))n∈N
being a convergent sequence, with

lim
n→∞ exp(zn) = exp(0) = 1.
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But

1 = lim
n→∞ exp(zn) = lim

n→∞ exp(yn − y)
= lim

n→∞ exp(yn) · exp(−y)

= lim
n→∞

exp(yn)
exp(y)

=
1

exp(y)
lim
n→∞ exp(yn),

since exp(y) is constant (that is, independent of the number n). Therefore, in the end we
have

lim
n→∞ exp(yn) = exp(y),

and it follows that the exponential function is also continuous at y.

So to summarize all of this, we have shown that:

Theorem 2.23. The exponential function is strictly monotonically increasing, positive, continuous,
with exp(−x) = 1

exp(x) , for all x ∈ R. Therefore, also exp(0) = 1.

2.8 Some general theorems concerning continuous functions

So now that we have seen the standard examples of continuous functions — namely the polyno-
mials and the exponential function3 — it is time to look at some of the theorems which show us
why the idea of continuity is so important.

Theorem 2.24. Let [a, b] ⊂ R be a closed interval, and let f : [a, b] → R be continuous. Then
f is bounded (that is, the set f([a, b]) = {f(x) : x ∈ [a, b]} is bounded), and in fact, there exists
both an x∗ ∈ [a, b] such that f(x∗) = sup{f([a, b])}, and also there exists y∗ ∈ [a, b] such that
f(y∗) = inf{f([a, b])}.
Proof. If f were not bounded, then it is either unbounded above, or below. Let us assume that it
is unbounded above, so that for every n ∈ N, there exists some xn ∈ [a, b], such that f(xn) > n.
Therefore, (f(xn))n∈N is a sequence in R which can have no convergent subsequences. On the
other hand, (xn)n∈N is a bounded sequence in R, therefore it contains a convergent subsequence
(theorem 2.4). So let (xi(n))n∈N be such a convergent subsequence, with

lim
n→∞xi(n) = x∗ ∈ [a, b],

say. Then, since f is continuous at x∗, we must have that the subsequence (f(xi(n)))n∈N is also
convergent, with

lim
n→∞ f(xi(n)) = f(x∗).

This is a contradiction, and so we must conclude that f is bounded.
Next, let us consider the number sup{f([a, b])}. Since it is the least upper bound, it must be

that for each n ∈ N, we can choose some xn ∈ [a, b] with

| sup{f([a, b])} − f(xn)| < 1
n
.

3The other “standard functions” like sin, cos, ln, and so forth, are simply defined in terms of the exponential
function. So, at least in principle, we now have all of them.
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Therefore, not only does the sequence (f(xn))n∈N converge to sup{f([a, b])}, in fact, every sub-
sequence must also converge to sup{f([a, b])}. But, considered in [a, b], we have that (xn)n∈N is
a bounded sequence; therefore there is a convergent subsequence (xi(n))n∈N, with

lim
n→∞xi(n) = x∗ ∈ [a, b],

say. Then since f is continuous at x∗, we must have

f(x∗) = lim
n→∞ f(xi(n)) = sup{f([a, b])}.

The proof with regard to inf{f([a, b])} is analogous.

But be careful! Here is almost a counterexample.

The function f : (0, 1)→ R, with

f(x) =
1
x

is obviously continuous everywhere in (0, 1). Yet it is unbounded! Why can’t we apply our
theorem 2.24 here? The answer is that we can indeed construct a sequence (xn)n∈N such that the
sequence (f(xn))n∈N increases without bound. But in this case, we will simply have

lim
n→∞xn = 0,

but 0 6∈ (0, 1), therefore the sequence does not converge when considered as a sequence taken
within the set (0, 1).

Why are closed intervals important here?

After all, it’s no use telling you to be careful without telling you what to be careful about! Why
does our theorem 2.24 work for closed intervals [a, b], where the endpoints a and b are included in
the interval, yet it does not work for intervals which are not closed?

If you look at the proof of theorem 2.24, you will see that the property of the interval [a, b]
which we used was that every convergent sequence (inR) of elements of [a, b], converges to a point
which is also in [a, b]. Or put another way, every Cauchy sequence in a closed interval converges
to a point in that interval. Furthermore, the interval [a, b] is bounded. In these lectures, at least
at this stage of things, I will just skip over these ideas quickly, simply listing some of the things
which are dealt with more thoroughly in a lecture for students of pure mathematics.

Metric spaces; open, closed, compact, complete subspaces. A quick sketch.

• A metric space M is a set, together with a metric — which is a “distance function”,

d : M ×M → R,

such that for all x, y, z ∈M , we have

1. d(x, x) = 0,

2. d(x, y) ≥ 0,

3. d(x, y) = d(y, x), and

4. d(x, z) ≤ d(x, y) + d(y, z).
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For example, R is a metric space, with the metric d(x, y) = |x− y|.
• Let M be a metric space, and let U ⊂M be a subset. We say that U is open in M if, for all
x ∈ U , there exists some ε > 0 such that {y ∈M : d(y, x) < ε} ⊂ U . On the other hand, a
subset A ⊂M is called closed, if M \A is open in M .

• Let K ⊂M be some subset. An open covering of K is some collection {Ui : i ∈ I} (where
the variable i runs through some indexing set I) of open subsets of M , such that the union
of all the subsets covers K. That is K ⊂ ∪i∈IUi.
The subset K ⊂ M is called compact if every open covering of K contains a finite sub-
covering, that is, some finite number of the Ui, which is itself a covering of K. If K = M ,
then we say that the whole metric space M is compact. (But even if K 6= M , still, the
subset K itself is a compact metric space.)

• We then have the theorem which says that in any compact metric space, every Cauchy
sequence converges to a point in that space. That is to say, every compact space is complete.

• Finally, we have the theorem (of Heine-Borel) which says that a subset K ⊂ R is compact
if, and only if, it is closed and bounded.

So putting all of these ideas together, we can say that the important thing to think about in theo-
rem 2.24 is that it deals with closed and bounded intervals of R. That is, it deals with compact
subsets of R.

Open intervals, like (a, b), or half-open intervals like (a, b], and so on, are not compact. They
are not complete. But also the entire set of real numbers R is not compact, even though it is
complete.

Theorem 2.25 (Intermediate value theorem, or “Zwischenwertsatz”). Let f : [a, b] → R be a
continuous function, such that f(a)f(b) < 0. (That is, both f(a) 6= 0 and f(b) 6= 0, and
furthermore one is positive and the other is negative.) Then there exists some point x ∈ (a, b),
such that f(x) = 0.

Proof. Let x1 = (b − a)/2 be the half-way point between a and b. If f(x1) = 0, then we have
a solution. Otherwise, f(x1) 6= 0, and so either f(a) and f(x1) have opposite signs, or else
f(x1) and f(b) have opposite signs. In any case, the original interval [a, b] can be divided into
two smaller sub-intervals [a, x1] and [x1, b], both of which are only half as big as the original
interval. Choose the sub-interval which is such that the endpoints have opposite signs under f .
Then subdivide that subinterval in half. And so on.

In the end, either we end up with a solution, or else, by taking say the upper endpoint of each
sub-interval, we obtain a convergent sequence (yn)n∈N. Let limn→∞ yn = y. Then there are both
positive, as well as negative values of f arbitrarily near to f(y). Since f is continuous, we must
then have f(y) = 0.

Definition. Let W ⊂ R be some subset of R. The function f : W → R is called uniformly
continuous if for all ε > 0, there exists some δ > 0 such that for all x, y ∈W with |x− y| < δ we
have |f(x)− f(y)| < ε.

Theorem 2.26. Let a < b in R, and let f : [a, b] → R be continuous. Then f is uniformly
continuous.
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Proof. Assume that f is not uniformly continuous. That would mean that there exists some ε0 > 0
such that for all δ > 0, two points pδ, qδ ∈ [a, b] must exist, with the property that |pδ − qδ| < δ,
and yet |f(pδ)− f(qδ)| ≥ ε0. In particular, for each n ∈ N, we can find xn, yn ∈ [a, b] with

|xn − yn| < 1
n
,

yet
|f(xn)− f(yn)| ≥ ε0.

But, as we know (theorem 2.4), there must be a convergent subsequence (xi(n))n∈N, with say

lim
n→∞xi(n) = t ∈ [a, b].

But then the corresponding subsequence (yi(n))n∈N must also converge, and we have

lim
n→∞xi(n) = lim

n→∞ yi(n) = t.

Since f is continuous, we must also have

lim
n→∞ f(xi(n)) = lim

n→∞ f(yi(n)) = f(t).

But this is a contradiction, since |f(xi(n))− f(yi(n))| ≥ ε0, for all n.

Remark. Again, the important property of closed, bounded intervals like [a, b] is that they are
compact. Thus the more general formulation of theorem 2.26 would be:

Let K ⊂ R be compact and let f : K → R be continuous; then f is uniformly continuous.

2.9 Differentiability

In this section, it is convenient to consider functions f : U → R, where U is an open subset of R.
In particular, we will take U = (a, b), with a < b, or else simply U = R.

Definition. The function f : U → R is differentiable at the point x0 ∈ U if there exists some
number f ′(x0) ∈ R, such that for all ε > 0, a δ > 0 exists with

∣∣∣∣
f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣ < ε,

for all x ∈ U with x 6= x0 and |x− x0| < δ.

Another way of saying the same thing is to say that

lim
h→0

f(x0 + h)− f(x0)
h

= f ′(x0).

But when writing this, we must always be careful to say that we do not allow h to be zero (after
all, you can’t divide by zero!), and also we must ensure that the point x0 + h is always an element
of U .

That is, the function f is differentiable at x0 if for any convergent sequence (un)n∈N, with
un ∈ U , limn→∞ un = x0, but un 6= x0 for all n, we have

lim
n→∞

f(un)− f(x0)
un − x0

= f ′(x0).
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Theorem 2.27. If f : U → R is differentiable at the point x0 ∈ U , then f is also continuous at
x0.

Proof. Obvious!

We also have the following theorem, which you have undoubtedly seen at school.

Theorem 2.28. Let f , g : U → R be differentiable at the point x0 ∈ U . Then

• (f + g) : U → R is differentiable at x0, and we have (f + g)′(x0) = f ′(x0) + g′(x0).

• (f · g) : U → R is differentiable at x0, and we have

(f · g)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0).

• If g(x0) 6= 0 then (f/g)′ : U → R is differentiable at x0, and we have
(
f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g′(x0)
(g(x0))2

.

• Assuming g is differentiable at f(x0), with g : f(U) → R, then (f ◦ g) : U → R is
differentiable at x0, and we have (f ◦ g)′(x0) = f ′(x0)g′(f(x0)).

Proof. A simple exercise, using the results for convergent sequences which we have already stud-
ied. But perhaps it might be worthwhile to look at the proof for the chain rule.

Given the function f ◦ g, that is, (f ◦ g)(x) = g(f(x)), let us define

h(y) =

{
g(y)−g(f(x0))
y−f(x0) , if y 6= f(x0),

g′(f(x0)), if y = f(x0).

Since g is differentiable at f(x0), we have

lim
y→f(x0)

h(y) = g′(f(x0)).

(That is, given any sequence (yn)n∈N of points in f(U) with limn→∞ yn = f(x0), then we must
have limn→∞ h(yn) = g′(f(x0)).)

Therefore, we have
g(y)− g(f(x0)) = h(y)(y − f(x0)),

for all y ∈ U , and so

(f ◦ g)′(x0) = lim
x→x0

(f ◦ g)(x)− (f ◦ g)(x0)
x− x0

= lim
x→x0

g(f(x))− g(f(x0))
x− x0

= lim
x→x0

h(f(x))(f(x)− f(x0)
x− x0

=
(

lim
x→x0

h(f(x))
)(

lim
x→x0

f(x)− f(x0)
x− x0

)

= g′(f(x0))f ′(x0).
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Theorem 2.29. Let f : (a, b) → R be a strictly monotonic, continuous function with f((a, b)) =
(c, d), say, such that the mapping f : (a, b) → (c, d) is a bijection whose inverse is the mapping
φ : (c, d) → (a, b). Assume that f is differentiable at the point x0 ∈ (a, b), such that f ′(x0) 6= 0.
Then φ is differentiable at the point f(x0), and we have

φ′(f(x0)) =
1

f ′(x0)
.

Proof. Let (yn)n∈N be any convergent sequence in (c, d), with limn→∞ yn = f(x0), such that
yn 6= f(x0), for all n. Then, taking zn = φ(yn) for each n ∈ N (that means that f(zn) = yn), we
have that limn→∞ zn = x0, since φ is continuous. Therefore

φ′(f(x0)) = lim
n→∞

φ(yn)− φ(f(x0))
yn − f(x0)

= lim
n→∞

zn − x0

f(zn)− f(x0)

= lim
n→∞

1
f(zn)−f(x0)

zn−x0

=
1

f ′(x0)
.

2.10 Taking another look at the exponential function

Theorem 2.30. Let (un)n∈N be a convergent sequence of real numbers, with un 6= 0, for all n,
and furthermore, limn→∞ un = 0. Then we have

lim
n→∞

exp(un)− 1
un

= 1.

In order to prove this theorem, we first prove the following

Lemma. For all x ∈ R with |x| ≤ 1 we have | exp(x)− (1 + x)| < |x|2.

Proof. We have

| exp(x)− (1 + x)| =
∣∣∣∣
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

∣∣∣∣

≤ |x|2
(

1
2!

+
|x|
3!

+
|x|2
4!

+ · · ·
)

≤ |x|2
(

1
2!

+
1
3!

+
1
4!

+ · · ·
)

=
|x|2
2

(
1 +

2
3!

+
2
4!

+ · · ·
)

<
|x|2
2

( ∞∑

n=0

(
1
2

)n
)

=
|x|2
2

(
1

1− 1
2

)

= |x|2.
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Proof. (of theorem 2.30)
∣∣∣∣
exp(un)− 1

un
− 1

∣∣∣∣ =
∣∣∣∣
exp(un)− (1 + un)

un

∣∣∣∣ < |un|,

for |un| < 1. And this converges to zero as the sequence converges to zero.

Theorem 2.31. The exponential function is everywhere differentiable, with exp′(x) = exp(x), for
all x ∈ R.

Proof. Let (un)n∈N be a convergent sequence of real numbers, with un 6= 0, for all n, and further-
more, limn→∞ un = 0. Then we have

exp′(x) = lim
n→∞

exp(x+ un)− exp(x)
un

= exp(x) lim
n→∞

exp(un)− exp(0)
un

= exp(x) lim
n→∞

exp(un)− 1
un

= exp(x) · 1
= exp(x).

2.11 The logarithm function

Definition. From the properties of the exponential function (continuous, strictly monotonic, pos-
itive, etc.), we see that the mapping exp : R → (0,∞) is a bijection. The inverse mapping from
(0,∞) back to R is called the logarithm, denoted by

ln : (0,∞)→ R.

Remark. This is the natural logarithm. The logarithm to the base 10, sometimes written log10,
which you might encounter in practical computer applications, plays no role in mathematics. How
do we convert natural logarithms into logarithms to the base 10? The answer: by means of the
formula

log10(x) =
ln(x)
ln(10)

.

Since we know that exp(x+ y) = exp(x) · exp(y), for all x, y ∈ R, it follows that

x+ y = ln(exp(x+ y)) = ln(exp(x) · exp(y)).

Now let a = exp(x), and b = exp(y). Then we have x = ln(a) and y = ln(b).
All of this gives the functional equation for the logarithm function:

ln(a · b) = ln(a) + ln(b),

for all a, b > 0.
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Identifying the exponential function with powers and roots: the number e

But thinking about this leads to the more general question: given x, y ∈ R, what is xy. After all,
every pocket calculator these days has a button marked “xy”.

Well, to begin with, given a, then we all know that a2 = a · a. More generally, given m,
n ∈ N, we write am+n = am · an. This is beginning to look like the functional equation for the
exponential function!

Following this additive business, if a ≥ 0, then the square root of a is the number which, when
multiplied with itself gives a = a1. Therefore, it is natural to write

√
a = a1/2. Also 1

an = a−n,
for n ∈ N. And in general, following this plan, we have the rule

a
p
q =

(
q
√
a
)p
,

for all a ≥ 0, p ∈ Z and q ∈ N.
But looking at the functional equations for both the exponential and the logarithm functions,

we see that for a ≥ 0 we have

an = exp(ln(an)) = exp(n · ln(a)),

for n ∈ N. But then also
1
an

= a−n = exp(ln(a−n)) = exp(−n · ln(a)),

since an · 1
an = 1 = exp(0). Similarly,

a
1
n = exp(

1
n
· ln(a)).

Therefore, by extension we have

a
p
q = exp(

p

q
· ln(a)),

for all rational numbers p/q. Finally, since exp and ln are continuous, we must have

ab = exp(b · ln(a)),

for all b ∈ R.
At this stage, mathematicians become interested in the special number exp(1), which we call

“e”, for short. It is an important mathematical constant, similar to that other special number π.
People have worked out that

e ≈ 2.718281828459045.

Now, given any n ∈ N, we have

n = ln(exp(n)) = ln(exp(1) · · · exp(1)︸ ︷︷ ︸
n times

) = ln(en).

Therefore
exp(n) = exp(ln(en)) = en,

and so on. Following our reasoning from before, we conclude that

exp(x) = ex,

for all x ∈ R. Thus, in general we have

ab = eb·ln(a),

for all a ≥ 0 and b ∈ R.
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Theorem 2.32. For all x ∈ (0,∞), we have

ln′(x) =
1
x
.

Proof. We have exp(ln(x)) = x, for all x ∈ (0,∞). Therefore

1 = exp(ln(x))′ = ln′(x) · exp′(ln(x)) = ln′(x) · exp(ln(x)) = ln′(x) · x.

2.12 The mean value theorem

Theorem 2.33 (Rolle). Let a < b in R, and let f : [a, b] → R be continuous in [a, b] and
differentiable everywhere in (a, b). Assume furthermore, that f(a) = f(b). Then there exists some
point ξ ∈ (a, b), such that f ′(ξ) = 0.

Proof. If f is the constant function, f(x) = f(a), for all x ∈ [a, b], then obviously f(ξ) = 0, for
all ξ ∈ (a, b). On the other hand, if f is not constant, then either

1. there exists y ∈ (a, b) with f(y) > f(a), or else

2. there exists z ∈ (a, b) with f(z) < f(a).

Assume that we have case (1.). (Case (2.) is similar.) Then, according to theorem 2.24, there exists
some ξ ∈ (a, b) with f(ξ) ≥ f(x), for all x ∈ [a, b]. For each n ∈ N, let un = ξ − ξ−a

n+1 . Then
(un)n∈N is a convergent sequence in (a, b) with limn→∞ un = ξ. Thus we must have

f ′(ξ) = lim
n→N

f(un)− f(ξ)
un − ξ .

However f(un) − f(ξ) ≤ 0, since f(ξ) is the largest possible value. Also un − ξ < 0 for all n.
Thus we must have f ′(ξ) ≤ 0.

On the other hand, let vn = ξ + b−ξ
n+1 , for all n. Then (vn)n∈N is also a convergent sequence in

(a, b) with limn→∞ un = ξ. Thus we must have

f ′(ξ) = lim
n→N

f(vn)− f(ξ)
vn − ξ .

However f(vn)− f(ξ) ≤ 0, since f(ξ) is the largest possible value, and also un− ξ > 0 for all n.
Thus we must have f ′(ξ) ≥ 0.

Combining these two conclusions, we see that the only possibility is that f ′(ξ) = 0.

Theorem 2.34 (Mean value theorem). Let a < b in R, and let f : [a, b] → R be continuous in
[a, b] and differentiable everywhere in (a, b). Then there exists some point ξ ∈ (a, b) with

f ′(ξ) =
f(b)− f(a)

b− a .

Proof. Let the new function F : [a, b]→ R be defined by

F (x) = f(x)− f(b)− f(a)
b− a (x− a).

Obviously the function F fulfills the conditions of Rolle’s theorem (2.33). So let ξ ∈ (a, b) with
F ′(ξ) = 0. Then we have

F ′(ξ) = 0 = f ′(ξ)− f(b)− f(a)
b− a .
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2.13 Complex numbers

We have already seen that the equation x2 + 1 = 0 has no solution within the system of real num-
bers R. To solve this “problem”, mathematicians have simply invented an “imaginary” number,
called i (for “i”maginary), which is supposed to solve the equation. So we could imagine that we
have

i =
√−1.

But then, since (−1)2 = 1, it would seem to make sense to agree that also

(−i)2 = ((−1) · i)2 = (−1)2 · i2 = 1 · −1 = −1.

More generally, given any x ∈ R, we can imagine that ix is also a number, such that (ix)2 = −x2.
In order to combine these imaginary numbers with the “real” numbers of our normal existence,

we just add the two kinds of numbers together. This results in the field of complex numbers,
denoted by C. That is,

C = {a+ ib : a, b ∈ R}.
Addition in C is given by

(a+ ib) + (c+ id) = (a+ c) + i(b+ d).

The rule for multiplication uses the fact that we have agreed to make i2 = −1. Therefore,

(a+ ib) · (c+ id) = (ac− bd) + i(ad+ bc).

Anticipating the ideas of linear algebra somewhat, we see that C is really a 2-dimensional
vector space over R. Therefore it is natural to picture the numbers in C on the 2-dimensional
plane, the horizontal axis representing R, the real numbers, and the vertical axis representing the
imaginary numbers iR.

We have seen how important it is to think about the distance between two numbers in analysis.
Therefore, we define the distance between pairs of complex numbers to be the usual Euclidean
distance. That is, given a+ bi and c+ id in C, then the distance between them is

‖(a+ ib)− (c+ id)‖ =
√

(a− c)2 + (b− d)2.

So let z ∈ C be some complex number. That is, there are two real numbers, a and b, with
z = a + ib. We sometimes write Re(z) to represent the real part of z. That is, Re(z) = a. Also
the imaginary part of z is Im(z) = b. The complex conjugate z to z is the complex number

z = a− ib.

This means that
zz = (a+ ib)(a− ib) = a2 + b2 = ‖z‖2.

Here, we write ‖z‖ to denote the distance between z and the zero of C, namely 0 + i0. It is called
the absolute value of z, and for real numbers it corresponds to the absolute value function which
we have already seen.

We have

• ‖z‖ = 0⇔ z = 0,

• ‖z‖ = ‖z‖, and

31



• ‖w · z‖ = ‖w‖ · ‖z‖, for all w, z ∈ C.

Also, the combinations of addition and multiplication with complex conjugates are

• w + z = w + z and

• w · z = w · z.

Therefore, if we have a polynomial with real coefficients

P (z) = a0 + a1z + · · ·+ anz
n,

where aj ∈ R, for j = 0, . . . , n, then the complex conjugate is P (z) = P (z).
Given two complex numbers w, z ∈ C, we have

‖w + z‖ ≤ ‖w‖+ ‖z‖.
In order to see this, begin by observing that for all complex numbers u ∈ C, we have both

Re(u) ≤ ‖u‖ and Im(u) ≤ ‖u‖.
In particular, we have

Re(wz) ≤ ‖wz‖ = ‖w‖ · ‖z‖ = ‖w‖ · ‖z‖.
Therefore

‖w + z‖2 = (w + z)(w + z)
= (w + z)(w + z)
= ww + wz + zw + zz

= ww + wz + wz + zz

= ‖w‖2 + 2Re(wz) + ‖z‖2
≤ ‖w‖2 + 2‖w‖ · ‖z‖+ ‖z‖2
= (‖w‖+ ‖z‖)2

It is now a simple exercise to verify that for arbitrary triples of complex numbers u, v, w ∈ C,
we have the triangle inequality.

‖u− w‖ ≤ ‖u− v‖+ ‖v − w‖.
All of our ideas concerning convergent sequences and series of real numbers can be taken

over directly into the realm of complex numbers. The proofs are exactly the same, one need only
replace the symbol for absolute values in the real numbers, namely | · |, with the symbol in the
complex numbers, ‖·‖. In particular, we see that a sequence (zn)n∈N, with zn = an+ibn, for each
n, converges if and only if both the sequences of real numbers (an)n∈N and (bn)n∈N converge. In
particular, if we have a convergent power series

∑∞
n=0 anz

n, then the complex conjugate is

∞∑

n=0

anzn =
∞∑

n=0

anz
n.

For complex numbers z ∈ C, we have that the exponential series

exp(z) =
∞∑

n=0

zn

n!
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is also absolutely convergent, and the resulting function exp : C → C is continuous.4 So, in
particular, we have

exp(z) = exp(z),

for all z ∈ C.
And, of course, the functional equation for the exponential function

exp(w + z) = exp(w) exp(z)

also holds in C.

2.14 The trigonometric functions: sin and cos

Definition. For all x ∈ R the functions sin and cos are defined by

cos(x) = Re(exp(ix)) and sin(x) = Im(exp(ix)).

That is, the sin and cosine functions are defined in terms of Euler’s formula

eix = cos(x) + i sin(x).

Since ei(−x) = e−ix = eix, it follows that

cos(x) =
1
2

(
eix + e−ix

)

and
sin(x) =

1
2i

(
eix − e−ix) .

Therefore
cos(−x) = cos(x) and sin(−x) = − sin(x).

Now, we have

‖ exp(ix)‖ =
√

exp(ix) · exp(ix)

=
√

exp(ix) · exp(ix)

=
√

exp(ix) exp(−ix)
=

√
exp(ix− ix)

=
√

exp(0)
=
√

1 = 1.

Therefore, it must be that | sin(x)| ≤ 1 and | cos(x)| ≤ 1, for all x ∈ R. But also,

sin2(x) + cos2(x) = (Re(exp(ix)))2 + (Im(exp(ix)))2 = ‖ exp(ix)‖ = 1.

4The exponential function is also everywhere differentiable, but in this lecture, we will not think about extending
the idea of differentiation to complex numbers. The study of complex analysis (this is called “Funktionentheorie” in
German) differs from real analysis, which is what we are mainly concerned with here.
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Furthermore, using the functional equation of the exponential function, we have

cos(x+ y) + i sin(x+ y) = exp(i(x+ y))
= exp(ix) · exp(iy)
= (cos(x) + i sin(x))(cos(y) + i sin(y))
= (cos(x) cos(y)− sin(x) sin(y)) + i(cos(x) sin(y) + sin(x) cos(y))

Since the real, and the imaginary parts must be equal, we have the two equations

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y),

and
sin(x+ y) = cos(x) sin(y) + sin(x) cos(y).

It is now an easy exercise to obtain the standard formulas

sin(x)− sin(y) = 2 cos
(
x+ y

2

)
sin

(
x− y

2

)
,

and

cos(x)− cos(y) = −2 sin
(
x+ y

2

)
sin

(
x− y

2

)
.

The trigonometric functions can also be expressed in terms of power series as follows

Theorem 2.35.

sin(x) =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− · · ·

and

cos(x) =
∞∑

n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
− · · ·

Proof. This follows by looking at the exponential series, and observing that i2 = −1. Namely,

exp(ix) =
∞∑

n=0

(ix)n

n!

=
∞∑

n=0

in
xn

n!

=

( ∞∑

k=0

i2k
x2k

(2k)!

)
+

( ∞∑

k=0

i2k+1 x2k+1

(2k + 1)!

)

=

( ∞∑

k=0

(−1)k
x2k

(2k)!

)
+ i

( ∞∑

k=0

(−1)k
x2k+1

(2k + 1)!

)

= cos(x) + i sin(x).

The derivatives of the trigonometric functions are also found using the exponential function.
But first, we should think about how complex-valued functions of real variables can be differenti-
ated.
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Definition. Let U ⊂ R be an open interval, and let f : U → C be a complex-valued function.
Then, as in the case of real-valued functions, the derivative of f at x0 ∈ U is defined to be the
complex number f ′(x0) if, for all ε > 0, a δ > 0 exists such that, for all x ∈ U with |x− x0| < δ
and x 6= x0, we have ∥∥∥∥

f(x)− f(x0)
x− x0

− f ′(x0)
∥∥∥∥ < ε.

So this is exactly the same definition as before, but with the slight difference that we now use
the absolute value function for complex numbers.

How does this work in practice? Given f : U → C, we can write

f(x) = fr(x) + ifi(x)

for each x ∈ U . Here, fr : U → R and fi : U → R are both simply real-valued functions. So we
see that if f is differentiable at the point x0 ∈ U , then it must be the case that both fr and fi are
also differentiable at x0, and we have

f ′(x0) = f ′r(x0) + if ′i(x0).

Theorem 2.36. sin′(x) = cos(x) and cos′(x) = − sin(x), for all x ∈ R.

Proof. This follows, since, using the chain rule, we have exp′(ix) = i exp(x). That is,

cos′(x) + i sin′(x) = exp′(ix) = i exp(ix) = i(cos(x) + i sin(x)) = − sin(x) + i cos(x).

2.15 The number π

Unfortunately, there is not really enough time in this lecture to deal properly with the trigonometric
functions. So I will simply sketch out the ideas, without proof.

Theorem 2.37. The function cos has exactly one single zero in the open interval (0, 2). That is,
there exists a unique x0 ∈ (0, 2) with cos(x0) = 0.

The proof of this theorem starts by looking at the power series expression for the cosine func-
tion, namely cos(x) =

∑∞
n=0(−1)n x2n

(2n)! . Obviously we have cos(0) = 1. But then

cos(2) = 1− 22

2!
+

24

4!
− 26

6!
+ · · ·

= 1− 4
2

+
16
24
− 64

720
+ · · ·

= 1− 2 +
2
3
− 4

45
+ · · ·

Thinking about Leibniz convergence test for series, we see that it must be that cos(2) < 0. Then
theorem 2.25 shows that there must be a zero somewhere between 0 and 2. On the other hand, the
power series expression for the sine function shows that sin(x) > 0, for all x ∈ (0, 2). Then given
0 < x < y < 2, we must have

cos(y)− cos(x) = −2 sin
(
y + x

2

)
sin

(
y − x

2

)
< 0.

Therefore, the cosine function must be strictly monotonically decreasing between 0 and 2.
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Definition. The number π is defined to be π = 2x0, where x0 is the unique zero of cos in the open
interval (0, 2).

Theorem 2.38. We have

• cos(π) = −1, cos(3π/2) = 0 and cos(2π) = 1,

• sin(π/2) = 1, sin(π) = 0, sin(3π/2) = −1 and sin(2π) = 0,

• cos(x+ 2π) = cos(x), sin(x+ 2π) = sin(x),

• cos(x+ π) = − cos(x), sin(x+ π) = − sin(x),

• cos(π/2− x) = sin(x), and sin(π/2− x) = cos(x)

for all x ∈ R.

The proof involves lots of little exercises which you can look up in the standard textbooks
on analysis. For example, since we know that cos(π/2) = 0, sin(π/2) > 0, and cos2(π/2) +
sin2(π/2) = 1, it must follow that sin(π/2) = 1. But then

cos(π) = cos
(π

2
+
π

2

)
= cos2

(π
2

)
− sin2

(π
2

)
= 0− 1 = −1.

The other points in this theorem can be similarly proved.

Using these ideas, people have found various formulas for the number π. One particularly
interesting formula (which is related to the famous Riemann zeta function in number theory) is the
following

π2

6
=

∞∑

n=1

1
n2
.

2.16 The geometry of the complex numbers

Given a complex number z = x+iy ∈ C, with x, y ∈ R, we can say that z is the point (x, y) ∈ R2,
where R2 is the Euclidean plane. Then, given another complex number w = u+ iv, we have that
the sum z + w is the point (x+ u, y + v) ∈ R2. This is just the normal vector addition operation
of linear algebra.

But things become more interesting when we multiply two complex numbers together. For
this, another representation, using polar coordinates, is more appropriate. Taking z = x+ iy, and
using the trigonometric functions, we see that there is a unique r ∈ R with r ≥ 0, and (if r > 0) a
unique θ ∈ [0, 2π), such that x = r cos(θ) and y = r sin(θ). That is

z = r cos(θ) + ir sin(θ).

Similarly, there exist s ≥ 0 and φ ∈ [0, 2π), such that

w = s cos(φ) + is sin(φ).

Then we have

z · z = (r cos(θ) + ir sin(θ)) · (s cos(φ) + is sin(φ))
= rs((cos(θ) cos(φ)− sin(θ) sin(φ)) + i(cos(θ) sin(φ) + sin(θ) cos(φ)))
= rs(cos(θ + φ) + i sin(θ + φ))
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Another way to say the same thing is to write z = reiθ and w = seiφ. Then

zw = reiθ · seiφ = rs · ei(θ+φ).

When writing z = reiθ, we can think of the complex number z as being the two-dimensional
vector with length r, and with angle θ to the x-axis. Then we see that multiplying two complex
numbers z and w gives as the result the vector with length the product of the lengths of z and w,
and the angle to the x-axis is the sum of the angles of z and w.

In particular, multiplying z by eiθ simply results in the vector z having its length remain
unchanged (since ‖eiθ‖ = 1), but its angle is increased by θ. Also, one sees that if we take
increasing values of x ∈ R, then the complex number eix just winds around the unit circle of the
complex plane, in direct proportion to x.

2.17 The Riemann integral

Definition. Let a < b in R. A partition of the interval [a, b] is a finite sequence of numbers
t0, . . . , tn, such that t0 = a, tn = b, and tk−1 < tk for k = 1, . . . , n. Therefore, we can imagine
that the partition splits the interval into n subintervals

[a, b] = [t0, t1] ∪ [t1, t2] ∪ · · · ∪ [tn−1, tn].

The fineness of the partition is the length of the longest subinterval, namely

max
k=1,...,n

tk − tk−1.

Definition. Let f : [a, b] → R be a function, and let P = {[t0, t1], . . . , [tn−1, tn]} be a partition
of [a, b]. A Riemann sum for f with respect to P is a sum of the form

S =
n∑

k=1

f(xk)(tk − tk−1),

where tk−1 ≤ xk ≤ tk, for each k.

Definition. Let f : [a, b] → R be a function. We say that f is Riemann integrable if there exists
a real number, denoted by

∫ b
a f(x)dx, such that for all ε > 0, a δ > 0 exists, such that for all

Riemann sums S over partitions with fineness less than δ, we have
∣∣∣∣S −

∫ b

a
f(x)dx

∣∣∣∣ < ε.

2.17.1 Step functions

The usual way to think about integrals is to consider step functions. Again, take the interval [a, b],
and a partition a = t0 < t1 < · · · < tn−1 < tn = b. Next, choose n real numbers, c1, · · · , cn.
Then the step function corresponding to these choices would be the function f : [a, b]→ R given
by

f(x) = ck ⇔ x ∈ (tk−1, tk).

The values of f(tk) can be arbitrarily chosen. Obviously every step function is Riemann integrable
(in fact, this follows from our theorem 2.39), and the integral is simply

n∑

k=1

ck(tk − tk−1).
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Furthermore, just as obviously, most step functions are not continuous — they make a “jump”
between adjacent intervals of the partition. So let us denote by S([a, b],R) the set of all step
functions from [a, b] to R.

Now, given two step functions g, h ∈ S([a, b],R) with g ≤ h, that is g(x) ≤ h(x), for all
x ∈ [a, b] then we must have ∫ b

a
g(x)dx ≤

∫ b

a
h(x)dx.

2.17.2 Integrals defined using step functions

So this leads to another way of thinking about integrals. For let f : [a, b] → R be a function such
that there exist two step functions g, h ∈ S([a, b],R) with g ≤ f ≤ h. Then, assuming that f is,
indeed, Riemann integrable, it would follow that we must have

∫ b

a
g(x)dx ≤

∫ b

a
f(x)dx ≤

∫ b

a
h(x)dx.

Definition. Let f : [a, b] → R be a function such that there exist two step functions g, h ∈
S([a, b],R) with g ≤ f ≤ h. The upper integral of f , denoted by

∫ ∗
f , is given by

∫ ∗
f = inf

{∫ b

a
h(x)dx : f ≤ h,where h ∈ S([a, b],R)

}
.

Similarly, the lower integral
∫
∗ f is

∫

∗
f = sup

{∫ b

a
g(x)dx : g ≤ f,where g ∈ S([a, b],R)

}
.

Theorem 2.39. The bounded function f : [a, b] → R is Riemann integrable if and only if
∫
∗ f =∫ ∗

f . In this case, we have
∫ b
a f(x)dx =

∫
∗ f .

Proof.

• “⇒”: Let ε > 0 be given. The problem then is to show that
∫ ∗
f − ∫

∗ f < ε.

Since f is Riemann integrable, there must exist some δ > 0 which is sufficiently small that
∣∣∣∣∣
n∑

k=1

f(ξk)(tk − tk−1)−
∫ b

a
f(x)dx

∣∣∣∣∣ <
ε

2
,

for every partition whose fineness is less than δ. Given such a partition, for each k, let

uk = inf{f(x) : x ∈ [tk−1, tk]}
vk = sup{f(x) : x ∈ [tk−1, tk]}

Then we have

Su =
n∑

k=1

uk(tk − tk−1) ≤
∫ b

a
f(x)dx, and

Sv =
n∑

k=1

vk(tk − tk−1) ≥
∫ b

a
f(x)dx.
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However,

Sv ≥
∫ ∗

f ≥
∫ b

a
f(x)dx ≥

∫

∗
f ≥ Su,

and

Sv − Su ≤
(∫ b

a
Sv − f(x)dx

)
+

(∫ b

a
f(x)dx− Su

)
<
ε

2
+
ε

2
= ε.

• “⇐”: Again, let ε > 0 be given. Since
∫ ∗
f =

∫
∗ f , there must exist two step functions g,

h ∈ S([a, b],R) with g ≤ f ≤ h and

∫ b

a
h(x)dx−

∫ b

a
g(x)dx <

ε

2
.

By possibly subdividing the partitions defining g and h we may assume that both are defined
along a single partition of [a, b], namely

a = x0 < x1 < · · · < xm = b.

Since f lies between the two step functions g and h, which are both bounded, it follows that
f is also bounded. So let

M = sup{|f(x)| : x ∈ [a, b]}.
Then choose

δ =
ε

8Mm
.

The problem now is to show that the Riemann sum with respect to any partition of [a, b] of
fineness less than δ is within ε of

∫ ∗
f =

∫
∗ ∗f . So let

a = t0 < t1 < · · · tn = b

be a partition whose fineness is less than δ, and let ξk ∈ [tk−1, tk], for each k. We define the
new function F : [a, b]→ R by the rule

F (x) =

{
0, if x ∈ {t0, . . . , tn},
f(ξk), if x ∈ (tk−1, tk).

Then F is Riemann integrable, and we have

∫ b

a
F (x)dx =

n∑

k=1

f(ξk)(tk − tk−1).

A further function s : [a, b]→ R is now defined as follows.

s(x) =

{
0, if x ∈ [tk−1, tk], where [tk−1, tk] ∩ {x0, . . . , xm} = ∅,
2M, otherwise.

Then we have g− s ≤ F ≤ h+ s, and furthermore, both g− s and h+ s are step functions.
But we can only have s(ξk) 6= 0 for at most 2m of the numbers ξk. Therefore

∫ b

a
s(x)dx =

n∑

k=1

s(ξk)(tk − tk−1) ≤ 2m · 2M · ε

8Mm
=
ε

2
.
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This means that
∫ b

a
g(x)dx− ε

2
<

∫ b

a
(g(x)− s(x))dx

≤
∫ b

a
F (x)dx

≤
∫ b

a
(h(x) + s(x))dx

<

∫ b

a
h(x)dx+

ε

2
.

But we also have
∫ b

a
h(x)dx− ε

2
<

∫ ∗
f =

∫

∗
f <

∫ b

a
g(x)dx+

ε

2
.

It is now a simple exercise to show that we have
∣∣∣∣
∫ b

a
f(x)dx−

∫ b

a
F (x)dx

∣∣∣∣ =

∣∣∣∣∣
∫ b

a
f(x)dx−

n∑

k=1

f(ξk)(tk − tk−1)

∣∣∣∣∣ < ε,

where the number
∫ b
a f(x)dx is taken to be equal to the upper and lower integrals

∫ ∗
f =

∫

∗
f.

2.17.3 Simple consequences of the definition

By thinking about integrals defined in terms of step functions, we immediately see that the follow-
ing theorem is true.

Theorem 2.40. Let f , g : [a, b] → R be integrable functions, and let λ ∈ R be some constant.
Then we have:

1. The function f + g is also integrable, and
∫ b

a
(f + g)(x)dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx,

2. λf is integrable, with ∫ b

a
λf(x)dx = λ

∫ b

a
f(x)dx,

3. if f ≥ g then ∫ b

a
f(x)dx ≥

∫ b

a
g(x)dx,

4. the functions max{f, g} and min{f, g}, given by max{f, g}(x) = max{f(x), g(x)} and
min{f, g}(x) = min{f(x), g(x)} are both integrable,

5. the function fg is integrable.5

5But, of course, we do not always have
R

fg =
R

f · R g. For example,
R +1

−1
xdx = 0, yet

R +1

−1
x2dx = 2

3
.
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2.17.4 Integrals of continuous functions

Theorem 2.41. Let [a, b] ⊂ R be a closed interval, and let f : [a, b] → R be some continuous
function. Then the integral ∫ b

a
f(x)dx

exists.6

Proof. Since the interval is closed, the function is uniformly continuous (theorem 2.26). The
problem is to show that

∫ ∗
f =

∫
∗ f , or in other words, to show that for all ε > 0, we have∫ ∗

f − ∫
∗ f ≤ ε.

So let some ε > 0 be given. Since f is uniformly continuous, there exists some δ > 0 such
that we have

|f(u)− f(v)| < ε

2(b− a) ,

for all u, v ∈ [a, b] with |u − v| < δ. Next choose n ∈ N to be sufficiently large that nδ > b− a
and we define two step functions g and h from [a, b] to R as follows.

g(x) = f

(
m(b− a)

n

)
+

ε

2(b− a)
and

h(x) = f

(
m(b− a)

n

)
− ε

2(b− a) ,

when

x ∈
[
a+

m(b− a)
n

, a+
(m+ 1)(b− a)

n

)
,

for each m ∈ {0, . . . , n− 1}, and finally g(b) = h(b) = f(b).
Then we have g(x) ≥ f(x) ≥ h(x) for all x ∈ [a, b], and furthermore

g(x)− h(x) ≤ ε

b− a.

Therefore we must have
∫ ∗

f −
∫

∗
f ≤

∫ b

a
(g(x)− h(x))dx ≤ ε

b− a · (b− a) = ε.

We also have the following simple analogue of the intermediate value theorem for continuous
functions.

Theorem 2.42 (Intermediate value theorem for integrals). Let f , g : [a, b] → R be continuous
functions with g(x) ≥ 0, for all x ∈ [a, b]. Then there exists some ξ ∈ [a, b] with

∫ b

a
f(x)g(x)dx = f(ξ)

∫ b

a
g(x)dx.

6If f is only defined on an open interval (a, b) then the integral may not exist, even if f is continuous. For example,
limε→0

R 1

ε
1
x
dx = ∞.
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Proof. Let m = inf{f(x) : x ∈ [a, b]} and M = sup{f(x) : x ∈ [a, b]}. Then mg(x) ≤
f(x)g(x) ≤Mg(x), for all x ∈ [a, b]. Therefore

m

∫ b

a
g(x)dx ≤

∫ b

a
f(x)g(x)dx ≤M

∫ b

a
g(x)dx,

and if we write ∫ b

a
f(x)g(x)dx = µ

∫ b

a
g(x)dx,

for some µ ∈ R, we must have m ≤ µ ≤ M . But then, according to the intermediate value
theorem (theorem 2.25), there must exist some ξ ∈ [a, b], with f(ξ) = µ.

2.17.5 Axiomatic characterization of the Riemann integral

Another way of thinking about integrals is to examine the set CC(R) of continuous functions of
compact support onR. So a function f : R→ R is an element of CC(R) if there exists some bound
K > 0, such that f(x) = 0 for all x ∈ R with |x| > K. As we have just seen, the integral of f
can be taken, say over the interval [−K,K]. And, even expanding the integral to larger values of
K, since f is just zero outside the interval, it doesn’t change the value of the integral. Therefore, it
makes sense to define this to be the integral over the whole set of real numbers, from−∞ to +∞.
Therefore ∫ +∞

−∞
f(x)dx

exists, for all f ∈ CC(R). This gives us a function int : CC(R) → R. As we have already seen,
the function int has the properties:

1. int(f + g) = int(f) + int(g),

2. int(λf) = λ int(f),

3. f ≤ g⇒ int(f) ≤ int(g),
for all f , g ∈ CC(R) and λ ∈ R. That is, int is a linear and monotonic functional on the set CC(R)

In addition, it is not difficult to see that the function int has the additional property of being
translation-invariant. That is, given f ∈ CC(R), and given some a ∈ R, then we define the
translated function τaf ∈ CC(R) to be τaf(x) = f(x− a), for all x ∈ R. Then we have

∫ +∞

−∞
f(x− a)dx =

∫ +∞

−∞
f(x)dx.

That is, int(τaf) = int(f), for all f ∈ CC(R).
Given all this, then we have the following theorem, which I won’t take the time to prove in this

lecture.

Theorem 2.43. Let I : CC(R) → R be any linear, monotonic, and translation-invariant func-
tional. Then there exists a constant c ∈ R, such that

I(f) = c

∫ +∞

−∞
f(x)dx,

for all f ∈ CC(R).
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Remark. The theorem is also true if we substitute the set of all possible finite step functions for
the set CC(R). That is, let TC(R) be the set of all step functions with finitely many steps, such that
the intervals defining the steps are also finite. Let I : TC(R) → R be any linear, monotonic, and
translation-invariant functional. Then there exists a constant c ∈ R, such that

I(f) = c

∫ +∞

−∞
f(x)dx,

for all f ∈ TC(R).

2.18 The fundamental theorem of calculus

Theorem 2.44. Let [a, b] ⊂ R be a closed interval, and let f : [a, b] → R be some continuous
function. Then the function F : [a, b]→ R, given by

F (x) =
∫ x

a
f(t)dt

is differentiable in (a, b), and we have F ′(x) = f(x), for all x ∈ (a, b).

Proof. Theorem 2.41 shows that the function F does exist. So let x ∈ (a, b) be given, and we first
examine

lim
h→0

F (x+ h)− F (x)
h

= lim
h→0

1
h

(∫ a+x

a
f(t)dt−

∫ a+x+h

a
f(t)dt

)
= lim

h→0

1
h

∫ x+h

x
f(t)dt,

where h > 0. According to theorem 2.42 (and taking the function g to be g(x) = 1, for all x),
there exists some ξh ∈ [x, x+ h] with

∫ x+h

x
f(t)dt = hf(ξh).

Since f is continuous at x, we have limh→0 f(ξh) = f(x), therefore

lim
h→0

F (x+ h)− F (x)
h

= lim
h→0

1
h

∫ x+h

x
f(t)dt = lim

h→0

1
h
hf(ξh) = f(x).

If h < 0 the argument is analogous. One need only observe that

F (x+ h)− F (x) =
∫ x

x+h
f(x)dx.

2.18.1 Anti-derivatives, or “Stammfunktionen”

Definition. Let f : (a, b)→ R be a continuous function. A differentiable functionG : (a, b)→ R,
such thatG′(x) = f(x), for all x ∈ (a, b) is called an anti-derivative (Stammfunktion, in German)
to f .

Theorem 2.45. Given a continuous function f , then any two anti-derivatives to f differ by at most
a constant.
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Proof. Let G1 and G2 be anti-derivatives to f . Then we have G′1 = f = G′2, which is to say,
G′1−G′2 = (G1−G2)′ = 0. But then the mean value theorem (theorem 2.34) shows that we must
have G1 −G2 being constant, say G1(x)−G2(x) = C, for some constant C ∈ R.

But we have seen that the integral
∫ x
a f(t)dt is an anti-derivative. Therefore, all possible anti-

derivatives are of the form ∫ x

a
f(t)dt+ C,

for various constants C ∈ R.
In fact, we can be more specific.

Theorem 2.46. Let f : [a, b]→ R be continuous, and let G be some anti-derivative to f . Then we
have ∫ b

a
f(x)dx = G(b)−G(a).

Proof. In order to see this, we need only look at our original anti-derivative F (x) =
∫ x
a f(t)dt.

Therefore, we have F (a) = 0 and F (b) =
∫ b
a f(t)dt. But if F (x)−G(x) = C, for all x, then we

must have in particular
F (a)−G(a) = C = F (b)−G(b),

or

G(b)−G(a) = F (b)− F (a) =
∫ b

a
f(x)dx.

Note that people often use the notation

∫ b

a
f(x)dx = G(x)

∣∣∣∣
b

a

2.18.2 Another look at the fundamental theorem

Given that

f(x) = F ′(x) =
d

dx

(∫ x

a
f(t)dt

)
,

then one can think of the differential operator d
dx , and the integral operator

∫
, as being inverses of

one another, in some sense. We have seen that the combination d
dx

∫
, when applied to a continuous

function f , simply gives us f back again. How about the reversed combination
∫

d
dx?

For this, we need to have a differentiable function f , defined on an open interval containing
the interval [a, b]. Then, the assertion is:

Theorem 2.47. Let f : (c, d) → R be a differentiable function, and let [a, b] ⊂ (c, d). Then we
have ∫ b

a
f ′(x)dx = f(b)− f(a).

Proof. This is obvious! We need only observe that f is an anti-derivative to f ′.
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2.18.3 Partial integration

This is a trivial consequence of what we have done up till now. Let (c, d) be an open interval with
[a, b] ⊂ (c, d), and let f , g : (c, d) → R be two differentiable functions. Then, according to the
chain rule, we have (fg)′(x) = f ′(x)g(x) + f(x)g′(x), for all x ∈ (c, d). Therefore it follows
that ∫ b

a
(fg)′(x) = f(x)g(x)

∣∣∣∣
b

a

=
∫ b

a
f ′(x)g(x)dx+

∫ b

a
f(x)g′(x)dx.

Often, one writes this equation as
∫ b

a
f ′(x)g(x)dx = f(x)g(x)

∣∣∣∣
b

a

−
∫ b

a
f(x)g′(x)dx.

2.18.4 The substitution rule

Another trivial consequence. Let f : [a, b] → R and g : [c, d] → R be differentiable functions,
with g([c, d]) ⊂ [a, b]. (In order to have differentiability at the endpoints, we assume that the
functions are defined in open intervals containing the given closed intervals [a, b] and [c, d].) Since
f is then continuous, it is integrable; thus there exists some anti-derivative F , with F ′ = f . Then
according to the chain rule of differentiation, we have

(F ◦ g)′(x) = g′(x)F ′(g(x)) = g′(x)f(g(x)).

Integrating both sides of the equation gives the substitution rule:
∫ d

c
f(g(x))g′(x)dx = (F ◦ g)(x)

∣∣∣∣
d

c

= F (g(d))− F (g(c)) =
∫ g(d)

g(c)
f(x)dx.

2.19 Taylor series; Taylor formula

2.19.1 The Taylor formula

Theorem 2.48 (Taylor’s formula). Let f : [a, b] → R be an (n + 1)-times continuously differen-
tiable function defined on an open interval (c, d) ⊃ [a, b]. (That is, let f ′(x) = f (1)(x), and then
recursively we define f (k+1)(x) =

(
f (k)(x)

)′
. Then the requirement is that f (n+1)(x) exists for

all x in [a, b], and the function f (n+1) : [a, b] → R which is so defined is continuous.) Then for
any x0 and x ∈ [a, b] we have

f(x) = f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)
2!

(x− x0)2 + · · ·+ f (n)(x0)
n!

(x− x0)n +Rn+1(x),

where

Rn+1(x) =
1
n!

∫ x

x0

(x− t)nf (n+1)(t)dt.

Proof. Use induction on n. For n = 1, Taylor’s formula is simply the fundamental theorem

f(x) = f(x0) +
∫ x

x0

f ′(t)dt.

So now assume it is true for the case n ≥ 1. In particular, we assume that the remainder term is

Rn(x) =
1

(n− 1)!

∫ x

x0

(x− t)n−1f (n)(t)dt.
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Applying partial integration, we obtain

Rn(x) =
1

(n− 1)!

∫ x

x0

(x− t)n−1f (n)(t)dt

= −
∫ x

x0

f (n)(t)
(

(x− t)n
n!

)′
dt

= −f (n)(t)
(x− t)n
n!

∣∣∣∣
x

x0

+
∫ x

x0

(x− t)n
n!

f (n+1)(t)dt

=
f (n)(x0)

n!
(x− x0)n +

∫ x

x0

(x− t)n
n!

f (n+1)(t)dt,

which is just the next term in the Taylor formula, with the corresponding remainder term.

We can also express the remainder term in a different way. Since (x−t)n

n! is always non-
negative, we can use the intermediate value theorem for integrals to find some ξ ∈ [a, b] with

Rn+1(x) =
∫ x

x0

(x− t)n
n!

f (n+1)(t)dt

= f (n+1)(ξ)
∫ x

x0

(x− t)n
n!

dt

= −f (n+1)(ξ)
(x− t)n+1

(n+ 1)!

∣∣∣∣
x

x0

=
f (n+1)(ξ)
(n+ 1)!

(x− x0)n+1.

Then Taylor’s formula takes the simple form

f(x) = f(x0)+
f ′(x0)

1!
(x−x0)+

f ′′(x0)
2!

(x−x0)2+· · ·+f
(n)(x0)
n!

(x−x0)n+
f (n+1)(ξ)
(n+ 1)!

(x−x0)n+1.

2.19.2 The Taylor series

If f is infinitely differentiable7 then we can consider the series

f(x) =
∞∑

n=0

f (n)(x0)
n!

(x− x0)n.

In fact, if you think about it, you will see that all of our standard functions are simply defined in
terms of their Taylor series.

Back in the “old days”, 200 years ago and more, mathematicians thought that the only sensible
way to define the idea of a function was by means of a Taylor series. Yet, in modern mathematics,
we see that there are many infinitely differentiable real functions which are different from their
Taylor series. (Assuming that the series converges in the first place!)

On the other hand, things are quite different when we consider differentiable functions of
complex numbers. There, all differentiable functions are always infinitely often differentiable,
and furthermore, they are given by their Taylor series. The subject of complex analysis is called
“Funktionentheorie” in German, paying tribute to this old-fashioned way of looking at functions.

7Of course this is the case with our “standard functions”, namely polynomials, the exponential function, and the
things which come out of that: sine, cosine, and so forth.
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2.19.3 Power series, Fourier series, etc.

Unfortunately, there is simply too little time in this semester to explain many of the important
things you should know about the analysis of real functions.

Thinking about Taylor series leads naturally to the idea of examining more general power
series of the form ∞∑

n=0

anx
n,

for possible values of an ∈ R. We have the theorem that any continuous function f : [a, b] → R
can be arbitrarily well approximated by polynomials. That is, for each ε > 0, there exists some
polynomial P (x) = anx

n + · · ·+ a1x+ a0, which is such that

|f(x)− P (x)| < ε,

for all x ∈ [a, b].
Then we have the theory of Fourier series. These are series of the form

∞∑

k=0

(ak cos(kx) + bk sin(kx)),

with ak, bk ∈ R. One proves that each continuously differentiable periodic function with period
2π can be expressed as a Fourier series. In fact, by changing the length of the period, and gener-
alizing the idea of a Fourier series to accommodate this idea, we see that as with power series, all
continuously differentiable functions on closed intervals can be expressed as Fourier series. Then,
noticing that the sine and cosine functions really come from the complex exponential function, we
are lead to consider exponential sums. And so on.

These subjects — and many more which would be handled in a more extensive introduction to
the theory of real analysis — are treated in many books in the library, and of course they can also
be found in innumerable sites on the internet.

2.20 More general integrals

While it is all very nice to think of integrals as being simply ways of measuring the area “below
the curve” of a real-valued function defined on a closed interval [a, b] ⊂ R, in many practical
situations, this is much too restrictive.

For example, these days many people seem to be extremely concerned about the average tem-
perature of the Earth. So if we imagine that the surface of the Earth is a 2-sphere S2, and the
temperature at each point x ∈ S2 on the sphere is some real number t(x), then we obtain a func-
tion t : S2 → R. Given this, then the average temperature would be given by

1
vol(S2)

∫

S2

t(x)dx.

But how do we do an integral over a 2-dimensional object? And even worse, how do we integrate
over a sphere? It makes no sense to use our 1-dimensional Riemann integral here.

Another example comes up in probability theory. A probability space is an abstract concept,
where the probabilities that different possible events might occur are assigned various values.
Often the probability space is taken to be infinite, and these values are described in terms of a
“probability measure”. Calculating actual probabilities then involves finding integrals with respect
to this measure.
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2.20.1 Measure theory, general integrals: a brief sketch

Let X be some non-empty set. A σ-algebra Σ on X is a set of subsets of X such that:

• Σ is not empty,

• if A ∈ Σ, then also X \A ∈ Σ, and

• the union of any countable number of sets in Σ is again in Σ.

A measure on a σ-algebra on X is a real function µ : Σ→ [0,∞], such that

• µ(∅) = 0, and

• if A1, A2, . . . is a countable sequence of disjoint (that is, Ai ∩ Aj = ∅, if i 6= j) sets in Σ,
then

µ

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

µ(Ai).

We say that the triple (X,Σ, µ) is a measure space, and the elements of Σ are called the measurable
sets of X .

Given this, then it is — in principle — a simple business to define the idea of an integral on
a measure space, using “step functions” where the steps are given by the measurable sets. There
are some complications. For example, it is a good idea to have the measure being “σ-finite” (this
is the case if X is a countable union of measurable sets of finite measure). We then imagine that
the measurable sets in Σ are like the intervals ([a, b], or [a, b), and so forth), in R. Then, given a
real function f : X → R, we form upper and lower integrals to f , and if they are equal, then the
function is itself integrable.

But, at least at this stage of things, such ideas are just too general for us.

2.21 Integrals in Rn; Fubini’s theorem

Let us consider the case of a function f : G → R, where G ⊂ Rn. To make things as simple as
possible, we can consider the case that G is an n-dimensional rectangle in Rn. That is, for each
i = 1, . . . , n, we have some closed interval [ai, bi] ⊂ R, and

G = {(x1, . . . , xn) ∈ Rn : ai ≤ xi ≤ bi, ∀i = 1, . . . , n}.
In fact, to make things even more simple, let us just consider two intervals [a, b] and [c, d] in

R, and then we take G to be the rectangle G = [a, b]× [c, d] ⊂ R2.
Let f : G→ R be some continuous function8. That means in particular that for all x0 ∈ [a, b],

the function f(x0, ·) : [c, d] → R with f(x0, ·)(y) = f(x0, y), for all y ∈ [c, d], is continuous.
Also for all y0 ∈ [c, d], the function f(·, y0) : [a, b]→ R is continuous.

Given this, then we obtain a new function φ : [a, b]→ R, by taking

φ(x) =
∫ d

c
f(x, y)dy,

for each x ∈ [a, b].
8The definition here is entirely analogous to our earlier definition for 1-dimensional functions: Let u, v ∈ Rn. Then

the distance between them is taken to be ‖u − v‖. So if f : G → R is some function from the subset G ⊂ Rn to R,
then we say that f is continuous at the point x0 ∈ G if for all ε > 0, there exists a δ > 0, such that for all y ∈ G with
‖y − x0‖ < δ we have |f(y)− f(x0)| < ε.

f is continuous if it is continuous at all points of G.
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Theorem 2.49. The function φ is continuous.

Proof. Since the function f(·, y) : [a, b] → R is continuous, and since [a, b] is a closed interval,
it follows that f(·, y) must be uniformly continuous. Therefore, given an ε > 0, there must exist
some δ > 0, such that for all x1 and x2 ∈ [a, b] with |x1 − x2| < δ, we have

|f(x1, y)− f(x2, y)| < ε

d− c .

But then we have

|φ(x1)− φ(x2)| =
∣∣∣∣
∫ d

c
f(x1, y)dy −

∫ d

c
f(x2, y)dy

∣∣∣∣

≤
∫ d

c
|f(x1, y)− f(x2, y)|dy

<

∫ d

c

ε

d− cdy = ε.

But since φ is continuous, it follows that the integral
∫ b

a
φ(x)dx =

∫ b

a

(∫ d

c
f(x, y)dy

)
dx

must exist.

Remark. If we take the measure space on R2 whose σ-algebra is the smallest one which contains
all rectangles [x1, x2]× [y1, y2], and which is such that the measure µ is, in each case,

µ([x1, x2]× [y1, y2]) = (x2 − x1) · (y2 − y1),

then we will find that the integral of f is, in fact, equal to
∫ b
a

∫ d
c f(x, y)dydx.

This measure is called “Lebesgue measure”.

2.21.1 Fubini’s theorem

Theorem 2.50 (Fubini’s theorem — in two dimensions).
∫ b

a

(∫ d

c
f(x, y)dy

)
dx =

∫ d

c

(∫ b

a
f(x, y)dx

)
dy

Proof. Let us take two partitions, namely

a = p1 < p2 < · · · < pn = b

of [a, b], and
c = q1 < q2 < · · · < qm = d

of [c, d]. This gives us a partition of the rectangle [a, b]× [c, d] into smaller rectangles of the form
[pi, pi+1]× [qj , qj+1]. Let us call such a partition ∆.

Given ∆, then we can consider a kind of Riemann sum of f by taking the double sum

S∆(f) =
n∑

i=1

m∑

j=1

f(xi, yi) · (pi − pi−1)(qj − qj−1),
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where pi−1 ≤ xi < pi and qj−q ≤ yj < qj , for each i and j.
Since we know that f is uniformly continuous, it follows that for each ε > 0, there exists a

δ > 0 such that
|f(x, y)− f(x′, y′)| < ε

(b− a)(d− c)
whenever

√
(x− x′)2 + (y − y′)2 < δ. So choose the partition ∆ to be sufficiently fine that for

each rectangle [pi, pi+1] × [qj , qj+1] in ∆, the maximum distance between any two points is at
most δ.

Now take the function g : [a, b) × [c, d) → R to be such that for each v ∈ G we have g(v)
being the infimum of the values of f(u), for all u ∈ [pi, pi+1)× [qj , qj+1), which is the rectangle
containing v. In this way, g is defined on the rectangle [a, b)×[c, d), and the values on the boundary
of G are fixed by assuming that g is a continuous function defined everywhere in G. Therefore we
have g ≤ f , and so for the Riemann sum S∆(g) ≤ S∆(f).

Similarly, we define h : G → R by taking h(v) to be the supremum of the values of f(u),
for all u ∈ [pi, pi+1) × [qj , qj+1), which is the rectangle containing v. Then we have f ≤ h and
S∆(g) ≤ S∆(f).

If the lower and upper integrals are defined as in the one dimensional case of the Riemann
integral, then we obtain

S∆(g) ≤
∫

∗
f ≤

∫ ∗
f ≤ S∆(h).

But

S∆(h)− S∆(g) =
n∑

i=1

m∑

j=1

(h(xi, yi)− g(xi, yi)) · (pi − pi−1)(qj − qj−1)

≤
n∑

i=1

m∑

j=1

ε

(b− a)(d− c) · (pi − pi−1)(qj − qj−1)

=
ε

(b− a)(d− c) · (b− a)(d− c) = ε.

Therefore, since ε could be taken to be an arbitrarily small positive number, we must have
∫
∗ f =∫ ∗

f . Then, looking at the way the double integral

∫ b

a

(∫ d

c
f(x, y)dy

)
dx

was defined in terms of one dimensional integrals; that is, using partitions of the intervals [a, b]
and [c, d], we see that we must have

∫

∗
f =

∫ ∗
f =

∫ b

a

(∫ d

c
f(x, y)dy

)
dx.

But the same argument shows that also

∫

∗
f =

∫ ∗
f =

∫ d

c

(∫ b

a
f(x, y)dx

)
dy.
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More generally, we can think about an n-dimensional rectangle G in Rn, and a continuous
function f : G → R. Then, by looking at typical points (x1, x2, . . . , xn) ∈ G, and their values
f(x1, x2, . . . , xn) ∈ R, we see that it is possible to treat the different xi as being independent
variables, and so we obtain the multiple integral

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(x1, x2, . . . , xn)dx1dx2 . . . dxn.

Then our proof of Fubini’s theorem in the 2-dimensional case can be easily extended to show that
this multiple integral is, in fact, the integral for f over G, and the order in which the variables in
the multiple integration is taken makes no difference to the final result.

2.21.2 Axiomatic characterization of integrals in Rn

This is entirely analogous to the 1-dimensional case. We are again concerned with integrals of
continuous functions of compact support. We take this to mean continuous functions f : Rn → R,
such that, for each such function, there is some finite n-dimensional rectangle G, with f(x) = 0
if x 6∈ G. Let us denote the set of all such functions by CC(Rn). Then we define

∫

Rn

f(x)dnx

to be simply the integral over G.
This integral is again linear and monotonic. Furthermore, it is translation-invariant with respect

to arbitrary translations in n-dimensional space. That is, let v = (v1, . . . , vn) ∈ Rn be some
arbitrary vector, and let τvf(x) = f(x + v). Then we always have

∫

Rn

f(x)dnx =
∫

Rn

τvf(x)dnx.

So the analogue of theorem 2.43 is

Theorem 2.51. Let I : CC(Rn) → R be any linear, monotonic, and translation-invariant func-
tional. Then there exists a constant c ∈ R, such that

I(f) = c

∫

Rn

f(x)dnx,

for all f ∈ CC(Rn).

Again, a proof would take too much time to explain in this lecture. One reference for this is
the book “Analysis 3”, by Otto Forster.

2.22 Regions in Rn; open sets, closed sets

The idea of always confining our thinking to rectangular regions in Rn is obviously rather awk-
ward. In analysis, particularly when considering whether or not a function is differentiable, it is
convenient to assume that it is defined on an “open” subset of Rn.

Definition. Let G ⊂ Rn. Then G is called open if, for all x ∈ G, there exists some positive
number ε > 0, such that {y ∈ Rn : ‖y − x‖ < ε} ⊂ G. On the other hand, G is closed if Rn \G
is open.

The set Bε(x) = {y ∈ Rn : ‖y − x‖ < ε} is called the open ball with center x and radius ε.
Thus we can say that a set is open in Rn if for each of its elements x, there exists some positive
number ε > 0, such that the open ball around x with radius ε lies entirely within the set.
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Examples

• In R, every closed interval [a, b] is closed; every open interval (a, b) is open. But [a, b) is
neither open, nor closed.

• In Rn, the empty set ∅ and Rn itself are both open and closed.

• If V ⊂ Rn is a subspace of dimension less than n, then it is closed.

• The n− 1-sphere Sn−1 = {x ∈ Rn : ‖x‖ = 1} is closed in Rn.

2.22.1 The topology of metric spaces

The definition can be generalized further to all metric spaces. That is, letM be a metric space, with
metric d : M ×M → R. Then a subset U ⊂M is called open, if for all x ∈ U , there exists some
ε > 0, such that the open ball with radius ε around x, namely Bε(x) = {y ∈ M : d(y, x) < ε} is
contained within U . The subset V ⊂M is called closed if M \ V is open.

So given such a metric space as M , letO be the set of all possible open subsets of M . It is not
difficult to see that O has the following properties.

1. Both ∅ and M are elements of O.

2. Given two subsets U and V ∈ O, then we also have U ∩ V ∈ O.

3. Let I ⊂ O be any collection of open subsets of M . (I could be finite, or countably infinite,
or even uncountably infinite!) Then the union of all the sets in I is also in O. Namely
∪U∈IU ∈ O.

These are the three properties which define a topology. Therefore every metric space can be
taken to be a topological space. On the other hand, many topological spaces are not metric spaces.

So all this leads to further speculations in the realms of pure mathematics. In fact topology is
one of the main branches of modern mathematics.

2.23 Partial derivatives

Let G ⊂ Rn be some open set, and let the function f : G → R be given. Then if we take some
arbitrary element x ∈ G, we can write x = (x1, . . . , xn). Take some j ∈ {1, . . . , n} and consider
the elements (x1, . . . , xj + h, . . . , xn), for various values of h ∈ R. Since G is open, there must
exist some δ > 0, such that for all h with |h| < δ, we have (x1, . . . , xj + h, . . . , xn) ∈ G. Or
we can use the notation of linear algebra: let {e1, . . . , en} be the canonical basis for Rn, so that
(x1, . . . , xj + h, . . . , xn) = x + hej . Then if

lim
h→0
h6=0

f(x + hej)− f(x)
h

exists, it is called the partial derivative of f with respect to xj , and it is written ∂jf(x), orDjf(x).
Sometimes it is also written as if it were a fraction, namely

∂f(x)
∂xj

.

If the partial derivative ∂jf(x) exists for all x ∈ G, then we can further think about whether
or not the partial derivative in the xk direction exists, for some k ∈ {1, . . . , n}, when applied to
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the function ∂jf : G→ R. If so, then we obtain a new function ∂k∂jf : G→ R. In particular, we
write

∂2
j f(x)

if k = j.
One also writes

∂2f(x)
∂xk∂xj

,

or
∂2f(x)
∂x2

j

,

if k = j.
Physicists enjoy using these partial derivatives in order to describe the various laws of classical

physics. For this, they have developed a number of traditional words to describe certain special
combinations of partial derivatives. For example, if we have the function f : G→ R such that all
the partial derivatives ∂jf(x) exist at some point x ∈ G, then the vector

grad f(x) = (∂1f(x), . . . , ∂nf(x))

is called the “gradient” of f at x. Sometimes people also write “∇f(x)” for the gradient.
A vector field is a mapping F : G → Rn. Then, since F (x) ∈ Rn, for each x ∈ G, we can

write
F (x) = (F1(x), . . . , Fn(x)),

so that we obtain n new functions Fi : G→ R, for i = 1, . . . , n. If they all have partial derivatives,
then we can take

div F (x) = ∂1F1(x) + · · ·+ ∂nFn(x).

This is called the “divergence” of F at x.
These two things can be combined by observing that if we have a twice differentiable function

f : G → R, then the gradient is a vector field, and the divergence of that is again simply a real
function. This is called the “Laplace operator”, namely

div grad f(x) = ∂2
1f(x) + · · ·+ ∂2

nf(x).

It is often written ∆f(x), and it plays an important role in “potential theory” of mathematical
analysis.

Also, particularly in Maxwell’s equations of classical electrodynamics, if we have the special
case of a vector field in 3-dimensional Euclidean space R3, then physicists use another combina-
tion of partial derivatives, called the “curl” of the vector field. This is sometimes written “∇×F ”,
where F : G→ R3 is the vector field. But the curl operator is not really a part of mathematics, so
I will simply ignore it from now on.9

9It is interesting to know that much of this, and particularly the curl operator, arises in a very natural and elegant
way if we consider analysis based on the system of quaternion numbers. This is a kind of 4-dimensional generalization
of the 2-dimensional complex number system which we have already gotten to know. In the quaternion system, the
“imaginary” part has 3-dimensions, while the “real” part has just one dimension, as with C. When Hamilton discovered
the quaternions in 1843, he believed that he had found the true secret behind all of physics. The world consisted simply
of quaternions, with “space” being the imaginary part of the quaternions, and “time” being the real part. It all seemed
quite compelling, but unfortunately, physics has now progressed beyond such things, and quaternions play no role in
modern physics. However, in order to honor the memory of Sir William Hamilton, today’s physicists continuously use
something called the “Hamiltonian” in their descriptions of quantum field theory.
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2.23.1 Partial derivatives commute if they are continuous

Theorem 2.52. LetG ⊂ Rn be open, and let f : G→ R be such that all second partial derivatives
exist and are continuous. Then for all x ∈ G, and for all i, j = 1, . . . , n we have

∂i∂jf(x) = ∂j∂if(x).

Proof. Without loss of generality, we prove the theorem in the case n = 2 and i = 1, j = 2. Let
x = (x1, x2). For simplicity, and again without loss of generality, we also just prove the theorem
in the special case x = 0 = (0, 0).

Therefore, since G is open, and x = 0 is contained within G, there exists some δ > 0, such
that the square

H = (−δ,+δ)× (−δ,+δ)
is contained in G. In particular, for all h with |h| < δ, we have that (h, h) is contained in G.

Let the function F : (−δ,+δ)→ R be defined to be

F (h) = (f(h, h)− f(h, 0))− (f(0, h)− f(0, 0)).

We can write this as
F (h) = g(h)− g(0),

where
g(t) = f(t, h)− f(t, 0).

Then the mean value theorem (2.34), shows that there must exist some ξ between 0 and h (h 6= 0),
with

g(h)− g(0)
h

= g′(ξ) = ∂1f(ξ, h)− ∂1f(ξ, 0).

Using the mean value theorem again on the continuously differentiable function

∂1f(ξ, ·) : (−δ,+δ)→ R,

we find some µ between 0 and h with

∂1f(ξ, h)− ∂1f(ξ, 0)
h

= ∂2∂1f(ξ, µ).

That is

F (h) = g(h)− g(0) = g′(ξ)h = (∂1f(ξ, h)− ∂1f(ξ, 0))h = ∂2∂1f(ξ, µ) · h2,

or, noting that (ξ, µ)→ (0, 0) as h→ 0, we see that

lim
h→0
h6=0

F (h)
h2

= ∂2∂1f(0, 0).

But we could start the other way around, by observing that

F (h) = k(h)− k(0),

where
k(t) = f(h, t)− f(0, t).
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Then there exists some µ̃ between 0 and h, such that

k(h)− k(0)
h

= k′(µ̃) = ∂2f(h, µ̃)− ∂2f(0, µ̃).

Arguing as before, we obtain a ξ̃ between 0 and h with

F (h) = k(h)− k(0) = k′(ξ̃)h = (∂2f(h, µ̃)− ∂2f(0, µ̃))h = ∂1∂2f(ξ̃, µ̃) · h2.

But then, again, we have

lim
h→0
h6=0

F (h)
h2

= ∂1∂2f(0, 0).

Since the limit

lim
h→0
h6=0

F (h)
h2

is the same in both cases, we finally obtain

∂1∂2f(0) = ∂2∂1f(0).

Corollary. Given that f has sufficiently many continuously differentiable partial derivatives, then
for a given m, and a given permutation σ : {1, . . . ,m} → {1, . . . ,m}, we have

∂i1∂i2 · · · ∂imf(x) = ∂iσ(1)
∂iσ(2)

· · · ∂iσ(m)
f(x),

for all x ∈ G.

2.24 Total derivatives

Let U ⊂ Rn be open, and let f : U → Rm be a function. That is to say, for each x ∈ U ,
f(x) ∈ Rm. Therefore we can write f(x) = (f1(x), . . . , fm(x)), where fi : U → R, for each
i = 1, . . . ,m. It may be that each of these functions has partial derivatives. If so, then we can
consider

∂jfi(x) = lim
h→0
h6=0

fi(x1, . . . , xj + h, . . . , xn)− fi(x1, . . . , xj , . . . , xn)
h

,

for each j = 1, . . . , n and i = 1, . . . ,m. This gives us an m× n matrix, namely


∂1f1(x) · · · ∂nf1(x)

...
. . .

...
∂1fm(x) · · · ∂nfm(x)


 ,

which is called the Jacobi matrix for the function f at the point x ∈ U . If f is totally differentiable
at x, then we write Df(x) to denote its total derivative, and in fact, the total derivative is the
Jacobi matrix. But let’s begin with the general definition. First note that since U is an open set,
there exists some δ > 0, such that x + ξ ∈ U , for all ξ ∈ Rn with ‖ξ‖ < δ.
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Definition. Let f : U → Rm be a function, and take some point x ∈ U . Then f is said to be
totally differentiable at x if there exists an m × n matrix A, such that if we take δ > 0 to be
sufficiently small that x+ ξ ∈ U , for all ξ ∈ Rn with ‖ξ‖ < δ, then the function ϕ : Bδ(x)→ Rm
given by

f(x + ξ) = f(x) +Aξ + ϕ(ξ)

is such that

lim
ξ→0
ξ 6=0

ϕ(ξ)
‖ξ‖ = 0.

Rather than writing the complicated expression limξ→0
ξ 6=0

ϕ(ξ)
‖ξ‖ = 0, it is usual to write

ϕ(ξ) = o(‖ξ‖).

Remark. Although this definition may look more complicated than the familiar definition for the
derivative of a function in one dimension, in reality it is just the same. For if we have the function
f : (a, b) → R being differentiable at the point x ∈ (a, b), with derivative f ′(x), then let a new
function ϕ be defined for sufficiently small h to be

ϕ(h) = (f(x+ h)− f(x))− f ′(x)h.

But we have

lim
h→0
h6=0

f(x+ h)− f(x)
h

= f ′(x),

or, put another way

lim
h→0
h6=0

ϕ(h)
h

= lim
h→0

f(x+ h)− f(x)− f ′(x)h
h

= 0.

That is to say, also here we have that f is differentiable at the point x if there exists some real
number f ′(x), such that

f(x+ h) = f(x) + f ′(x)h+ o(|h|).
Theorem 2.53. Let U ⊂ Rn be open, and let f : U → Rm be a function. Assume that f is
differentiable at the point x ∈ U , with matrix A. Then f is continuous at x, and furthermore, all
partial derivatives ∂jfi(x) exist at x, and we have aij = ∂jfi(x).

Proof. Since ϕ(ξ) = o(‖ξ‖), we have limξ→0 ϕ(ξ) = 0. But also limξ→0Aξ = 0. The fact that
f is continuous at x then follows, since

lim
ξ→0

f(x + ξ) = lim
ξ→0

(f(x) +Aξ + ϕ(ξ)) = f(x).

Given ξ =



ξ1
...
ξn


 ∈ Rn, and some i = 1, . . . ,m, let ϕi(ξ) be defined to be

ϕi(ξ) = fi(x + ξ)− fi(x)−
n∑

k=1

aikξk.
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In particular, if we take ξ = hej , then we have

fi(x + hej) = fi(x) + haij + ϕi(hej),

with ϕ(ξ) = o(‖ξ‖), that is ϕi(hej) = o(|h|). Therefore

∂jfi(x) = lim
h→0
h6=0

f(x + hej)− f(x)
h

= lim
h→0
h6=0

haij + ϕi(hej)
h

= aij .

Theorem 2.54. Again, f : U → Rn. This time assume that all partial derivatives ∂jfi exist, and
are continuous at some point x ∈ U . Then f is totally differentiable at x.

Proof. Let δ > 0 be sufficiently small that the ball around x with radius δ is contained within U .
That is, Bδ(x) ⊂ U . Let ξ = (ξ1, . . . , ξn) ∈ Bδ(x). Thus, ‖ξ‖ < δ. For each k = 0, 1, . . . , n, let

pk = x +
k∑

l=1

ξkek,

where {e1, . . . , en} is the canonical basis for Rn. So p0 = x and pn = x + ξ.
According to the intermediate value theorem, for each k, there exists some θk ∈ [0, 1], such

that
fi(pk)− fi(pk−1) = ∂kfi(pk−1 + θkξkek)ξk.

That is, if ξk 6= 0, then we can write this in the more familiar form

fi(pk−1 + ξkek)− fi(pk−1)
ξk

= ∂kfi(pk−1 + θkξkek).

Therefore, we have

fi(x + ξ)− fi(x) =
n∑

k=1

(fi(pk)− fi(pk−1))

=
n∑

k=1

∂kfi(pk−1 + θkξkek)ξk

=
n∑

k=1

∂kfi(x)ξk + ϕk(ξ),

where

ϕk(ξ) =
n∑

k=1

(∂kfi(pk−1 + θkξkek)− ∂kfi(x))ξk.

Then the fact that the function ∂kfi is continuous at x means that we must have ϕk(ξ) = o(‖ξ‖)
for each k. So finally, if we take A = Df to be the Jacobi matrix of partial derivatives, we obtain
the desired expression:

f(x + ξ) = f(x) +Aξ + ϕ(ξ).

That is 

f1(x + ξ)

...
fn(x + ξ)


 =



f1(x)

...
fn(x)


 +A



ξ1
...
ξn


 +



ϕ1(ξ)

...
ϕn(ξ)


 ,
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with 

ϕ1(ξ)

...
ϕn(ξ)


 = ϕ(ξ) = o(‖ξ‖).

2.25 Further results involving partial derivatives

There is no time to deal with the many important further results in the theory of higher-dimensional
real analysis which you might need to know. The standard ideas are dealt with in any textbook
with the title “Analysis II”. So I will simply describe some of them without proof here.

2.25.1 The chain rule in higher dimensions

Let U ⊂ Rn and V ⊂ Rm be open subsets, and let g : U → Rm and f : V → Rk be functions
such that g(U) ⊂ V . Therefore, we can consider the combined function f ◦ g : U → Rk, with
(f ◦ g)(x) = f(g(x)) for all x ∈ U . Now let x0 be some point in U , and assume that g is totally
differentiable at x, and furthermore, f is totally differentiable at g(x). Thus the differential of g at
x is the m× n matrix Dg(x), and the differential of f at g(x) is the k ×m matrix Df(g(x)).

Then the chain rule says that also the function f ◦ g : U → Rk is totally differentiable at x,
and the differential is the k × n matrix

Df(g(x)) ·Dg(x),
obtained from Dg(x) and Df(g(x)) using matrix multiplication.

2.25.2 The directional derivative

This is a simple consequence of the chain rule. Let U ⊂ Rn be an open subset, and let f : U → R
be a continuously differentiable function. Now take any vector v ∈ Rn with ‖v‖ = 1. So v points
us in some specific direction in the space Rn. The directional derivative of f in the direction v at
the point x ∈ U is then defined to be

Dvf(x) = lim
h→0
h6=0

1
h

(f(x + hv)− f(x)).

Theorem 2.55. Dvf(x) = 〈v, gradf(x)〉. That is, it is the scalar product of v with gradf(x).

Proof. We define the function g : R→ Rn to be

g(t) = x + tv.

Then clearly g is totally differentiable everywhere, and in particular we have

Dg(0) = v.

Writing it out in coordinates, this is

Dg(0) =



g′1(0)

...
g′n(0)


 =



v1
...
vn


 .
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But also we have
Df(y) =

(
∂1f(y) · · · ∂nf(y)

)
,

a 1 × n matrix, for arbitrary points y ∈ U . The directional derivative of f at x is given by the
derivative of the real function f ◦ g at zero. Therefore we have

Dvf(x) = Df(g(0))Dg(0)

=
(
∂1f(g(0)) · · · ∂nf(g(0))

)
·



v1
...
vn




= 〈v, gradf(x)〉.

2.25.3 The transformation formula for higher dimensional integrals

Let G ⊂ Rn be some bounded subset, and let f : Rn → R be a continuous function which
vanishes outside G. That is, f(x) = 0 if x 6∈ G. Then, as we have already seen, it makes sense to
define the integral ∫

Rn

f(x)dnx

to be the integral of f , taken over a sufficiently large rectangular region containing G.
What happens if we now take some linear mapping φ : Rn → Rn, whose matrix is the

n × n matrix A with respect to the canonical basis of Rn? Then we can consider the function
f ◦ φ : Rn → R. Here, an arbitrary point x ∈ Rn has the value

(f ◦ φ)(x) = f(Ax).

If we now integrate the function f ◦φ, rather than the original f , it is clear that the unit of measure
(the small rectangular regions which we use for defining the integral in terms of step functions)
will have changed in volume under the linear mapping. What is the change in volume? As we have
seen in linear algebra, this change of volume is given by the absolute value of the determinant of
the matrix A. This gives us the relation

∫

Rn

f(Ax)
∣∣det(A)

∣∣dnx =
∫

Rn

f(y)dny,

for linear mappings φ : Rn → Rn.

The more general transformation formula — which is the natural generalization of the substi-
tution rule for simple 1-dimensional integrals — is then the following.

Let U and V ⊂ Rn be open subsets, and let φ : U → V be a bijection, such that both φ
and also φ−1 are continuously differentiable. Then, for all continuous functions f which vanish
outside V , we have ∫

U
f(φ(x))

∣∣det(Dφ(x))
∣∣dnx =

∫

V
f(y)dny.
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2.26 Uniformly convergent sequences of functions

Let us return to the simple situation of 1-dimensional functions. And we consider sequences of
such functions. (All of this can be easily generalized to higher dimensions as well.)

Definition. Let [a, b] ⊂ R, and consider a sequence of functions fn : [a, b] → R, where n ∈ N.
The sequence is called pointwise convergent if there exists some function f : [a, b]→ R, such that
for each x ∈ [a, b], we have limn→∞ fn(x) = f(x).

On the other hand, the sequence is called uniformly convergent if there is a function f :
[a, b]→ R such that for all ε > 0, a number Nε ∈ N exists, with

∣∣fn(x)− f(x)
∣∣ < ε,

for all x ∈ [a, b] and for all n ≥ Nε.

Theorem 2.56. Let fn : [a, b] → R be a uniformly convergent sequence of continuous functions.
Then limn→∞ fn is also continuous.

Proof. Let fn −→ f . Now choose any x ∈ [a, b] and any ε > 0. The problem is to show that there
exists some δ > 0, such that for all y ∈ [a, b] with |y − x| < δ, we must have |f(y)− f(x)| < ε.

But since the sequence fn is uniformly convergent, there exists some N ∈ N with

|fn(z)− f(z)| < ε

3
,

for all n ≥ N . In particular, fN is a continuous function, and so there exists some δ > 0 such that
for all y ∈ [a, b] with |y − x| < δ, we must have

|fN (y)− fN (x)| < ε

3
.

But then, for all such y with |y − x| < δ, we have

|f(y)− f(x)| ≤ |f(y)− fN (y)|+ |fN (y)− fN (x)|+ |fN (x)− f(x)| < ε

3
+
ε

3
+
ε

3
= ε.

When thinking about functions in an abstract way, it is often useful to remember that they form
a vector space. Let f : [a, b]→ R. Then we can define the supremum norm as follows

‖f‖Sup = Sup{|f(x)| : a ≤ x ≤ b}.

(Of course, if the function is not bounded, we must admit the possibility that ‖f‖Sup =∞, so it is
— strictly speaking — not a norm.)

But given a uniformly convergent sequence of functions fn, converging to the function f :
[a, b]→ R, we must have limn→∞ ‖f − fn‖Sup = 0.

Theorem 2.57. Let fn : [a, b] → R be a uniformly convergent sequence of continuous functions,
converging to the function f : [a, b]→ R. Then we have

∫ b

a
f(x)dx = lim

n→∞

∫ b

a
fn(x)dx.
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Proof. Since f is continuous, the integral on the left must exist. For each n, we have
∣∣∣∣
∫ b

a
f(x)dx−

∫ b

a
fn(x)dx

∣∣∣∣ ≤
∫ b

a

∣∣∣f(x)− fn(x)
∣∣∣dx

≤
∫ b

a
‖f − fn‖Supdx

= (b− a)‖f − fn‖Sup −→
n→∞ 0.

Remark. It is not really necessary for the functions fn to be continuous in this theorem. It is
sufficient to assume that they are integrable.

On the other hand, the condition of uniform convergence is very necessary. For example the
sequence of functions fn : [0, 1]→ R with

fn(x) =





n2x, 0 ≤ x ≤ 1/n,
n− n2(x− 1/n), 1/n ≤ x ≤ 2/n,
0, otherwise,

is pointwise convergent to the constant function whose value is zero everywhere, yet the sequence
of integrals does not converge to zero.

2.27 Ordinary differential equations

The kinds of differential equations which we will investigate here are of the form

y′ = f(x, y),

where f : G→ R is some continuous function and G ⊂ R2 is an open subset. A solution to such
a differential equation is a differentiable function ϕ : I → R, where I ⊂ R is some open interval
and (x, ϕ(x)) ∈ G for all x ∈ I , such that

ϕ′(x) = f(x, ϕ(x)),

for all x ∈ I .
The simplest case is that the function f depends only upon x. That is, we have the differential

equation
y′ = f(x).

But we already know how to solve this equation. The solution is simply an anti-derivative to the
function f . And we already know that all possible anti-derivatives are given by the integral of f ,
plus a constant. That is, the solution to this simple form of differential equation is

ϕ(x) =
∫ x

x0

f(t)dt+ y0.

Here, y0 ∈ R is a constant, and the solution ϕ has the initial value ϕ(x0) = y0.
Of course if we express the anti-derivative as an integral in this way, we only obtain values

of ϕ(x) for x ≥ x0. But we can also extend the anti-derivative to values of x less than x0 by
considering the integral

−
∫ x0

x
f(t)dt.
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But what can we do in the more general case? For example consider the differential equation

y′ = y.

Remembering the properties of the exponential function, we can guess that a solution is

ϕ(x) = exp(x).

But then, a little further thought convinces us that also k exp(x) is a solution, for any constant
k ∈ R. Are there further solutions? And more generally, can we solve differential equations of the
form y′ = g(y), where g is any continuous function?

2.27.1 Separation of variables

In fact the natural thing is to investigate differential equations of the form

y′ = f(x) · g(y),

where both f and g are continuous functions. This is a differential equation which has separation
of its variables.

Theorem 2.58. Let I , J ⊂ R be open intervals, f : I → R and g : J → R continuous functions
with g(y) 6= 0 for all y ∈ J . Let (x0, y0) ∈ I × J be some “initial value”, and take

F (x) =
∫ x

x0

f(t)dt and G(y) =
∫ y

y0

ds

g(s)
,

for x ∈ I and y ∈ J . Further, assume that I ′ ⊂ I is some open interval contained in I such
that x0 ∈ I ′ and F (I ′) ⊂ G(J). Then there exists a unique continuously differentiable function
ϕ : I ′ → R, such that ϕ(x0) = y0 and

ϕ′(x) = f(x)g(ϕ(x)),

for all x ∈ I ′. And we have G(ϕ(x)) = F (x) for all x ∈ I ′.
Proof. Assuming such a ϕ exists, then we have

F (x) =
∫ x

x0

f(t)dt =
∫ x

x0

ϕ′(t)
g(ϕ(t))

dt =
∫ ϕ(x)

y0

ds

g(s)
= G(ϕ(x)).

That is to say, G(ϕ(x)) = F (x). The second equation here follows from the assumed equation
ϕ′(x) = f(x)g(ϕ(x)), and the third equation follows from the substitution rule for integrals.

Next we prove that ϕ is unique. Since G′(x) = 1
g(x) 6= 0, for all x ∈ I ′, and since G is

continuous, it follows that G is a bijection between J and its image G(J) ⊂ R. Thus there must
be an inverse function H : G(J)→ J , with H(G(y)) = y, for all y ∈ J . But then

ϕ(x) = H(G(ϕ(x))) = H(F (x)) = H

(∫ x

x0

f(t)dt
)
,

and since both the functions F and H are given, then it follows that also ϕ(x) is given, if we put
in an arbitrary value for x.

So the final question is: is ϕ(x) = H
(∫ x

x0
f(t)dt

)
really a solution of the differential equa-

tion?
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Well, we need only differentiate the equation G(ϕ(x)) = F (x) in order to obtain

ϕ′(x)G′(ϕ(x)) =
ϕ′(x)
g(ϕ(x))

= F ′(x) = f(x),

or ϕ′(x) = f(x)g(ϕ(x)), as required. Furthermore, we have

ϕ(x0) = H

(∫ x0

x0

f(t)dt
)

= H(0).

But G(y0) = 0 as well. Thus

ϕ(x0) = H(0) = H(G(y0)) = y0.

2.27.2 An example: y′ = x · y
The equation y′ = x · y obviously has separation of variables. We take I = R and J = R+ =
{x ∈ R : x > 0}. Then we have

F (x) =
∫ x

x0

t dt =
x2 − x2

0

2
,

and

G(y) =
∫ y

y0

dt

t
= ln(y)− ln(y0) = ln

(
y

y0

)
.

Since the function G is the logarithm, its inverse function H must be the exponential function. In
fact, we have

y0 · exp
(

ln
(
y

y0

))
= y,

for all y > 0. Therefore the solution with the initial value ϕ(x0) = y0, where y0 > 0, is

ϕ(x) = H(F (x)) = y0 exp
(∫ x

x0

t dt

)
= y0 exp

(
x2 − x2

0

2

)
.

2.27.3 Another example: homogeneous linear differential equations

The general first order homogeneous linear differential equation has the form

y′ = a(x) · y,

where a is a continuous function. This is again a case of separation of variables, and so, using the
methods we have developed, the general solution

ϕ(x) = y0 · exp
(∫ x

x0

a(t)dt
)

is immediately obtained. Note that if ϕ(x0) = y0 6= 0, then since exp(w) is always positive for
all w ∈ R, it follows that ϕ(x) 6= 0, for all possible x.
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2.27.4 Variation of constants

This is the method used to solve inhomogeneous first order linear differential equations. That is,
equations of the form

y′ = a(x) · y + b(x).

To begin with, let ϕ be a solution to the homogeneous linear differential equation y′ = a(x) · y,
with initial value ϕ(x0) = 0. Thus

ϕ′(x) = a(x)ϕ(x),

with solution

ϕ(x) = exp
(∫ x

x0

a(t)dt
)
.

Next, we assume that the inhomogeneous equation with the extra term b(x) has some solution ψ,
so that

ψ′(x) = a(x) · ψ(x) + b(x).

Given this, then we simply define a new function ζ to be

ζ(x) =
ψ(x)
ϕ(x)

.

That is, ψ(x) = ζ(x)ϕ(x); but remember that ϕ′(x) = a(x)ϕ(x). Therefore, putting it all to-
gether, we obtain

ψ′(x) = ζ ′(x)ϕ(x) + ζ(x)ϕ′(x)
= ζ ′(x)ϕ(x) + ζ(x)a(x)ϕ(x)
= a(x)ψ(x) + b(x)
= a(x)ζ(x)ϕ(x) + b(x).

Subtracting the term ζ(x)a(x)ϕ(x) from both sides, we the obtain

ζ ′(x)ϕ(x) = b(x),

or

ζ ′(x) =
b(x)
ϕ(x)

.

Thus ζ is simply an anti-derivative of b(x)
ϕ(x) , that is

ζ(x) =
∫ x

x0

b(t)
ϕ(t)

dt+K,

where K ∈ R is some suitable constant. Choosing K = y0 gives us the solution

ψ(x) = ζ(x)ϕ(x) = exp
(∫ x

x0

a(t)dt
)
·



∫ x

x0

b(t)

exp
(∫ x

x0
a(s)ds

)dt+ y0


 ,

which satisfies the initial value ψ(x0) = y0.
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2.28 The theorem of Picard and Lindelöf

In our discussion of the method of the variation of constants, we simply assumed that some solution
to the differential equation must exist. But how do we know if this assumption is a reasonable
one? Could it be that all of these elaborate equations just describe nonsense, based on a false
assumption? To answer these questions, we need to give some thought to the general theory of
differential equations.

2.28.1 Systems of first order differential equations

In the discussion so far, we have considered single equations of the form y′ = f(x, y), where we
are looking for a solution of the form ϕ : I → R. More generally, we can look at a set of n
equations which are all linked together.

y′1 = f1(x, y1, . . . , yn)
y′2 = f2(x, y1, . . . , yn)

...

y′1 = f1(x, y1, . . . , yn)

We can think of these n components y1, . . . , yn as being the coordinates of a vector y ∈ Rn, and
so the differential equation can be written as if it were a kind of vector equation: y′ = f(x,y), or
in other words 


y′1
...
y′n


 =



f1(x,y)

...
fn(x,y)


 .

This differential equation is determined by the function f , so it is necessary to say what it is.
Let G ⊂ R × Rn be an open subset (of Rn+1), and f : G → Rn a continuous function.

Given some x0 ∈ R and y0 ∈ Rn with (x,y0) ∈ G, then a solution to the differential equation
y′ = f(x, y), with initial value (x0,y0), is a differentiable function ϕ : I → Rn, for some open
interval I ⊂ R, such that x0 ∈ I , ϕ(x0) = y0, and (x, ϕ(x)) ∈ G for all x ∈ I , and finally, the
function ϕ satisfies the the differential equation. That is,

ϕ′(x) = f(x, ϕ(x)),

for all x ∈ I .
This is the usual framework for a discussion of the theorem of Picard-Lindelöf. But for sim-

plicity, I will simply consider a single equation; thus we have the open subsetG ⊂ R2, and we are
looking for solutions ϕ : I → R for an equation of the form y′ = f(x, y), where f : G → R is a
continuous function.

2.28.2 The Lipschitz condition

Definition. Again, let G ⊂ R × Rn be an open subset, and let f : G → Rn be a function. The
function f is said to satisfy a Lipschitz condition with Lipschitz constant L ≥ 0 if for all (x,y),
(x, ỹ) ∈ G, we have ‖f(x,y)− f(x, ỹ)‖ ≤ ‖y − ỹ‖L.

In the theory of differential equations, we usually generalize things somewhat, assuming that
the function f only satisfies a local Lipschitz condition. That is to say, the function satisfies a local
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Lipschitz condition if for every (x,y) ∈ G, there exists some open neighborhood U ⊂ G with
(x,y) ∈ U , such that f satisfies a Lipschitz condition in U .

However, for simplicity in the discussion here, I will assume that we have a global Lipschitz
condition, and furthermore it will be assumed that we have just a single first order ordinary differ-
ential equation. Thus G ⊂ R2.

2.28.3 Uniqueness of solutions

Theorem 2.59. Let G ⊂ R2 be an open subset and let f : G → R be a continuous function
satisfying a Lipschitz condition with Lipschitz constant L ≥ 0. Assume (x0, y0) ∈ G, I ⊂ R is an
open interval with x0 ∈ I , and we have two functions ϕ, ψ : I → R which are both solutions of
the differential equation y′ = f(x, y), with initial value (x0, y0). That is, ϕ(x0) = ψ(x0) = y0.
Then we have ϕ(x) = ψ(x) for all x ∈ I .

Proof. We have ϕ′(x) = f(x, y). Therefore ϕ(x) =
∫ x
x0
f(t, ϕ(t))dt+ y0, and the same is true of

the function ψ. Thus for each x ≥ x0 we have

|ϕ(x)− ψ(x)| =
∣∣∣∣
∫ x

x0

(
f(t, ϕ(t))− f(t, ψ(t))

)
dt

∣∣∣∣

≤
∫ x

x0

∣∣∣f(t, ϕ(t))− f(t, ψ(t))
∣∣∣dt

≤ L ·
∫ x

x0

|ϕ(t))− ψ(t)|dt

For each x ∈ I with x ≥ x0, let

M(x) = sup{|ϕ(t)− ψ(t)| : x0 ≤ t ≤ x}.

In particular, for all t between x0 and x, we have

|ϕ′(t)− ψ′(t)| = |f(t, ϕ(t))− f(t, ψ(t))| ≤ L · |ϕ(t)− ψ(t)| ≤ L ·M(x).

Therefore
|ϕ(t)− ψ(t)|′ ≤ L ·M(x).

Then, using the intermediate value theorem (2.25) and noting that ϕ(x0) = ψ(x0), we see that

|ϕ(t)− ψ(t)| ≤ |t− x0| · L ·M(x),

for all t between x0 and x. In particular, this implies that

M(x) ≤ |x− x0| · L ·M(x).

But if we choose x to be sufficiently close to x0 so that

|x− x0| < 1
2L
,

then we obtain
M(x) ≤ 1

2
M(x).

This can only be true if M(x) = 0, or in other words, ϕ(t) = ψ(t) for all t ≥ x0, with |t− x0| <
1/2L.
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Now take x1 = sup{ξ ∈ I : ϕ(t) = ψ(t), ∀t ∈ [x0, ξ]}. There cannot be any elements of I
greater than x1 since for all points t of I nearer than 1/2L to x1, we must have ϕ(t) = ψ(t). Thus,
for all elements of I greater than x0, we must have ϕ and ψ being equal.

The argument can also be extended to show that for all elements of I less than x0, the two
functions are equal. For this we need only note that we would have

ϕ(x) = −
∫ x0

x
f(t, ϕ(t))dt+ y0,

and the analogous expression for ψ(x).

2.28.4 The Banach fixed point theorem

Let V be a vector space over the field of real numbersR. Assume that V is a normed vector space;
that is, we have a norm function ‖ · ‖ : V → R. Assume furthermore that V is complete with
respect to this norm; that is, every Cauchy sequence converges. For such a vector space, Banach’s
fixed point theorem is the following.

Theorem 2.60. Let V be a complete, real, normed vector space, with norm ‖ · ‖. Let f : V→ V
be a mapping (not necessarily a linear mapping), with the property that there exists some constant
0 ≤ K < 1 such that ‖f(v) − f(w)‖ ≤ K · ‖v − w‖, for all v, w ∈ V. Then there exists a
unique fixed point v∗ ∈ V, such that f(v∗) = v∗.

Proof. Choose any vector v ∈ V and call it v0. Then for each n ∈ N, let vn = f(vn−1). We
have

‖vn+1−vn‖ = ‖f(vn)−f(vn−1)‖ ≤ K‖vn−vn−1‖ ≤ · · · ≤ Kn‖v1−v0‖ = Kn‖f(v)−v‖,

for each n. Therefore, given any two numbers m, n ∈ N, say with m ≤ n, we have10

‖vn − vm‖ =

∥∥∥∥∥
n−1∑

k=m

vk+1 − vk

∥∥∥∥∥

≤
n−1∑

k=m

‖vk+1 − vk‖

≤
n−1∑

k=m

Kk‖f(v)− v‖

= ‖f(v)− v‖ ·
(
n−1∑

k=m

Kk

)

= Km · ‖f(v)− v‖ ·
(
n−m−1∑

k=0

Kk

)

< Km · ‖f(v)− v‖ ·
( ∞∑

k=0

Kk

)

= Km ·
(
‖f(v)− v‖ · 1

1−K
)

10We assume K > 0 here. If K = 0, the theorem is trivially true.
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Therefore (vn)n∈N must be a Cauchy sequence, and since V was assumed to be complete, the
sequence must converge to some vector v∗ ∈ V.

The fact that f(v∗) = v∗ follows, since f must be continuous (with respect to the norm
metric), and so we have

lim
n→∞ f(vn) = f(v∗).

The fixed point v∗ is unique since, if we had some other fixed point w with f(w) = w, then
we would have

‖v∗ −w‖ = ‖f(v∗)− f(w)‖ ≤ K · ‖v∗ −w‖,
with 0 < K < 1. But this must imply that ‖v∗ −w‖ = 0, or v∗ = w.

As far as the theory of differential equations is concerned, the vector space we are interested
in is the space of continuous functions f : I → R, with the supremum norm. But we have seen in
theorem 2.56 that this space of continuous functions is, indeed, complete.11

2.28.5 Existence of solutions

Theorem 2.61. Again, G ⊂ R2 open; f : G → R continuous, satisfying a Lipschitz condition
with constant L ≥ 0. Let (x0, y0) ∈ G. Then there exists an open interval I ⊂ R with x0 ∈ I ,
and a continuously differentiable function ϕ : I → R, such that ϕ(x0) = y0, (x, ϕ(x)) ∈ G and
ϕ′(x) = f(x.ϕ(x)), for all x ∈ I .

Proof. We show how to find ϕ(x), for x > x0. The procedure for x < x0 is analogous.
To begin, since G is open, there must exist some δ > 0 such that the square

S(x0,y0)(δ) = {(x, y) : |x− x0| ≤ δ and |y − y0| ≤ δ} ⊂ G.

Since f is continuous, there must exist some M ≥ 0, such that |f(x, y)| ≤ M , for all (x, y) ∈
S(x0,y0)(δ). (This was our exercise 9.3(a).) So let

ε = min
{
δ,
δ

M
,

1
2L

}

and then take
I = (x0 − ε, x0 + ε).

The next thing to do is to define recursively a sequence of functions ϕn : I → R as follows.12

We start with the constant function
ϕ0(x) = y0.

Then, for each n ∈ N, we take

ϕn(x) =
∫ x

x0

f(t, ϕn−1(t))dt+ y0.

Obviously ϕn(x0) = y0, for all n. Furthermore, we also have (x, ϕn(x)) ∈ S(x0,y0)(δ) ⊂ G, for
all n. In order to see this, we begin by observing that (x, ϕ0(x)) = (x, y0) ∈ S(x0,y0)(δ) for all
x ∈ I , since we must have |x− x0| < ε ≤ δ.

11The Banach fixed point theorem is more naturally formulated within the theory of metric spaces. Given a mapping
f : X → X , where X is a metric space with metric d, then there is a unique fixed point of the mapping if there exists
a constant 0 ≤ K < 1 such that d(f(x), f(y)) ≤ Kd(x, y), for all x, y ∈ X .

12This procedure only gives us the values of ϕn(x), for x ≥ x0. But again, it is a simple matter of integrating from
x up to x0, rather than from x0 up to x, in order to obtain the values of ϕn(x), for x < x0.
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So now let n ∈ N be given, and we assume inductively that (x, ϕn−1(x)) ∈ S(x0,y0)(δ) for all
x ∈ I . Then we have

|ϕn(x)− y0| =
∣∣∣∣
∫ x

x0

f(t, ϕn−1(t))dt
∣∣∣∣

≤
∫ x

x0

|f(t, ϕn−1(t))|dt
≤ |x− x0| ·M
≤ δ

M
·M

= δ.

Therefore (x, ϕn(x)) ∈ G, for all n.
The next step is to show that the sequence of functions ϕn converges uniformly to a function

ϕ : I → R which is a solution to the differential equation y′ = f(x, y). Writing ‖ · ‖ for the
supremum norm, we have

|ϕn+1(x)− ϕn(x)| =
∣∣∣∣
∫ x

x0

(f(t, ϕn(t))− f(t, ϕn−1(t)))dt
∣∣∣∣

≤
∫ x

x0

L|ϕn(t)− ϕn−1(t)|dt
≤ L · |x− x0| · ‖ϕn − ϕn−1‖
≤ L · 1

2L
· ‖ϕn − ϕn−1‖

=
1
2
‖ϕn − ϕn−1‖.

Since this is true for all x ∈ I with x > x0, we have

‖ϕn+1 − ϕn‖ ≤ 1
2
‖ϕn − ϕn−1‖.

Thus, using the argument in the proof of theorem 2.60, we see that the sequence of continuous
functions ϕn converges uniformly to a function ϕ : I → R. We have ϕ(x0) = y0 and (x, ϕ(x)) ∈
G, for all x ∈ I . Furthermore, using theorem 2.57, we obtain

ϕ(x) = lim
n→∞ϕn(x) = lim

n→∞

∫ x

x0

f(t, ϕn−1(t))dt =
∫ x

x0

f(t, ϕ(t))dt,

and so we must have
ϕ′(x) = f(x, ϕ(x))

for all x ∈ I .

Remarks

• In this proof, we have assumed that x > x0, but as has been repeatedly remarked, it is a
simple matter to alter the proof in order to deal with the values of x in I which are less than
x0.

• Since we confined things to the small square S(x0,y0)(δ) around the point (x0, y0) ∈ G, it is
clear that we only needed to have a Lipschitz condition in that square. That is, the theorem
is also true if the function f only satisfies a local Lipschitz condition.
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• Our interval I , which contains the initial value x0, is taken to be small in order to ensure
that the sequence of functions ϕn do not bring us out of the region G. Also I must be
sufficiently small to ensure that we have the contraction ‖ϕn+1 − ϕn‖ ≤ 1

2‖ϕn − ϕn−1‖.
But then, given that the solution ϕ is defined along the interval I , we can take a point near
the end of I and use that as the initial value, constructing an extension of the domain os ϕ.
In general this procedure allows us to extend the interval along which ϕ is defined, in fact
going out to the edge of the region G. Such ideas are dealt with more fully in the many
books on differential equations in the library, and also in the lecture devoted to differential
equations in our faculty.

• The method of proof describes a practical method for finding solutions of differential equa-
tions. Given an initial value (x0, y0) ∈ G, we take the first approximation to be simply the
constant function ϕ0(x) = y0, for all x ∈ I . Then the sequence ϕn, for n ∈ N should
converge to a solution. This is called the Picard-Lindelöf iteration method.

• When dealing with systems of first order differential equations, we have vectors inRn, rather
than just numbers in R. The iteration step is then a vector equation

ϕn(x) =
∫ x

x0

f(t, ϕn−1(t))dt+ y0.

Here x ∈ I ⊂ R, but f(t, ϕn−1(t)) and y0 ∈ Rn. The integral becomes an integral over a
vector-valued function.

∫ x

x0

f(t, ϕn−1(t))dt =
∫ x

x0



f1(t, ϕn−1(t))

...
fn(t, ϕn−1(t))


 dt,

and each of the components fi(t, ϕn−1(t)) is just a function fi : I → R. So we integrate
each of the components separately.

2.28.6 The equation y′ = f
(
y
x

)

To round off our discussion of special classes of first-order ordinary differential equations, we
consider the equation

y′ = f
(y
x

)
.

Obviously we are looking for a solution ϕ : I → R with an interval I ⊂ R, such that 0 6∈ I . Given
this, then we have:

Theorem 2.62. There exists a solution ϕ : I → R with

ϕ′(x) = f

(
ϕ(x)
x

)

if and only if

ψ′(x) =
f(ψ(x))− ψ(x)

x
,

where ψ(x) = ϕ(x)
x .
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Proof. Assume first that ϕ′(x) = f
(
ϕ(x)
x

)
. Then we have

ψ′(x) =
ϕ′(x)
x
− ϕ(x)

x2

=
1
x

(
f

(
ϕ(x)
x

)
− ϕ(x)

x

)

=
1
x

(f(ψ(x))− ψ(x)).

Conversely, if we assume ψ′(x) = f(ψ(x))−ψ(x)
x , then since we have ϕ(x) = ψ(x) · x, it follows

ϕ′(x) = ψ′(x) · x+ ψ(x)

= ψ(x) +
(f(ψ(x))− ψ(x)) · x

x
= f(ψ(x))

= f

(
ϕ(x)
x

)
.

Therefore, in order to solve the equation

y′ = f
(y
x

)
,

the first thing to do is to solve the equation

z′ =
1
x

(f(z)− z).

The equation with z is a case of separation of variables, and we have already seen how to solve
such equations. Therefore we obtain a solution z, and the solution y for the original equation
becomes y = x · z.

2.29 Ordinary differential equations of higher order

These are equations of the form

y(n) = f(x, y, y′, . . . , y(n−1)),

where y(n) is the n-th derivative. That is, given an initial value (x0, y0), then we are looking for a
solution ϕ : I → R, with ϕ(x0) = y0 and

ϕ(n)(x) = f(x, ϕ(x), ϕ′(x), . . . , ϕ(n−1)(x)),

for all x ∈ I .
The method is to convert this into a system of n first-order differential equations in the variables

y1, . . . , yn. To begin with, let y1 = y. then take

y′1 = y2

y′2 = y3

...

y′n−1 = yn

y′n = f(x, y1, . . . , yn).
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This reduces the problem to that of solving systems of first order equations. And given a solution

ϕ(x) =




ϕ1(x)
ϕ2(x)

...
ϕn(x)


 ,

then ϕ1 : I → R is clearly a solution to the original equation

y(n) = f(x, y, y′, . . . , y(n−1)).

Example

Consider the simple equation y′′ = −y. This describes (without bothering about additional con-
stants) the harmonic oscillator. In order to solve the equation, we reduce it to a system of two first
order equations, namely

y′1 = y2

y′2 = −y1

But we have already seen in an exercise that the solution (with the initial value ϕ(0) = 1) is
ϕ(x) = cos(x).

2.30 Numerical methods for solving ordinary differential equations

2.30.1 Euler’s method

Given the differential equation y′ = f(x, y), and the initial value (x0, y0), then Euler’s method for
finding an approximate solution is to look at things in a discrete sequence of steps

x0, x0 + ∆x, x0 + 2∆x, x0 + 3∆x, . . .

That is to say, things are calculated at the points

x0, x1, x2, x3, . . .

where
xn = xn−1 + ∆x,

and ∆x is some fixed distance between one calculation and the next.
But what are the corresponding values of y for each of these xn? The rule is:

yn = yn−1 + ∆x · f(xn−1, yn−1),

progressing through increasing values of n in N. In this way we obtain a sequence of points

(x0, y0), (x1, y1), (x2, y2), . . .

and then connecting the points with straight line segments, we hope to get some sort of approxi-
mation to the correct solution.
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A simple example: y′ = x

If the initial value is (0, 0), then we are looking for the function ϕ : R → R with ϕ(0) = 0 and
ϕ′(x) = x, for all x ∈ R. Obviously, the correct solution is

ϕ(x) =
1
2
x2.

What does Euler’s method make of this problem if we take ∆x = 1? We obtain the sequence of
points

(0, 0)
(1, 0)
(2, 1)
(3, 3)
(4, 6)
etc.

But the correct solution ϕ(x) = 1
2x

2 goes through the points

(0, 0)
(1, 1

2)
(2, 2)
(3, 41

2)
(4, 8)
etc.

So we see that Euler’s method is not particularly good in this case.

2.30.2 The Runga-Kutta method

The simplest version of the Runga-Kutta method is to use the rule

yn = yn−1 +
∆x
2

(
f(xn−1, yn−1) + f(xn−1 + ∆x, yn−1 + ∆xf(xn−1, yn−1))

)
.

This gives the sequence of points
(0, 0)
(1, 1

2)
(2, 2)
(3, 41

2)
(4, 8)
etc.

And we see that this is gives us precisely the points of the correct solution!
Of course this example is rather special. Experimenting with more general examples, one

usually finds that this simple Runga-Kutta method is superior to the Cauchy method, but it is not
exact.

A more complicated 4-step iteration, giving the standard Runga-Kutta method, together with
the motivation behind these ideas, was discussed in the lecture.
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2.31 The variational calculus: a quick sketch

The most general way to think about the variational calculus is to imagine that we have some
abstract set X , together with a real-valued function F : X → R which is bounded below. The
problem is then: find some x0 ∈ X (if such a thing exists!) such that F (x0) ≤ F (x), for all
possible x ∈ X . That is, x0 is an element with the minimal possible value.

If we are looking for an element with the maximal value, then that is the same as looking for
some x0 such that −F (x0) has a minimal value.

For example, in the theory of economics, it might be imagined that we have a factory which
produces various things which can be sold at various prices. Should more workers be employed,
or should some be made redundant? Which combinations of raw materials at what prices should
be bought? And so on and so forth. Each of the possible combinations is an element of the set
X of different possible ways of running the factory. In the end, the amount of profit the factory
makes is some number F (x), which might be calculated for each of the possible elements of X .
Economists then imagine that the factory manager will choose to run the factory according to the
method x0 ∈ X , which gives the greatest profit.

But such a level of generality brings us away from practical mathematics. After all, if you think
about it then you will soon realize that any question at all could be formulated in such a framework!
Let us therefore restrict ourselves to the kind of variational calculus which describes practical
situations in the physical world, and which are described in terms of differential equations.

For example, what is the shape of a telephone wire which hangs steadily, in equilibrium, under
gravity between two posts? Assume that gravity is given by the constant g, and that the wire has
the uniform weight σ per unit length (for example one kilogram per meter). We can imagine that
the wire has a length L, and the two posts are located at the points a and b, measured along the
real line R. So we have |b − a| < L. Assume that the two ends of the wire are both at the height
h, and that the height at points x between a and b is given by the function ϕ : [a, b]→ R. Then, as
explained in the lecture, the potential energy of the wire is

F (ϕ) = gσ

∫ b

a
ϕ(x)

√
1 + (ϕ′(x))2dx.

The shape of the wire is therefore given by the function ϕ0 which describes a curve of total length
L, such that F (ϕ0) is a minimum.

The general form of such problems is: find some function y of x such that the value of

F (y) =
∫
f(x, y, y′)dx

is as small as possible.
Being slightly more specific, let G ⊂ R3 be some open subset, and let f : G → R be a

function which is at least twice continuously partially differentiable. Then the problem is to find a
function ϕ : I → R such that (x, ϕ(x), ϕ′(x)) ∈ G, for all x ∈ I with I = [a, b], such that

F (ϕ) =
∫ b

a
f(x, ϕ(x), ϕ′(x))dx

is as small as possible.
One way to do this is to think of other possible functions ϕ̃ : I → R, and compute the values

of F (ϕ̃), checking to see if they are always greater than, or equal to F (ϕ). Writing

ψ = ϕ̃− ϕ,
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we obtain a new function ψ : I → R which is such that ψ(a) = ψ(b) = 0. (It is assumed that all
of these functions are at least continuously differentiable.)

Generalizing things slightly, let us take (−δ,+δ) to be a small open interval around zero. Then
we can examine the functions ϕ + sψ, for various values of s ∈ (−δ,+δ). This gives us a new
function

Γ : (−δ,+δ)→ R,

such that

Γ(s) = F (ϕ+ sψ) =
∫ b

a
f
(
x, ϕ(x) + sψ(x), ϕ′(x) + sψ′(x)

)
dx.

Given that things are sufficiently differentiable, we then have that Γ is differentiable at zero; and
if ϕ is a solution to our variational problem then it must be that

Γ′(0) = 0.

We then have

Γ′(0) =
d

ds

∣∣∣
s=0

∫ b

a
f
(
x, ϕ(x) + sψ(x), ϕ′(x) + sψ′(x)

)
dx

=
∫ b

a

d

ds

∣∣∣
s=0

f
(
x, ϕ(x) + sψ(x), ϕ′(x) + sψ′(x)

)
dx

=
∫ b

a

(
ψ(x)

∂

∂y
f(x, ϕ(x), ϕ′(x)) + ψ′(x)

∂

∂y′
f(x, ϕ(x), ϕ′(x))

)
dx

=
∫ b

a

(
ψ(x)

∂

∂y
f(x, ϕ(x), ϕ′(x))

)
dt+

∫ b

a

(
ψ′(x)

∂

∂y′
f(x, ϕ(x), ϕ′(x))

)
dx

=
∫ b

a

(
ψ(x)

∂

∂y
f(x, ϕ(x), ϕ′(x))

)
dt−

∫ b

a

(
ψ(x)

d

dx

∂

∂y′
f(x, ϕ(x), ϕ′(x))

)
dx

=
∫ b

a
ψ(x)

(
∂

∂y
f(x, ϕ(x), ϕ′(x))− d

dx

∂

∂y′
f(x, ϕ(x), ϕ′(x))

)
dx

= 0

Here:

• The first equation is just the definition of the function Γ.

• The second equation follows by observing that if we have a function g which depends on
two variables, x and s, then

d

ds

∫ b

a
g(x, s)dx = lim

h→0

1
h

∫ b

a

(
g(x, s+ h)− g(x, s))dx

= lim
h→0

∫ b

a

g(x, s+ h)− g(x, s)
h

dx.

And if g is continuously partially differentiable, then we have uniform convergence of the
fraction

g(x, s+ h)− g(x, s)
h

to
∂

∂s
g(x, s)

as h→ 0. Therefore the second equation is true by theorem 2.57.
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• In the third equation, the notation ∂
∂yf(x, ϕ(x), ϕ′(x)) means the partial derivative with

respect to the second component of f , and ∂
∂y′ is the partial derivative with respect to the

third component. The fact that the third equation is true is a consequence of the chain rule
for derivatives, as explained in the lecture.

• The fourth equation is trivial.

• The fifth equation follows using partial integration and the fact that ψ(a) = ψ(b) = 0.

• Finally, the sixth equation is trivial.

Since this must hold for all possible variational functions ψ, we conclude that the Euler-Lagrange
differential equation

∂

∂y
f(x, ϕ(x), ϕ′(x))− d

dx

∂

∂y′
f(x, ϕ(x), ϕ′(x)) = 0

must hold for a solution ϕ to our variational problem. (This follows from the so-called Fundamen-
tal Lemma of the variational calculus, as explained in the lecture.)

Putting this into the more usual form for writing differential equations, we have
∂

∂y
f(x, y, y′) =

d

dx

∂

∂y′
f(x, y, y′).

How do we evaluate the complicated looking expression
d

dx

∂

∂y′
f(x, ϕ(x), ϕ′(x)) ?

For this you should just think of ∂
∂y′ f as defining a function of three variables, let’s call it g for

simplicity. Then we have
∂

∂y′
f(x, ϕ(x), ϕ′(x)) = g(x, ϕ(x), ϕ′(x)).

We use the chain rule to obtain that
d

dx
g(x, ϕ(x), ϕ′(x)) =

∂

∂x
g(x, ϕ(x), ϕ′(x)) + ϕ′(x)

∂

∂y
g(x, ϕ(x), ϕ′(x))

+ ϕ′′(x)
∂

∂y′
g(x, ϕ(x), ϕ′(x)).

So the Euler-Lagrange equation becomes

∂

∂y
f(x, y, y′) =

∂2

∂x∂y′
f(x, y, y′) + y′

∂2

∂y∂y′
f(x, y, y′) + y′′

∂2

∂y′2
f(x, y, y′)

This still looks rather complicated. Things become simpler if our function f does not depend
explicitly upon x. In this case ∂2

∂x∂y′ f(x, y, y′) = 0, and we can simply write f(y, y′), rather than
f(x, y, y′). Therefore

∂

∂y
f(y, y′)− y′ ∂2

∂y∂y′
f(y, y′)− y′′ ∂

2

∂y′2
f(y, y′) = 0.

But we have
d

dx

(
f(y, y′)− y′ ∂

∂y′
f(y, y′)

)
= y′

( ∂

∂y
f(y, y′)− y′ ∂2

∂y∂y′
f(y, y′)− y′′ ∂

2

∂y′2
f(y, y′)

)
= 0.

Therefore
f(y, y′)− y′ ∂

∂y′
f(y, y′) = k,

for some constant k ∈ R.
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An example

Let us return to the problem of calculating the shape of a freely hanging telephone wire. Forgetting
the constants g and σ which don’t affect the outcome, we have the variational problem

F (ϕ) =
∫ b

a
ϕ(x)

√
1 + (ϕ′(x))2dx.

There is the further complication that the length of the wire is fixed. In fact the length is L. This
gives us the further condition ∫ b

a

√
1 + (ϕ′(x))2dx = L.

So in order to solve this problem, we need to use the method of Lagrange multipliers (discussed
in the lecture). That means that our variational problem becomes

F̃ (ϕ) =
∫ b

a
(ϕ(x) + λ)

√
1 + (ϕ′(x))2dx,

for some constant λ ∈ R.
So here, the Euler-Lagrange equation is

f(y, y′)− y′ ∂
∂y′

f(y, y′) = k,

with
f(y, y′) = (y + λ)

√
1 + y′2.

Therefore

(y + λ)
√

1 + y′2 − (y + λ)y′2√
1 + y′2

= k,

or
y + λ = k

√
1 + y′2.

The solution has the form

y = k cosh
(
x− k∗
k

)
− λ,

where k∗ ∈ R is another constant.
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Chapter 3

Linear Algebra

The subject of linear algebra is concerned — at least at the beginning — with geometry. We think
of the normal geometry of physical space as being R3, that is, the Cartesian product of R with
itself 3-times. In general, the notation Xn is used to represent the Cartesian product of a set X
with itself n times. Thus

Xn = X ×X × · · · ×X︸ ︷︷ ︸
n times

= {(x1, . . . , xn) : xi ∈ Xi, ∀i}.

So if physical space is R3, then an arbitrary point of space can be described by specifying a
triple of real numbers (x, y, z). These are the coordinates of the point, measured with respect to a
given coordinate system, consisting of the x-axis, the y-axis, and the z-axis.

From the viewpoint of linear algebra, we imagine that the point (x, y, z) is really a vector,
which we can think about as being like an arrow, with its tail in the point (0, 0, 0), that is, the
middle point of the coordinate system, and the head of the arrow is at our point (x, y, z).

In order distinguish vectors from numbers, some books use the following notation. Let us say
that a vector in R3 is given by the coordinates (vx, vy, vz). Then one writes

~v = (vx, vy, vz).

Thus, a vector is distinguished by the little arrow, floating above it. However, in these notes I will
distinguish vectors from other possible objects by writing vectors in bold face type.

So let p = (px, py, pz) and q = (qx, qy, qz) be two points — or vectors — in our vector space
R3. Then we can add the two vectors together to obtain a new vector.

p + q = (px + qx, py + qy, pz + qz).

In the vector space R3, we also have scalar multiplication. Given the vector v = (vx, vy, vz),
and given some real number a, then the scalar product of a with v is the vector

av = (avx, avy, avz).

So the scalar product is a new vector which has the same direction as the original vector v, but its
length is changed by the scalar a. For example, if a = 2, then the length is increased by the factor
2. On the other hand, if a = 1/2, then the length of the vector is halved.
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3.1 Basic definitions

Definition. A vector space V over a field F is an Abelian group under the operation of vector
addition,

+ : V ×V→ V.

Furthermore, there is an operation of scalar multiplication, which is a mapping

· : F ×V→ V,

satisfying the following properties. For arbitrary a, b ∈ F and v, w ∈ V , we have

• a · (v + w) = a · v + a ·w
• (a+ b) · v = a · v + b · v
• (ab) · v = a · (b · v)

• 1 · v = v

Note here that the zero and the one of the field F are simply called “0” and “1”, as usual.
Also the zero of the vector space, with respect to vector addition, is called 0. As is the case with
multiplication in fields, in general we will simply write av, rather than a · v, to denote scalar
multiplication.

Examples

• Given any field F , then we can say that F is a vector space over itself. The vectors are
just the elements of F . Vector addition is the addition in the field. Scalar multiplication is
multiplication in the field.

• In Rn, the vectors can be represented by n-tuples of real numbers (x1, . . . , xn), where xi ∈
R, for all i = 1, . . . , n. Given two elements

(x1, · · · , xn) and (y1, . . . , yn)

in Rn, then the vector sum is simply the new vector

(x1 + y1, · · · , xn + yn).

Scalar multiplication is

a · (x1, · · · , xn) = (a · x1, · · · , a · xn).
It is a trivial matter to verify that Rn, with these operations, is a vector space over R.

• Let F (X,R) be the set of all functions f : X → R, from some set X to the set of real
numbers R. This is a vector space with vector addition

(f + g)(x) = f(x) + g(x),

for all x ∈ X , defining the new function (f + g) ∈ F (X,R), for all f, g ∈ F (X,R).

Scalar multiplication is given by

(a · f)(x) = a · f(x)

for all x ∈ X .
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3.2 Subspaces

Let V be a vector space over a field F and let W ⊂ V be some subset. If W is itself a vector
space over F , considered using the addition and scalar multiplication in V, then we say that W
is a subspace of V. Analogously, a subset H of a group G, which is itself a group using the
multiplication operation from G, is called a subgroup of G. Subfields are similarly defined.

Theorem 3.1. Let W ⊂ V be a subset of a vector space over the field F . Then

W is a subspace of V⇔ a · v + b ·w ∈W,

for all v,w ∈W and a, b ∈ F .

Proof. The direction ‘⇒’ is trivial.
For ‘⇐’, begin by observing that 1 ·v + 1 ·w = v +w ∈W, and a ·v + 0 ·w = a ·v ∈W,

for all v,w ∈W and a ∈ F . Thus W is closed under vector addition and scalar multiplication.
Is W a group with respect to vector addition? We have 0 · v = 0 ∈W, for v ∈W; therefore

the neutral element 0 is contained in W. For an arbitrary v ∈W we have

v + (−1) · v = 1 · v + (−1) · v
= (1 + (−1)) · v
= 0 · v
= 0.

Therefore (−1)·v is the inverse element to v under addition, and so we can simply write (−1)·v =
−v.

The other axioms for a vector space can be easily checked.

The method of this proof also shows that we have similar conditions for subsets of groups or
fields to be subgroups, or subfields, respectively.

Theorem 3.2. Let H ⊂ G be a (non-empty) subset of the group G. Then H is a subgroup of G⇔
ab−1 ∈ H , for all a, b ∈ H .

Proof. The direction ‘⇒’ is trivial. As for ‘⇐’, let a ∈ H . Then aa−1 = e ∈ H . Thus the neutral
element of the group multiplication is contained in H . Also ea−1 = a−1 ∈ H . Furthermore, for
all a, b ∈ H , we have a(b−1)−1 = ab ∈ H . Thus H is closed under multiplication. The fact that
the multiplication is associative (a(bc) = (ab)c, for all a, b and c ∈ H) follows since G itself is a
group; thus the multiplication throughout G is associative.

Theorem 3.3. Let U,W ⊂ V be subspaces of the vector space V over the field F . Then U∩W
is also a subspace.

Proof. Let v,w ∈ U ∩W be arbitrary vectors in the intersection, and let a, b ∈ F be arbitrary
elements of the field F . Then, since U is a subspace of V, we have a ·v+ b ·w ∈ U. This follows
from theorem 3.1. Similarly a · v + b ·w ∈W. Thus it is in the intersection, and so theorem 3.1
shows that U ∩W is a subspace.
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3.3 Linear independence and dimension

Definition. Let v1, . . . ,vn ∈ V be finitely many vectors in the vector space V over the field F .
We say that the vectors are linearly dependent if there exists an equation of the form

a1 · v1 + · · ·+ an · vn = 0,

such that not all ai ∈ F are simply zero. If no such non-trivial equation exists, then the set
{v1, . . . ,vn} ⊂ V is said to be linearly independent.

This definition is undoubtedly the most important idea that there is in the theory of linear
algebra!

Examples

• In R2 let v1 = (1, 0), v2 = (0, 1) and v3 = (1, 1). Then the set {v1,v2,v3} is linearly
dependent, since we have

v1 + v2 − v1 = 0.

On the other hand, the set {v1,v2} is linearly independent.

• In C0([0, 1],R), let f1 : [0, 1] → R be given by f1(x) = 1 for all x ∈ [0, 1]. Similarly, let
f2 be given by f2(x) = x, and f3 is f3(x) = 1 − x. Then the set {f1, f2, f3} is linearly
dependent.

Now take some vector space V over a field F , and let S ⊂ V be some subset of V. (The
set S can be finite or infinite here, although we will usually be dealing with finite sets.) Let
v1, . . . ,vn ⊂ S be some finite collection of vectors in S, and let a1, . . . , an ∈ F be some arbitrary
collection of elements of the field. Then the sum

a1 · v1 + · · ·+ an · vn
is a linear combination of the vectors v1, . . . ,vn in S. The set of all possible linear combinations
of vectors in S is denoted by span(S), and it is called the linear span of S. One also writes [S]. S
is the generating set of [S]. Therefore if [S] = V, then we say that S is a generating set for V . If
S is finite, and it generates V, then we say that the vector space V is finitely generated.

Theorem 3.4. Given S ⊂ V, then [S] is a subspace of V.

Proof. A simple consequence of theorem 3.1.

Examples

• For any n ∈ N, let

e1 = (1, 0, . . . , 0)
e2 = (0, 1, . . . , 0)

...

en = (0, 0, . . . , 1)

Then S = {e1, e2, . . . , en} is a generating set for Rn.
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• On the other hand, the vector space C0([0, 1],R) is clearly not finitely generated.1

So let S = {v1, . . . ,vn} ⊂ V be a finite set. From now on in these discussions, we will
assume that such sets are finite unless stated otherwise.

Theorem 3.5. Let w = a1v1 + · · · anvn be some vector in [S] ⊂ V, where a1, . . . , an are
arbitrarily given elements of the field F . We will say that this representation of w is unique if,
given some other linear combination, w = b1v1 + · · · bnvn, then we must have bi = ai for all
i = 1, . . . , n. Given this, then we have that the set S is linearly independent⇔ the representation
of all vectors in the span of S as linear combinations of vectors in S is unique.

Proof. ‘⇐’ We certainly have 0 · v1 + · · · 0 · vn = 0. Since this representation of the zero vector
is unique, it follows S is linearly independent.

‘⇒’ Can it be that S is linearly independent, and yet there exists a vector in the span of S
which is not uniquely represented as a linear combination of the vectors in S? Assume that there
exist elements a1, . . . , an and b1, . . . , bn of the field F , where aj 6= bj , for at least one j between
1 and n, such that

a1v1 + · · ·+ anvn = b1v1 + · · ·+ bnvn.

But then
(a1 − b1)v1 + · · ·+ (aj − bj)︸ ︷︷ ︸

6=0

vi + · · ·+ (an − bn)vn = 0

shows that S cannot be a linearly independent set.

Definition. Assume that S ⊂ V is a finite, linearly independent subset with [S] = V. Then S is
called a basis for V.

Lemma. Assume that S = {v1, . . . ,vn} ⊂ V is linearly dependent. Then there exists some
j ∈ {1, . . . , n}, and elements ai ∈ F , for i 6= j, such that

vj =
∑

i 6=j
aivi.

Proof. Since S is linearly dependent, there exists some non-trivial linear combination of the ele-
ments of S, summing to the zero vector,

n∑

i=1

bivi = 0,

such that bj 6= 0, for at least one of the j. Take such a one. Then

bjvj = −
∑

i6=j
bivi

and so

vj =
∑

i6=j

(
− bi
bj

)
vj .

1In general such function spaces are not finitely generated. However in this lecture, we will mostly be concerned
with finitely generated vector spaces.
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Corollary. Let S = {v1, . . . ,vn} ⊂ V be linearly dependent, and let vj be as in the lemma
above. Let S′ = {v1, . . . ,vj−1,vj+1, . . . ,vn} be S, with the element vj removed. Then [S] =
[S′].

Theorem 3.6. Assume that the vector space V is finitely generated. Then there exists a basis for
V.

Proof. Since V is finitely generated, there exists a finite generating set. Let S be such a finite
generating set which has as few elements as possible. If S were linearly dependent, then we could
remove some element, as in the lemma, leaving us with a still smaller generating set for V. This
is a contradiction. Therefore S must be a basis for V.

Theorem 3.7. Let S = {v1, . . . ,vn} be a basis for the vector space V, and take some arbitrary
non-zero vector w ∈ V. Then there exists some j ∈ {1, . . . , n}, such that

S′ = {v1, . . . ,vj−1,w,vj+1, . . . ,vn}

is also a basis of V.

Proof. Writing w = a1v1 + · · · + anvn, we see that since w 6= 0, at least one aj 6= 0. Taking
that j, we write

vj = a−1
j w +

∑

i6=j

(
−ai
aj

)
vi.

We now prove that [S′] = V. For this, let u ∈ V be an arbitrary vector. Since S is a basis for V,
there exists a linear combination u = b1v1 + · · · bnvn. Then we have

u = bjvj +
∑

i6=j
bivi

= bj


a−1

j w +
∑

i6=j

(
−ai
aj

)
vi


 +

∑

i 6=j
bivi

= bja
−1
j w +

∑

i6=j

(
bi − bjai

aj

)
vi

This shows that [S′] = V.
In order to show that S′ is linearly independent, assume that we have

0 = cw +
∑

i6=j
civi

= c

(
n∑

i=1

aivi

)
+

∑

i6=j
civi

=
n∑

i=1

(cai + ci)vi (with cj = 0),

for some c, and ci ∈ F . Since the original set S was assumed to be linearly independent, we must
have cai + ci = 0, for all i. In particular, since cj = 0, we have caj = 0. But the assumption was
that aj 6= 0. Therefore we must conclude that c = 0. It follows that also ci = 0, for all i 6= j.
Therefore, S′ must be linearly independent.
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Theorem 3.8 (Steinitz Exchange Theorem). Let S = {v1, . . . ,vn} be a basis of V and let T =
{w1, . . . ,wm} ⊂ V be some linearly independent set of vectors in V. Then we have m ≤ n. By
possibly re-ordering the elements of S, we may arrange things so that the set

U = {w1, . . . ,wm,vm+1, . . . ,vn}

is a basis for V.

Proof. Use induction over the number m. If m = 0 then U = S and there is nothing to prove.
Therefore assume m ≥ 1 and furthermore, the theorem is true for the case m− 1. So consider the
linearly independent set T ′ = {w1, . . . ,wm−1}. After an appropriate re-ordering of S, we have
U ′ = {w1, . . . ,wm−1,vm, . . . ,vn} being a basis for V. Note that if we were to have n < m,
then T ′ would itself be a basis for V. Thus we could express wm as a linear combination of the
vectors in T ′. That would imply that T was not linearly independent, contradicting our assumption.
Therefore, m ≤ n.

Now since U ′ is a basis for V, we can express wm as a linear combination

wm = a1w1 + · · ·+ am−1wm−1 + amvm + · · ·+ anvn.

If we had all the coefficients of the vectors from S being zero, namely

am = am+1 = · · · = an = 0,

then we would have wm being expressed as a linear combination of the other vectors in T . There-
fore T would be linearly dependent, which is not true. Thus one of the aj 6= 0, for j ≥ m. Using
theorem 3.7, we may exchange wm for the vector vj in U ′, thus giving us the basis U .

Theorem 3.9 (Extension Theorem). Assume that the vector space V is finitely generated and that
we have a linearly independent subset S ⊂ V. Then there exists a basis B of V with S ⊂ B.

Proof. If [S] = V then we simply take B = S. Otherwise, start with some given basis A ⊂ V
and apply theorem 3.8 successively.

Theorem 3.10. Let U be a subspace of the (finitely generated) vector space V. Then U is also
finitely generated, and each possible basis for U has no more elements than any basis for V.

Proof. Assume there is a basis B of V containing n vectors. Then, according to theorem 3.8,
there cannot exist more than n linearly independent vectors in U. Therefore U must be finitely
generated, such that any basis for U has at most n elements.

Theorem 3.11. Assume the vector space V has a basis consisting of n elements. Then every basis
of V also has precisely n elements.

Proof. This follows directly from theorem 3.10, since any basis generates V, which is a subspace
of itself.

Definition. The number of vectors in a basis of the vector space V is called the dimension of V,
written dim(V).

Definition. Let V be a vector space with subspaces X,Y ⊂ V. The subspace X+Y = [X ∪Y ]
is called the sum of X and Y. If X ∩Y = {0}, then it is the direct sum, written X⊕Y.
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Theorem 3.12 (A Dimension Formula). Let V be a finite dimensional vector space with subspaces
X,Y ⊂ V. Then we have

dim(X + Y) = dim(X) + dim(Y)− dim(X ∩Y).

Corollary. dim(X⊕Y) = dim(X) + dim(Y).

Proof of Theorem 3.12. Let S = {v1, . . . ,vn} be a basis of X ∩Y. According to theorem 3.9,
there exist extensions T = {x1, . . . ,xm} and U = {y1, . . . ,yr}, such that S ∪ T is a basis for X
and S ∪ U is a basis for Y. We will now show that, in fact, S ∪ T ∪ U is a basis for X + Y.

To begin with, it is clear that X+Y = [S∪T ∪U ]. Is the set S∪T ∪U linearly independent?
Let

0 =
n∑

i=1

aivi +
m∑

j=1

bjxj +
r∑

k=1

ckyk

= v + x + y, say.

Then we have y = −v−x. Thus y ∈ X. But clearly we also have, y ∈ Y. Therefore y ∈ X∩Y.
Thus y can be expressed as a linear combination of vectors in S alone, and since S∪U is is a basis
for Y , we must have ck = 0 for k = 1, . . . , r. Similarly, looking at the vector x and applying the
same argument, we conclude that all the bj are zero. But then all the ai must also be zero since the
set S is linearly independent.

Putting this all together, we see that the dim(X) = n+m, dim(Y) = n+r and dim(X∩Y) =
n. This gives the dimension formula.

Theorem 3.13. Let V be a finite dimensional vector space, and let X ⊂ V be a subspace. Then
there exists another subspace Y ⊂ V, such that V = X⊕Y.

Proof. Take a basis S of X. If [S] = V then we are finished. Otherwise, use the extension theorem
(theorem 3.9) to find a basis B of V, with S ⊂ B. Then Y = [B \S] satisfies the condition of the
theorem.

3.4 Linear mappings

Definition. Let V and W be vector spaces, both over the field F . Let f : V→W be a mapping
from the vector space V to the vector space W. The mapping f is called a linear mapping if

f(au + bv) = af(u) + bf(v)

for all a, b ∈ F and all u, v ∈ V.

By choosing a and b to be either 0 or 1, we immediately see that a linear mapping always has
both f(av) = af(v) and f(u + v) = f(u) + f(v), for all a ∈ F and for all u and v ∈ V. Also
it is obvious that f(0) = 0 always.

Definition. Let f : V→W be a linear mapping. The kernel of the mapping, denoted by ker(f),
is the set of vectors in V which are mapped by f into the zero vector in W.

Theorem 3.14. If ker(f) = {0}, that is, if the zero vector in V is the only vector which is
mapped into the zero vector in W under f , then f is an injection (monomorphism). The converse
is of course trivial.
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Proof. That is, we must show that if u and v are two vectors in V with the property that f(u) =
f(v), then we must have u = v. But

f(u) = f(v) ⇒ 0 = f(u)− f(v) = f(u− v).

Thus the vector u− v is mapped by f to the zero vector. Therefore we must have u− v = 0, or
u = v.

Conversely, since f(0) = 0 always holds, and since f is an injection, we must have ker(f) =
{0}.
Theorem 3.15. Let f : V → W be a linear mapping and let A = {w1, . . . ,wm} ⊂ W
be linearly independent. Assume that m vectors are given in V, so that they form a set B =
{v1, . . . ,vm} ⊂ V with f(vi) = wi, for all i. Then the set B is also linearly independent.

Proof. Let a1, . . . , am ∈ F be given such that a1v1 + · · ·+ amvm = 0. But then

0 = f(0) = f(a1v1 + · · ·+ amvm) = a1f(v1) + · · ·+ amf(vm) = a1w1 + · · ·+ amwm.

Since A is linearly independent, it follows that all the ai’s must be zero. But that implies that the
set B is linearly independent.

Remark. If B = {v1, . . . ,vm} ⊂ V is linearly independent, and f : V →W is linear, still, it
does not necessarily follow that {f(v1), . . . , f(vm)} is linearly independent in W. On the other
hand, if f is an injection, then {f(v1), . . . , f(vm)} is linearly independent. This follows since, if
a1f(v1) + · · ·+ amf(vm) = 0, then we have

0 = a1f(v1) + · · ·+ amf(vm) = f(a1v1 + · · ·+ amvm) = f(0).

But since f is an injection, we must have a1v1 + · · ·+ amvm = 0. Thus ai = 0 for all i.

On the other hand, what is the condition for f : V → W to be a surjection (epimorphism)?
That is, f(V) = W. Or put another way, for every w ∈W, can we find some vector v ∈ V with
f(v) = w? One way to think of this is to consider a basis B ⊂W. For each w ∈ B, we take

f−1(w) = {v ∈ V : f(v) = w}.

Then f is a surjection if f−1(w) 6= ∅, for all w ∈ B.

Definition. A linear mapping which is a bijection (that is, an injection and a surjection) is called
an isomorphism. Often one writes V ∼= W to say that there exists an isomorphism from V to W.

Theorem 3.16. Let f : V→W be an isomorphism. Then the inverse mapping f−1 : W→ V is
also a linear mapping.

Proof. To see this, let a, b ∈ F and x, y ∈W be arbitrary. Let f−1(x) = u ∈ V and f−1(y) =
v ∈ V, say. Then

f(au + bv) = (f(af−1(x) + bf−1(v)) = af(f−1(x)) + bf(f−1(v)) = ax + by.

Therefore, since f is a bijection, we must have

f−1(ax + by) = au + bv = af−1(x) + bf−1(y).
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Theorem 3.17. Let V and W be finite dimensional vector spaces over a field F , and let f : V→
W be a linear mapping. Let B = {v1, . . . ,vn} be a basis for V. Then f is uniquely determined
by the n vectors {f(v1), . . . , f(vn)} in W.

Proof. Let v ∈ V be an arbitrary vector in V. Since B is a basis for V, we can uniquely write

v = a1v1 + · · · anvn,

with ai ∈ F , for each i. Then, since the mapping f is linear, we have

f(v) = f(a1v1 + · · · anvn)
= f(a1v1) + · · ·+ f(anvn)
= a1f(v1) + · · ·+ anf(vn).

Therefore we see that if the values of f(v1),. . . , f(vn) are given, then the value of f(v) is uniquely
determined, for each v ∈ V.

On the other hand, let A = {u1, . . . ,un} be a set of n arbitrarily given vectors in W. Then
let a mapping f : V→W be defined by the rule

f(v) = a1u1 + · · · anun,

for each arbitrarily given vector v ∈ V, where v = a1v1 + · · · anvn. Clearly the mapping is
uniquely determined, since v is uniquely determined as a linear combination of the basis vectors
B. It is a trivial matter to verify that the mapping which is so defined is also linear. We have
f(vi) = ui for all the basis vectors vi ∈ B.

Theorem 3.18. Let V and W be two finite dimensional vector spaces over a field F . Then we
have V ∼= W⇔ dim(V) = dim(W).

Proof. “⇒” Let f : V →W be an isomorphism, and let B = {v1, . . . ,vn} ⊂ V be a basis for
V. Then, as shown in our Remark above, we have A = {f(v1), . . . , f(vn)} ⊂W being linearly
independent. Furthermore, since B is a basis of V, we have [B] = V. Thus [A] = W also.
Therefore A is a basis of W, and it contains precisely n elements; thus dim(V) = dim(W).

“⇐” Take B = {v1, . . . ,vn} ⊂ V to again be a basis of V and let A = {w1, . . . ,wn} ⊂W
be some basis of W (with n elements). Now define the mapping f : V → W by the rule
f(vi) = wi, for all i. By theorem 3.17 we see that a linear mapping f is thus uniquely determined.
Since A and B are both bases, it follows that f must be a bijection.

This immediately gives us a complete classification of all finite-dimensional vector spaces. For
let V be a vector space of dimension n over the field F . Then clearly Fn is also a vector space of
dimension n over F . The canonical basis is the set of vectors {e1, . . . , en}, where

ei = (0, · · · , 0, 1︸︷︷︸
i-th Position

, 0, . . . , 0}

for each i. Therefore, when thinking about V, we can think that it is “really” just Fn. On the other
hand, the central idea in the theory of linear algebra is that we can look at things using different
possible bases (or “frames of reference”). The space Fn seems to have a preferred, fixed frame of
reference, namely the canonical basis. Thus it is better to think about an abstract V, with various
possible bases.
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Examples

For these examples, we will consider the 2-dimensional real vector space R2, together with its
canonical basis B = {e1, e2} = {(1, 0), (0, 1)}.
• f1 : R2 → R2 with f1(e1) = (−1, 0) and f1(e2) = (0, 1). This is a reflection of the

2-dimensional plane into itself, with the axis of reflection being the second coordinate axis;
that is the set of points (x1, x2) ∈ R2 with x1 = 0.

• f2 : R2 → R2 with f2(e1) = e2 and f1(e2) = e1. This is a reflection of the 2-dimensional
plane into itself, with the axis of reflection being the diagonal axis x1 = x2.

• f3 : R2 → R2 with f3(e1) = (cosφ, sinφ) and f3(e2) = (− sinφ, cosφ), for some real
number φ ∈ R. This is a rotation of the plane about its middle point, through an angle of
φ.2 For let v = (x1, x2) be some arbitrary point of the plane R2. Then we have

f3(v) = x1f3(e1) + x2f(e2)
= x1(cosφ, sinφ) + x2(− sinφ, cosφ)
= (x1 cosφ− x2 sinφ, x1 sinφ+ x2 cosφ).

Looking at this from the point of view of geometry, the question is, what happens to the
vector v when it is rotated through the angle φ while preserving its length? Perhaps the
best way to look at this is to think about v in polar coordinates. That is, given any two
real numbers x1 and x2 then, assuming that they are not both zero, we find two unique real
numbers r ≥ 0 and θ ∈ [0, 2π), such that

x1 = r cos θ and x2 = r sin θ,

where r =
√
x2

1 + x2
2. Then v = (r cos θ, r sin θ). So a rotation of v through the angle

φ must bring it to the new vector (r cos(φ + θ), r sin(φ + θ)) which, if we remember the
formulas for cosines and sines of sums, turns out to be

(r(cos(θ) cos(φ)− sin(θ) sin(φ)), r(sin(θ) cos(φ)− cos(θ) sin(φ)).

But then, remembering that x1 = r cos θ and x2 = r sin θ, we see that the rotation brings
the vector v into the new vector

(x1 cosφ− x2 sinφ, x1 sinφ+ x2 cosφ),

which was precisely the specification for f3(v).

3.5 Linear mappings and matrices

This last example of a linear mapping of R2 into itself — which should have been simple to
describe — has brought with it long lines of lists of coordinates which are difficult to think about.

2In analysis, we learn about the formulas of trigonometry. In particular we have

cos(θ + φ) = cos(θ) cos(φ)− sin(θ) sin(φ),

sin(θ + φ) = sin(θ) cos(φ)− cos(θ) sin(φ).

Taking θ = π/2, we note that cos(φ + π/2) = − sin(φ) and sin(φ + π/2) = cos(φ).
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In three and more dimensions, things become even worse! Thus it is obvious that we need a more
sensible system for describing these linear mappings. The usual system is to use matrices.

Now, the most obvious problem with our previous notation for vectors was that the lists of
the coordinates (x1, · · · , xn) run over the page, leaving hardly any room left over to describe
symbolically what we want to do with the vector. The solution to this problem is to write vectors
not as horizontal lists, but rather as vertical lists. We say that the horizontal lists are row vectors,
and the vertical lists are column vectors. This is a great improvement! So whereas before, we
wrote

v = (x1, · · · , xn),
now we will write

v =



x1
...
xn


 .

It is true that we use up lots of vertical space on the page in this way, but since the rest of the
writing is horizontal, we can afford to waste this vertical space. In addition, we have a very nice
system for writing down the coordinates of the vectors after they have been mapped by a linear
mapping.

To illustrate this system, consider the rotation of the plane through the angle φ, which was
described in the last section. In terms of row vectors, we have (x1, x2) being rotated into the new
vector (x1 cosφ−x2 sinφ, x1 sinφ+x2 cosφ). But if we change into the column vector notation,
we have

v =
(
x1

x2

)

being rotated to (
x1 cosφ− x2 sinφ
x1 sinφ+ x2 cosφ

)
.

But then, remembering how we multiplied matrices, we see that this is just
(

cosφ − sinφ
sinφ cosφ

)(
x1

x2

)
=

(
x1 cosφ− x2 sinφ
x1 sinφ+ x2 cosφ

)
.

So we can say that the 2×2 matrixA =
(

cosφ − sinφ
sinφ cosφ

)
represents the mapping f3 : R2 → R2,

and the 2× 1 matrix
(
x1

x2

)
represents the vector v. Thus we have

A · v = f(v).

That is, matrix multiplication gives the result of the linear mapping.

Expressing f : V→W in terms of bases for both V and W

The example we have been thinking about up till now (a rotation of R2) is a linear mapping of R2

into itself. More generally, we have linear mappings from a vector space V to a different vector
space W (although, of course, both V and W are vector spaces over the same field F ).

So let {v1, . . . ,vn} be a basis for V and let {w1, . . . ,wm} be a basis for W. Finally, let
f : V → W be a linear mapping. An arbitrary vector v ∈ V can be expressed in terms of the
basis for V as

v = a1v1 + · · ·+ anvn =
n∑

j=1

ajvj .

12



The question is now, what is f(v)? As we have seen, f(v) can be expressed in terms of the images
f(vj) of the basis vectors of V. Namely

f(v) =
n∑

j=1

ajf(vj).

But then, each of these vectors f(vj) in W can be expressed in terms of the basis vectors in W,
say

f(vj) =
m∑

i=1

cijwi,

for appropriate choices of the “numbers” cij ∈ F . Therefore, putting this all together, we have

f(v) =
n∑

j=1

ajf(vj) =
n∑

j=1

m∑

i=1

ajcijwi.

In the matrix notation, using column vectors relative to the two bases {v1, . . . ,vn} and {w1, . . . ,wm},
we can write this as

f(v) =



c11 · · · c1n

...
. . .

...
cm1 · · · cmn






a1
...
an


 =




∑n
j=1 ajc1j

...∑n
j=1 ajcmj


 .

When looking at this m× n matrix which represents the linear mapping f : V→W, we can
imagine that the matrix consists of n columns. The i-th column is then

ui =



c1i
...
cmi


 ∈W.

That is, it represents a vector in W, namely the vector ui = c1iw1 + · · · + cmiwm. But what is
this vector ui? In the matrix notation, we have

vi =




0
...
0
1
0
...
0




∈ V,

where the single non-zero element of this column matrix is a 1 in the i-th position from the top.
But then we have

f(vi) =



c11 · · · c1n

...
. . .

...
cm1 · · · cmn







0
...
0
1
0
...
0




=



c1i
...
cmi


 = ui.

Therefore the columns of the matrix representing the linear mapping f : V →W are the images
of the basis vectors of V.

13



Two linear mappings, one after the other

Things become more interesting when we think about the following situation. Let V, W and X
be vector spaces over a common field F . Assume that f : V →W and g : W → X are linear.
Then the composition f ◦ g : V→ X, given by

f ◦ g(v) = g(f(v))

for all v ∈ V is clearly a linear mapping. One can write this as

V
f−→W

g−→ X.

Let {v1, . . . ,vn} be a basis for V, {w1, . . . ,wm} be a basis for W, and {x1, . . . ,xr} be a basis
for X. Assume that the linear mapping f is given by the matrix

A =



c11 · · · c1n

...
. . .

...
cm1 · · · cmn


 ,

and the linear mapping g is given by the matrix

B =



d11 · · · d1m

...
. . .

...
dr1 · · · drm


 .

Then, if v =
∑n

j=1 ajvj is some arbitrary vector in V, we have

f ◦ g(v) = g


f




n∑

j=1

ajvj







= g




n∑

j=1

ajf(vj)




= g




m∑

i=1

n∑

j=1

ajcijwi




=
m∑

i=1

n∑

j=1

ajcijg(wi)

=
m∑

i=1

n∑

j=1

r∑

k=1

ajcijdkixk.

There are so many summations here! How can we keep track of everything? The answer is to
use the matrix notation. The composition of linear mappings is then simply represented by matrix
multiplication. That is, if

v =



a1
...
an


 ,
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then we have

f ◦ g(v) = g(f(v)) =



d11 · · · d1m

...
. . .

...
dr1 · · · drm






c11 · · · c1n

...
. . .

...
cm1 · · · cmn






a1
...
an


 = BAv.

So this is the reason we have defined matrix multiplication in this way.3

3.6 Matrix transformations

Matrices are used to describe linear mappings f : V →W with respect to particular bases of V
and W. But clearly, if we choose different bases than the ones we had been thinking about before,
then we will have a different matrix for describing the same linear mapping. Later on in these
lectures we will see how changing the bases changes the matrix, but for now, it is time to think
about various systematic ways of changing matrices — in a purely abstract way.

Elementary column operations

We begin with the elementary column operations. Let us denote the set of all n ×m matrices of
elements from the field F by M(m× n, F ). Thus, if

A =



a11 · · · a1n

...
. . .

...
am1 · · · amn


 ∈M(m× n, F )

then it contains n columns which, as we have seen, are the images of the basis vectors of the linear
mapping which is being represented by the matrix. So The first elementary column operation is to
exchange column i with column j, for i 6= j. We can write


a11 · · · a1i · · · a1j · · · a1m

...
...

...
...

am1 · · · ami · · · amj · · · amm


 Sij−→



a11 · · · a1j · · · a1i · · · a1m

...
...

...
...

am1 · · · amj · · · ami · · · amm




So this column operation is denoted by Sij . It can be thought of as being a mapping Sij : M(m×
n, F )→M(m× n, F ).

Another way to imagine this is to say that S is the set of column vectors in the matrix A
considered as an ordered list. Thus S ⊂ Fm. Then Sij is the same set of column vectors, but with
the positions of the i-th and the j-th vectors interchanged. But obviously, as a subset of Fn, the
order of the vectors makes no difference. Therefore we can say that the span of S is the same as
the span of Sij . That is [S] = [Sij ].

The second elementary column operation, denoted Si(a), is that we form the scalar product of
the element a 6= 0 in F with the i-th vector in S. So the i-th vector



a1i
...
ami




3Recall that if A =

0
B@

c11 · · · c1n

...
. . .

...
cm1 · · · cmn

1
CA is an m × n matrix and B =

0
B@

d11 · · · d1m

...
. . .

...
dr1 · · · drm

1
CA is an r ×m matrix,

then the product BA is an r × n matrix whose kj-th element is
Pm

i=1 dkicij .
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is changed to

a



a1i
...
ami


 =



aa1i

...
aami


 .

All the other column vectors in the matrix remain unchanged.
The third elementary column operation, denoted Sij(c) is that we take the j-th column (where

j 6= i) and multiply it with c 6= 0, then add it to the i-th column. Therefore the i-th column is
changed to 


a1i + ca1j

...
ami + camj


 .

All the other columns — including the j-th column — remain unchanged.

Theorem 3.19. [S] = [Sij ] = [Si(a)] = [Sij(c)], where i 6= j and a 6= 0 6= c.

Proof. Let us say that S = {v1, . . . ,vn} ⊂ Fm. That is, vi is the i-th column vector of the
matrix A, for each i. We have already seen that [S] = [Sij ] is trivially true. But also, say v =
x1v1 + · · ·+ xnvn is some arbitrary vector in [S]. Then, since a 6= 0, we can write

v = x1v1 + · · ·+ a−1xi(avi) + · · ·+ xnvn.

Therefore [S] ⊂ [Si(a)]. The other inclusion, [Si(a)] ⊂ [S] is also quite trivial so that we have
[S] = [Si(a)].

Similarly we can write

v = x1v1 + · · ·+ xnvn
= x1v1 + · · ·+ xi(vi + cvj) + · · ·+ (xj − xic)vj + · · ·+ xnvn.

Therefore [S] ⊂ [Sij(c)], and again, the other inclusion is similar.

Let us call [S] the column space (Spaltenraum), which is a subspace of Fm. Then we see that
the column space remains invariant under the three types of elementary column operations. In
particular, the dimension of the column space remains invariant.

Elementary row operations

Again, looking at the m× n matrix A in a purely abstract way, we can say that it is made up of m
row vectors, which are just the rows of the matrix. Let us call them w1, . . . ,wm ∈ Fn. That is,

A =



a11 · · · a1n

...
. . .

...
am1 · · · amn


 =




w1 = (a11 · · · a1n)
...

wm = (am1 · · · amn)


 .

Again, we define the three elementary row operations analogously to the way we defined the
elementary column operations. Clearly we have the same results. Namely if R = {w1, . . . , wm}
are the original rows, in their proper order, then we have [R] = [Rij ] = [Ri(a)] = [Rij(c)].

But it is perhaps easier to think about the row operations when changing a matrix into a form
which is easier to think about. We would like to change the matrix into a step form (Zeilenstufen-
form).
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Definition. The m×n matrix A is in step form if there exists some r with 0 ≤ r ≤ m and indices
1 ≤ j1 < j2 < · · · < jr ≤ m with aiji = 1 for all i = 1, . . . , r and ast = 0 for all s, t with t < js
or s > jr. That is:

A =




· · · 1 a1j1+1 · · · · · · a1n

0 1 a2j2+1 · · · a2n

0 0 1 a3j3+1 · · · a2n

. . .
...

0 · · · 0 1 arjr+1 · · · arn
0 0 0 0 0
...

...
...




.

Theorem 3.20. By means of a finite sequence of elementary row operations, every matrix can be
transformed into a matrix in step form.

Proof. Induction on m, the number of rows in the matrix. We use the technique of “Gaussian
elimination”, which is simply the usual way anyone would go about solving a system of linear
equations. This will be dealt with in the next section. The induction step in this proof, which uses
a number of simple ideas which are easy to write on the blackboard, but overly tedious to compose
here in TEX, will be described in the lecture.

Now it is obvious that the row space (Zeilenraum), that is [R] ⊂ Fn, has the dimension r, and
in fact the non-zero row vectors of a matrix in step form provide us with a basis for the row space.
But then, looking at the column vectors of this matrix in step form, we see that the columns j1,
j2, and so on up to jr are all linearly independent, and they generate the column space. (This is
discussed more fully in the lecture!)

Definition. Given an m×n matrix, the dimension of the column space is called the column rank;
similarly the dimension of the row space is the row rank.

So, using theorem 3.20, we conclude that:

Theorem 3.21. For any matrix A, the column rank is equal to the row rank. This common dimen-
sion is simply called the rank — written Rank(A) — of the matrix.

Definition. Let A be a quadratic n × n matrix. Then A is called regular if Rank(A) = n,
otherwise A is called singular.

Theorem 3.22. The n× n matrix A is regular⇔ the linear mapping f : Fn → Fn, represented
by the matrix A with respect to the canonical basis of Fn is an isomorphism.

Proof. ‘⇒’ If A is regular, then the rank of A — namely the dimension of the column space [S]
— is n. Since the dimension of Fn is n, we must therefore have [S] = Fn. The linear mapping
f : Fn → Fn is then both an injection (since S must be linearly independent) and also a surjection.

‘⇐’ Since the set of column vectors S is the set of images of the canonical basis vectors of
Fn under f , they must be linearly independent. There are n column vectors; thus the rank of A is
n.
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3.7 Systems of linear equations

We now take a small diversion from our idea of linear algebra as being a method of describing
geometry, and instead we will consider simple linear equations. In particular, we consider a system
of m equations in n unknowns.

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm

We can also think about this as being a vector equation. That is, if

A =



a11 · · · a1n

...
. . .

...
am1 · · · amn


 ,

and x =



x1
...
xn


 ∈ Fn and b =



b1
...
bm


 ∈ Fm, then our system of linear equations is just the

single vector equation
A · x = b.

But what is the most obvious way to solve this system of equations? It is a simple matter to
write down an algorithm, as follows. The numbers aij and bk are given (as elements of F ), and
the problem is to find the numbers xl.

1. Let i := 1 and j := 1.

2. if aij = 0 then if akj = 0 for all i < k ≤ m, set j := j + 1. Otherwise find the smallest
index k > i such that akj 6= 0 and exchange the i-th equation with the k-th equation.

3. Multiply both sides of the (possibly new) i-th equation by a−1
ij . Then for each i < k ≤ m,

subtract akj times the i-th equation from the k-th equation. Therefore, at this stage, after
this operation has been carried out, we will have akj = 0, for all k > i.

4. Set i := i+ 1. If i ≤ n then return to step 2.

So at this stage, we have transformed the system of linear equations into a system in step form.
The next thing is to solve the system of equations in step form. The problem is that perhaps

there is no solution, or perhaps there are many solutions. The easiest way to decide which case
we have is to reorder the variables — that is the various xi — so that the steps start in the upper
left-hand corner, and they are all one unit wide. That is, things then look like this:

x1 + a12x2 + a13x3 + · · · + · · · + a1nxn = b1
x2 + a23x3 + a24x4 + · · · + a2nxn = b2

x3 + a34x4 + · · · + a3nxn = b3
...

xk + · · · + aknxk = bk
0 = bk+1

...
0 = bm
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(Note that this reordering of the variables is like our first elementary column operation for matri-
ces.)

So now we observe that:

• If bl 6= 0 for some k + 1 ≤ l ≤ m, then the system of equations has no solution.

• Otherwise, if k = n then the system has precisely one single solution. It is obtained by
working backwards through the equations. Namely, the last equation is simply xn = bn,
so that is clear. But then, substitute bn for xn in the n − 1-st equation, and we then have
xn−1 = bn−1− an−1nbn. By this method, we progress back to the first equation and obtain
values for all the xj , for 1 ≤ j ≤ n.

• Otherwise, k < n. In this case we can assign arbitrary values to the variables xk+1, . . . , xn,
and then that fixes the value of xk. But then, as before, we progressively obtain the values
of xk−1, xk−2 and so on, back to x1.

This algorithm for finding solutions of systems of linear equations is called “Gaussian Elimina-
tion”.

All of this can be looked at in terms of our matrix notation. Let us call the followingm×n+1
matrix the augmented matrix for our system of linear equations:

A =




a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
...

. . .
...

...
am1 am2 · · · amn bm


 .

Then by means of elementary row and column operations, the matrix is transformed into the new
matrix which is in simple step form

A′ =




1 a′12 · · · · a′1 k+1 · · · a′1n b′1
0 1 a′23 · a′2 k+1 · · · a′2n b′2
...

. . . · ...
...

...
0 · · · 0 1 a′k k+1 · · · a′kn b′k
0 · · · 0 0 0 · · · 0 b′k+1
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · 0 b′m




.

Finding the eigenvectors of linear mappings

Definition. Let V be a vector space over a field F , and let f : V → V be a linear mapping of
V into itself. An eigenvector of f is a non-zero vector v ∈ V (so we have v 6= 0) such that there
exists some λ ∈ F with f(v) = λv. The scalar λ is then called the eigenvalue associated with
this eigenvector.

So if f is represented by the n× n matrix A (with respect to some given basis of V), then the
problem of finding eigenvectors and eigenvalues is simply the problem of solving the equation

Av = λv.

But here both λ and v are variables. So how should we go about things? Well, as we will see,
it is necessary to look at the characteristic polynomial of the matrix, in order to find an eigenvalue
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λ. Then, once an eigenvalue is found, we can consider it to be a constant in our system of linear
equations. And they become the homogeneous4 system

(a11 − λ)x1 + a12x2 + · · · + a1nxn = 0
a21x1 + (a22 − λ)x2 + · · · + a2nxn = 0

...
an1x1 + an2x2 + · · · + (ann − λ)xn = 0

which can be easily solved to give us the (or one of the) eigenvector(s) whose eigenvalue is λ.
Now the n× n identity matrix is

E =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




Thus we see that an eigenvalue is any scalar λ ∈ F such that the vector equation

(A− λE)v = 0

has a solution vector v ∈ V, such that v 6= 0.5

3.8 Invertible matrices

Let f : V → W be a linear mapping, and let {v1, . . . ,vn} ⊂ V and {w1, . . . ,wm} ⊂ W be
bases for V and W, respectively. Then, as we have seen, the mapping f can be uniquely described
by specifying the values of f(vj), for each j = 1, . . . , n. We have

f(vj) =
m∑

i=1

aijwi,

And the resulting matrixA =



a11 · · · a1n

...
. . .

...
am1 · · · amn


 is the matrix describing f with respect to these

given bases.

A particular case

This is the case that V = W. So we have the linear mapping f : V→ V. But now, we only need
a single basis for V. That is, {v1, . . . ,vn} ⊂ V is the only basis we need. Thus the matrix for f
with respect to this single basis is determined by the specifications

f(vj) =
m∑

i=1

aijvi.

4That is, all the bi are zero. Thus a homogeneous system with matrix A has the form Av = 0.
5Given any solution vector v, then clearly we can multiply it with any scalar κ ∈ F , and we have

(A− λE)(κv) = κ(A− λE)v = κ0 = 0.

Therefore, as long as κ 6= 0, we can say that κv is also an eigenvector whose eigenvalue is λ.
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A trivial example

For example, one particular case is that we have the identity mapping

f = id : V→ V.

Thus f(v) = v, for all v ∈ V. In this case it is obvious that the matrix of the mapping is the n×n
identity matrix In.

Regular matrices

Let us now assume that A is some regular n × n matrix. As we have seen in theorem 3.22, there
is an isomorphism f : V → V, such that A is the matrix representing f with respect to the
given basis of V. According to theorem 3.16, the inverse mapping f−1 is also linear, and we have
f−1 ◦ f = id. So let f−1 be represented by the matrix B (again with respect to the same basis
{v1, . . . ,vn}). Then we must have the matrix equation

B ·A = In.

Or, put another way, in the multiplication system of matrix algebra we must have B = A−1. That
is, the matrix A is invertible.

Theorem 3.23. Every regular matrix is invertible.

Definition. The set of all regular n× n matrices over the field F is denoted GL(n, F ).

Theorem 3.24. GL(n, F ) is a group under matrix multiplication. The identity element is the
identity matrix.

Proof. We have already seen that matrix multiplication is associative. The fact that the identity
element in GL(n, F ) is the identity matrix is clear. By definition, all members of GL(n, F ) have
an inverse. It only remains to see that GL(n, F ) is closed under matrix multiplication. So let
A,C ∈ GL(n, F ). Then there exist A−1, C−1 ∈ GL(n, F ), and we have that C−1 · A−1 is itself
an n× n matrix. But then

(
C−1A−1

)
AC = C−1

(
A−1A

)
C = C−1InC = C−1C = In.

Therefore, according to the definition of GL(n, F ), we must also have AC ∈ GL(n, F ).

Simplifying matrices using multiplication with regular matrices

Theorem 3.25. Let A be an m× n matrix. Then there exist regular matrices C ∈ GL(m,F ) and
D ∈ GL(n, F ) such that the matrix A′ = CAD−1 consists simply of zeros, except possibly for a
block in the upper lefthand corner, which is an identity matrix. That is

A′ =




1 · · · 0
...

. . .
...

0 · · · 1

0 · · · 0
...

. . .
...

0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0




(Note that A′ is also an m× n matrix. That is, it is not necessarily square.)
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Proof. A is the representation of a linear mapping f : V→W, with respect to bases {v1, . . . ,vn}
and {w1, . . . ,wm} of V and W, respectively. The idea of the proof is to now find new bases
{x1, . . . ,xn} ⊂ V and {y1, . . . ,ym} ⊂W, such that the matrix of f with respect to these new
bases is as simple as possible.

So to begin with, let us look at ker(f) ⊂ V. It is a subspace of V, so its dimension is at most
n. In general, it might be less than n, so let us write dim(ker(f)) = n − p, for some integer
0 ≤ p ≤ n. Therefore we choose a basis for ker(f), and we call it

{xp+1, . . . ,xn} ⊂ ker(f) ⊂ V.

Using the extension theorem (theorem 3.9), we extend this to a basis

{x1, . . . ,xp,xp+1, . . . ,xn}

for V.
Now at this stage, we look at the images of the vectors {x1, . . . ,xp} under f in W. We find

that the set {f(x1), . . . , f(xp)} ⊂W is linearly independent. To see this, let us assume that we
have the vector equation

0 =
p∑

i=1

aif(xi) = f

(
p∑

i=1

aixi

)

for some choice of the scalars ai. But that means that
∑p

i=1 aixi ∈ ker(f).However {xp+1, . . . ,xn}
is a basis for ker(f). Thus we have

p∑

i=1

aixi =
n∑

j=p+1

bjxj

for appropriate choices of scalars bj . But {x1, . . . ,xp,xp+1, . . . ,xn} is a basis for V. Thus it is
itself linearly independent and therefore we must have ai = 0 and bj = 0 for all possible i and
j. In particular, since the ai’s are all zero, we must have the set {f(x1), . . . , f(xp)} ⊂W being
linearly independent.

To simplify the notation, let us call f(xi) = yi, for each i = 1, . . . , p. Then we can again use
the extension theorem to find a basis

{y1, . . . ,yp,yp+1, . . . ,ym}

of W.
So now we define the isomorphism g : V→ V by the rule

g(xi) = vi, for all i = 1, . . . , n.

Similarly the isomorphism h : W→W is defined by the rule

h(yj) = wj , for all j = 1, . . . ,m.

Let D be the matrix representing the mapping g with respect to the basis {v1, . . . ,vn} of V, and
also let C be the matrix representing the mapping h with respect to the basis {w1, . . . ,wm} of
W.

Let us now look at the mapping

h · f · g−1 : V→W.
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For the basis vector vi ∈ V, we have

hfg−1(vi) = hf(xi) =

{
h(yi) = wi, for i ≤ p
h(0) = 0, otherwise.

This mapping must therefore be represented by a matrix in our simple form, consisting of only
zeros, except possibly for a block in the upper lefthand corner which is an identity matrix. Fur-
thermore, the rule that the composition of linear mappings is represented by the product of the
respective matrices leads to the conclusion that the matrix A′ = CAD−1 must be of the desired
form.

3.9 Similar matrices; changing bases

Definition. Let A and A′ be n × n matrices. If a matrix C ∈ GL(n, F ) exists, such that A′ =
C−1AC then we say that the matrices A and A′ are similar.

Theorem 3.26. Let f : V → V be a linear mapping and let {u1, . . . ,un}, {v1, . . . ,vn} be
two bases for V. Assume that A is the matrix for f with respect to the basis {v1, . . . ,vn} and
furthermore A′ is the matrix for f with respect to the basis {u1, . . . ,un}. Let ui =

∑n
j=1 cjivj

for all i, and

C =



c11 · · · c1n

...
. . .

...
cn1 · · · cnn




Then we have A′ = C−1AC.

Proof. From the definition of A′, we have

f(ui) =
n∑

j=1

a′jiuj

for all i = 1, . . . , n. On the other hand we have

f(ui) = f




n∑

j=1

cjivj




=
n∑

j=1

cjif(vj)

=
n∑

j=1

cji

(
n∑

k=1

akjvk

)

=
n∑

k=1




n∑

j=1

cjiakj


vk

=
n∑

k=1




n∑

j=1

akjcji




(
n∑

l=1

c∗lkul

)

=
n∑

j=1

n∑

k=1

n∑

l=1

(c∗lkakjcji)ul.
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Here, the inverse matrix C−1 is denoted by

C−1 =



c∗11 · · · c∗1n

...
. . .

...
c∗n1 · · · c∗nn


 .

Therefore we have A′ = C−1AC.

Note that we have written here vk =
∑n

l=1 c
∗
lkul, and then we have said that the resulting

matrix (which we call C∗) is, in fact, C−1. To see that this is true, we begin with the definition of
C itself. We have

ul =
n∑

j=1

cjlvj .

Therefore

vk =
n∑

l=1

n∑

j=1

cjlc
∗
lkvj .

That is, CC∗ = In, and therefore C∗ = C−1.
Which mapping does the matrix C represent? From the equations ui =

∑n
j=1 cjivj we see

that it represents a mapping g : V → V such that g(vi) = ui for all i, expressed in terms of the
original basis {v1, . . . ,vn}. So we see that a similarity transformation, taking a square matrix A
to a similar matrix A′ = C−1AC is always associated with a change of basis for the vector space
V .

Much of the theory of linear algebra is concerned with finding a simple basis (with respect to
a given linear mapping of the vector space into itself), such that the matrix of the mapping with
respect to this simpler basis is itself simple — for example diagonal, or at least triagonal.

3.10 Eigenvalues, eigenspaces, matrices which can be diagonalized

Definition. Let f : V → V be a linear mapping of an n-dimensional vector space into itself. A
subspace U ⊂ V is called invariant with respect to f if f(U) ⊂ U. That is, f(u) ∈ U for all
u ∈ U.

Theorem 3.27. Assume that the r dimensional subspace U ⊂ V is invariant with respect to
f : V → V. Let A be the matrix representing f with respect to a given basis {v1, . . . ,vn} of V.
Then A is similar to a matrix A′ which has the following form

A′ =




a′11 . . . a′1r
...

...
a′r1 . . . a′rr

a′1(r+1) . . . a′1n
...

...
a′r(r+1) . . . a′rn

0

a′(r+1)(r+1) . . . a′(r+1)n
...

...
a′n(r+1) . . . a′nn




Proof. Let {u1, . . . ,ur} be a basis for the subspace U. Then extend this to a basis {u1, . . . ,ur,ur+1, . . . ,un}
of V. The matrix of f with respect to this new basis has the desired form.
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Definition. Let U1, . . . ,Up ⊂ V be subspaces. We say that V is the direct sum of these subspaces
if V = U1 + · · · + Up, and furthermore if v = u1 + · · · + up such that ui ∈ Ui, for each i,
then this expression for v is unique. In other words, if v = u1 + · · · + up = u′1 + · · · + u′p with
u′i ∈ Ui for each i, then ui = u′i, for each i. In this case, one writes V = U1 ⊕ · · · ⊕Up

This immediately gives the following result:

Theorem 3.28. Let f : V → V be such that there exist subspaces Ui ⊂ V, for i = 1, . . . , p,
such that V = U1 ⊕ · · · ⊕Up and also f is invariant with respect to each Ui. Then there exists
a basis of V such that the matrix of f with respect to this basis has the following block form.

A =




A1 0 . . . 0
0 A2 0
... 0

. . . 0
...

0 Ap−1 0
0 . . . 0 Ap




where each block Ai is a square matrix, representing the restriction of f to the subspace Ui.

Proof. Choose the basis to be a union of bases for each of the Ui.

A special case is when the invariant subspace is an eigenspace.

Definition. Assume that λ ∈ F is an eigenvalue of the mapping f : V → V. The set {v ∈ V :
f(v) = λv} is called the eigenspace of λ with respect to the mapping f . That is, the eigenspace
is the set of all eigenvectors (and with the zero vector 0 included) with eigenvalue λ.

Theorem 3.29. Each eigenspace is a subspace of V.

Proof. Let u,w ∈ V be in the eigenspace of λ. Let a, b ∈ F be arbitrary scalars. Then we have

f(au + bw) = af(u) + bf(w) = aλu + bλw = λ(au + bw).

Obviously if λ1 and λ2 are two different (λ1 6= λ2) eigenvalues, then the only common element
of the eigenspaces is the zero vector 0. Thus if every vector in V is an eigenvector, then we have
the situation of theorem 3.28. One very particular case is that we have n different eigenvalues,
where n is the dimension of V.

Theorem 3.30. Let λ1, . . . , λn be eigenvalues of the linear mapping f : V → V, where λi 6= λj
for i 6= j. Let v1, . . . ,vn be eigenvectors to these eigenvalues. That is, vi 6= 0 and f(vi) = λivi,
for each i = 1, . . . , n. Then the set {v1, . . . ,vn} is linearly independent.

Proof. Assume to the contrary that there exist a1, . . . , an, not all zero, with

a1v1 + · · ·+ anvn = 0.

Assume further that as few of the ai as possible are non-zero. Let ap be the first non-zero scalar.
That is, ai = 0 for i < p, and ap 6= 0. Obviously some other ak is non-zero, for some k 6= p, for
otherwise we would have the equation 0 = apvp, which would imply that vp = 0, contrary to the
assumption that vp is an eigenvector. Therefore we have

0 = f(0) = f

(
n∑

i=1

aivi

)
=

n∑

i=1

aif(vi) =
n∑

i=1

aiλivi.
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Also

0 = λp0 = λp

(
n∑

i=1

aivi

)
.

Therefore

0 = 0− 0 = λp

(
n∑

i=1

aivi

)
−

n∑

i=1

aiλivi =
n∑

i=1

ai(λp − λi)vi.

But, remembering that λi 6= λj for i 6= j, we see that the scalar term for vp is zero, yet all
other non-zero scalar terms remain non-zero. Thus we have found a new sum with fewer non-zero
scalars than in the original sum with the ais. This is a contradiction.

Therefore, in this particular case, the given set of eigenvectors {v1, . . . ,vn} form a basis for
V. With respect to this basis, the matrix of the mapping is diagonal, with the diagonal elements
being the eigenvalues.

A =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 .

3.11 The elementary matrices

These are n × n matrices which we denote by Sij , Si(a), and Sij(c). They are such that when
any n × n matrix A is multiplied on the right by such an S, then the given elementary column
operation is performed on the matrix A. Furthermore, if the matrix A is multiplied on the left by
such an elementary matrix, then the given row operation on the matrix is performed.6 It is a simple
matter to verify that the following matrices are the ones we are looking for.

Sij =




1
. . . 0

1

0 i−th row−→ 1
1

↓ . . . ↑
1

1 ←−
j−th row

0

1

0
. . .

1




Here, everything is zero except for the two elements at the positions ij and ji, which have the
value 1. Also the diagonal elements are all 1 except for the elements at ii and jj, which are zero.

6But note that using the matrix Sij(c), we find that the product Sij(c) · A gives the row operation on the matrix A,
where the row j is multiplied with the scalar c, then added to the row i. On the other hand, the column operation where
the j-th column is multiplied with the scalar c and added to the i-th column, is given by the matrix product A · Sji(c).
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Then we have

Si(a) =




1
. . . 0

1
a

1

0
. . .

1




That is, Si(a) is a diagonal matrix, all of whose diagonal elements are 1 except for the single
element at the position ii, which has the value a.

Finally we have

Sij(c) =




1 0
. . .

1 i−th row−→ c
1

. . . ↑ j−th column

1
1

0
. . .

1




So this is again just the n× n identity matrix, but this time we have replaced the zero in the ij-th
position with the scalar c. It is an elementary exercise to see that:

Theorem 3.31. Each of the n× n elementary matrices are regular.

And thus we can prove that these elementary matrices generate the group GL(n, F ). Further-
more, for every elementary matrix, the inverse matrix is again elementary.

Theorem 3.32. Every matrix inGL(n, F ) can be represented as a product of elementary matrices.

Proof. Let A =



a11 · · · a1n

...
. . .

...
an1 · · · ann


 ∈ GL(n, F ) be some arbitrary regular matrix. We have

already seen that A can be transformed into a matrix in step form by means of elementary row
operations. That is, there is some sequence of elementary matrices: S1, . . . , Sp, such that the
product

A∗ = Sp · · ·S1A

is an n× n matrix in step form. However, since A was a regular matrix, the number of steps must
be equal to n. That is, A∗ must be a triangular matrix whose diagonal elements are all equal to 1.

A∗ =




1 a∗12 a∗13 ? · · · ? a∗1n
0 1 a∗23 ? · · · ? a∗2n
0 0 1 ? · · · ? a∗3n
...

...
. . . ? ?

...
0 · · · 0 1 a∗(n−2)(n−1) a∗(n−2)n

0 · · · 0 1 a∗(n−1)n

0 · · · 0 1



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But now it is obvious that the elements above the diagonal can all be reduced to zero by elementary
row operations of type Sij(c). These row operations can again be realized by multiplication of A∗

on the right by some further set of elementary matrices: Sp+1, . . . , Sq. This gives us the matrix
equation

Sq · · ·Sp+1Sp · · ·S1A = In

or
A = S−1

1 · · · · · ·S−1
p S−1

p+1 · · ·S−1
q .

Since the inverse of each elementary matrix is itself elementary, we have thus expressed A as a
product of elementary matrices.

This proof also shows how we can go about programming a computer to calculate the inverse
of an invertible matrix. Namely, through the process of Gauss elimination, we convert the given
matrix into the identity matrix In. During this process, we keep multiplying together the elemen-
tary matrices which represent the respective row operations. In the end, we obtain the inverse
matrix

A−1 = Sq · · ·Sp+1Sp · · ·S1.

We also note that this is the method which can be used to obtain the value of the determinant
function for the matrix. But first we must find out what the definition of determinants of matrices
is!

3.12 The determinant

Let M(n× n, F ) be the set of all n× n matrices of elements of the field F .

Definition. A mapping det : M(n× n, F )→ F is called a determinant function if it satisfies the
following four conditions.

1. det(In) = 1, where In is the identity matrix.

2. If A ∈M(n× n, F ) is changed to the matrix A′ by multiplying all the elements in a single
row with the scalar a ∈ F , then det(A′) = a · det(A). (This is our row operation Si(a).)

3. Let A = (u1, . . . ,uk, . . . ,un), where uk is the k-th row of the matrix, for each k. Assume
that for some particular i ∈ {1, . . . , n}we have ui = u′i+u′′i . LetA′ = (u1, . . . ,u′i, . . .un)
and A′′ = (u1, . . . ,u′′i , . . .un). Then7 det(A) = det(A′) + det(A′′).

4. If A′ is obtained from A by adding one row to a different row, then det(A′) = det(A). (This
is our row operation Sij(1).)

Simple consequences of this definition

Let A ∈ M(n × n, F ) be an arbitrary n × n matrix, and let us say that A is transformed into the
new matrix A′ by an elementary row operation. Then we have:

1. If A′ is obtained by multiplying row i by the scalar a ∈ F , then det(A′) = a · det(A). This
is completely obvious! It is just part of the definition of “determinants”.

7Actually, it is not necessary to assume that this additive property is part of the definition of the determinant. In fact,
it can be proved to follow as a consequence of the other properties.
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2. Therefore, if A′ is obtained from A by multiplying a row with −1 then we have det(A′) =
−det(A).

3. Also, it follows that a matrix containing a row consisting of zeros must have zero as its
determinant.

4. If A has two identical rows, then its determinant must also be zero. For can we multiply one
of these rows with -1, then add it to the other row, obtaining a matrix with a zero row.

5. If A′ is obtained by exchanging rows i and j, then det(A′) = −det(A). This is a bit more
difficult to see. Again, let us say thatA = (u1, . . . ,ui, . . . ,uj , . . .un), where uk is the k-th
row of the matrix, for each k. Then we can write

det(A) = det(u1, . . . ,ui, . . . ,uj , . . .un)
= det(u1, . . . ,ui + uj , . . . ,uj , . . . ,un)
= −det(u1, . . . ,−(ui + uj), . . . ,uj , . . . ,un)
= −det(u1, . . . ,−(ui + uj), . . . ,uj − (ui + uj), . . . ,un)
= det(u1, . . . ,ui + uj , . . . ,−ui, . . . ,un)
= det(u1, . . . , (ui + uj)− ui, . . . ,−ui, . . . ,un)
= det(u1, . . . ,uj , . . . ,−ui, . . . ,un)
= −det(u1, . . . ,uj , . . . ,ui, . . . ,un)

(This is the elementary row operation Sij .)

6. If A′ is obtained from A by an elementary row operation of the form Sij(c), then det(A′) =
det(A). For we have:

det(A) = det(u1, . . . ,ui, . . . ,uj , . . . ,un)
= c−1det(u1, . . . ,ui, . . . , cuj , . . . ,un)
= c−1det(u1, . . . ,ui + cuj , . . . , cuj , . . . ,un)
= det(u1, . . . ,ui + cuj , . . . ,uj , . . . ,un)

7. We have thus shown that if A = (u1, . . . ,un) is such that the n row vectors {u1, . . . ,un}
are linearly dependent, then it follows that det(A) = 0.

8. Let A = (u1, . . . ,u′i + u′′i , . . . ,un). Furthermore, let A′ = (u1, . . . ,u′i, . . . ,un) and
A′′ = (u1, . . . ,u′′i , . . . ,un). The set {u1, . . . ,ui−1,u′i,u

′′
i ,ui+1, . . . ,un} consists of n+1

row vectors. Since these vectors are all contained in the n-dimensional vector space Fn,
they must be linearly dependent. Therefore there is an equation of the form

c1u1 + · · ·+ ci−1ui−1 + c′u′i + c′′u′′i + ci+1u+1 + · · ·+ cnun = 0,

where at least one of the coefficients c′, c′′, or ck is not equal to zero.

If we have c′ = c′′ = 0, then we must have det(A) = det(A′) = det(A′′) = 0, since the set
of row vectors of each of these matrices is linearly dependent. Therefore, in this case, we
have

det(A) = det(A′) + det(A′′).
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So assume now that at least one of the coefficients c′ or c′′ is not zero. Say c′ 6= 0. But then
(possibly by multiplying with c′−1) we may assume that c′ = 1. This gives us the equation

u′i = −c1u1 − · · · − ci−1ui−1 − c′′u′′i − ci+1u+1 − · · · − cnun.
Therefore, ifA# = (u1, . . . ,−c′′u′′i , . . . ,un), then, using (6), we have det(A′) = det(A#).
But using (1), we see that det(A#) = −c′′det(A′′). Finally, substituting −c′′u′′i for u′i in
the matrix A, we obtain the matrix

A∗ = (u1, . . . ,−c′′u′′i +′′ u′′i , . . . ,un) = (u1, . . . , (1− c′′)u′′i , . . . ,un).
Using (6) and (1), we have

det(A) = det(A∗)
= (1− c′′)det(A′′)
= −c′′det(A′′) + det(A′′)
= det(A#) + det(A′′)
= det(A′) + det(A′′).

This shows that the additivity property (number 3 in the definition of the determinant) fol-
lows from the other properties 1, 2, and 4.

Therefore we see that each elementary row operation has a well-defined effect on the deter-
minant of the matrix. This gives us the following algorithm for calculating the determinant of an
arbitrary matrix in M(n× n, F ).

How to find the determinant of a matrix

Given: An arbitrary matrix A ∈M(n× n, F ).
Find: det(A).

Method:

1. Using elementary row operations, transform A into a matrix in step form, keeping track of
the changes in the determinant at each stage.

2. If the bottom line of the matrix we obtain only consists of zeros, then the determinant is
zero, and thus the determinant of the original matrix was zero.

3. Otherwise, the matrix has been transformed into an upper triangular matrix, all of whose
diagonal elements are 1. But now we can transform this matrix into the identity matrix In
by elementary row operations of the type Sij(c). Since we know that det(In) must be 1, we
then find a unique value for the determinant of the original matrix A. In particular, in this
case det(A) 6= 0.

Note that in both this algorithm, as well as in the algorithm for finding the inverse of a regular
matrix, the method of Gaussian elimination was used. Thus we can combine both ideas into a
single algorithm, suitable for practical calculations in a computer, which yields both the matrix
inverse (if it exists), and the determinant. This algorithm also proves the following theorem.

Theorem 3.33. There is only one determinant function and it is uniquely given by our algorithm.
Furthermore, a matrix A ∈M(n× n, F ) is regular if and only if det(A) 6= 0.
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In particular, using these methods it is easy to see that the following theorem is true.

Theorem 3.34. Let A, B ∈M(n× n, F ). Then we have det(A ·B) = det(A) · det(B).

Proof. If either A or B is singular, then A · B is singular. This can be seen by thinking about the
linear mappings V → V which A and B represent. At least one of these mappings is singular.
Thus the dimension of the image is less than n, so the dimension of the image of the composition
of the two mappings must also be less than n. Therefore A · B must be singular. That means,
on the one hand, that det(A · B) = 0. And on the other hand, that either det(A) = 0 or else
det(B) = 0. Either way, the theorem is true in this case.

If both A and B are regular, then they are both in GL(n, F ). Therefore, as we have seen, they
can be written as products of elementary matrices. It suffices then to prove the theorem in the
special case that A is an elementary matrix. But this is just part of the “simple consequences” of
the definition of the determinant.

Remembering that A is regular if and only if A ∈ GL(n, F ), we have:

Corollary. If A ∈ GL(n, F ) then det(A−1) = (det(A))−1.

In particular, if det(A) = 1 then we also have det(A−1) = 1. The set of all such matrices
must then form a group.

Another simple corollary is the following.

Corollary. Assume that the matrix A is in block form, so that the linear mapping which it repre-
sents splits into a direct sum of invariant subspaces (see theorem 3.28). Then det(A) is the product
of the determinants of the blocks.

Proof. If

A =




A1 0 . . . 0
0 A2 0
... 0

. . . 0
...

0 Ap−1 0
0 . . . 0 Ap




then for each i = 1, . . . , p let

A∗i =




1 0 . . . 0

0
. . . 0

... 0 Ai 0
...

0
. . . 0

0 . . . 0 1



.

That is, for the matrix A∗i , all the blocks except the i-th block are replaced with identity-matrix
blocks. Then A = A∗1 · · ·A∗p, and it is easy to see that det(A∗i ) = det(Ai) for each i.

Definition. The special linear group of order n is defined to be the set

SL(n, F ) = {A ∈ GL(n, F ) : det(A) = 1}.

Theorem 3.35. Let A′ = C−1AC. Then det(A′) = det(A).

Proof. This follows, since det(C−1) = (det(C))−1.
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3.13 Leibniz formula

Definition. A permutation of the numbers {1, . . . , n} is a bijection

σ : {1, . . . , n} → {1, . . . , n}.
The set of all permutations of the numbers {1, . . . , n} is denoted Sn. In fact, Sn is a group: the
symmetric group of order n. Given a permutation σ ∈ Sn, we will say that a pair of numbers
(i, j), with i, j ∈ {1, . . . , n} is a “reversed pair” if i < j, yet σ(i) > σ(j). Let s(σ) be the total
number of reversed pairs in σ. Then the sign of sigma is defined to be the number

sign(σ) = (−1)s(σ).

Theorem 3.36 (Leibniz). Let the elements in the matrix A be aij , for i, j between 1 and n. Then
we have

det(A) =
∑

σ∈Sn

sign(σ)
n∏

i=1

aσ(i)i.

As a consequence of this formula, the following theorems can be proved:

Theorem 3.37. Let A be a diagonal matrix.

A =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 · · · λn




Then det(A) = λ1λ2 · · ·λn.

Theorem 3.38. Let A be a triangular matrix.


a11 a12 ? · · · ?
0 a22 ? · · · ?

0 0
. . .

...
... 0 a(n−1)(n−1) a(n−1)n

0 · · · 0 0 ann




Then det(A) = a11a22 · · · ann.

Leibniz formula also gives:

Definition. Let A ∈M(n× n, F ). The transpose At of A is the matrix consisting of elements atij
such that for all i and j we have atij = aji, where aji are the elements of the original matrix A.

Theorem 3.39. det(At) = det(A).

3.13.1 Special rules for 2× 2 and 3× 3 matrices

Let A =
(
a11 a12

a21 a22

)
. Then Leibniz formula reduces to the simple formula

det(A) = a11a22 − a12a21.

For 3 × 3 matrices, the formula is a little more complicated. Let A =



a11 a12 a13

a21 a22 a23

a31 a32 a33


.

Then we have

det(A) = a11a22a33 + a12a23a33 + a13a21a32 − a11a23a32 − a12a21a33 − a11a23a32.
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3.13.2 A proof of Leibniz formula

Let the rows of the n× n identity matrix be ε1, . . . , εn. Thus

ε1 = (1 0 0 · · · 0), ε2 = (0 1 0 · · · 0), . . . , εn = (0 0 0 · · · 1).

Therefore, given that the i-th row in a matrix is

ξi = (ai1 ai2 · · · ain),
then we have

ξi =
n∑

j=1

aijεj .

So let the matrix A be represented by its rows,

A =



ξ1
...
ξn


 .

Then we can write

det(A) = det



ξ1
...
ξn




=
n∑

j1=1

a1j1det



εj1

ξ2
...

ξn




=
n∑

j1=1

a1j1

n∑

j2=1

a2j2det




εj1
εj2
ξ3
...
ξn




=
n∑

j1=1

n∑

j2=1

· · ·
n∑

jn=1

a1j1 · · · anjndet



εj1
...
εjn


 .

But what is det



εj1
...
εjn


? To begin with, observe that if εjk = εjl for some jk 6= jl, then two rows

are identical, and therefore the determinant is zero. Thus we need only the sum over all possible
permutations (j1, j2, . . . , jn) of the numbers (1, 2, . . . , n). Then, given such a permutation, we

have the matrix



εj1
...
εjn


. This can be transformed back into the identity matrix



ε1
...
εn


 by means of

successively exchanging pairs of rows. Each time this is done, the determinant changes sign (from
+1 to -1, or from -1 to +1). Finally, of course, we know that the determinant of the identity matrix
is 1. Therefore we obtain Leibniz formula

det(A) =
∑

σ∈Sn

sign(σ)
n∏

i=1

aiσ(i).
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3.14 The characteristic polynomial

Let f : V → V be a linear mapping, and let v be an eigenvector of f with f(v) = λv. That
means that (f − λid)(v) = 0; therefore the mapping (f − λid) : V → V is singular. Now
consider the matrix A, representing f with respect to some particular basis of V. Since λIn is
the matrix representing the mapping λid, we must have that the difference A − λIn is a singular
matrix. In particular, we have det(A− λIn) = 0.

Another way of looking at this is to take a “variable” x, and then calculate (for example, using
the Leibniz formula) the polynomial in x

P (x) = det(A− xIn).

This polynomial is called the characteristic polynomial for the matrix A. Therefore we have the
theorem:

Theorem 3.40. The zeros of the characteristic polynomial of A are the eigenvalues of the linear
mapping f : V→ V which A represents.

Obviously the degree of the polynomial is n for an n × n matrix A. So let us write the
characteristic polynomial in the standard form

P (x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0.

The coefficients c0, . . . , cn are all elements of our field F .
Now the matrix A represents the mapping f with respect to a particular choice of basis for the

vector space V. With respect to some other basis, f is represented by some other matrixA′, which
is similar to A. That is, there exists some C ∈ GL(n, F ) with A′ = C−1AC. But we have

det(A′ − xIn) = det(C−1AC − xC−1InC)
= det(C−1(A− xIn)C)
= det(C−1)det(A− xIn)det(C)
= det(A− xIn)
= P (x).

Therefore we have:

Theorem 3.41. The characteristic polynomial is invariant under a change of basis; that is, under
a similarity transformation of the matrix.

In particular, each of the coefficients ci of the characteristic polynomial P (x) = cnx
n +

cn−1x
n−1 + · · ·+ c1x+ c0 remains unchanged after a similarity transformation of the matrix A.

What is the coefficient cn? Looking at the Leibniz formula, we see that the term xn can only
occur in the product

(a11 − x)(a22 − x) · · · (ann − x) = (−1)nxn + (−1)n−1(a11 + a22 + · · ·+ ann)xn−1 + · · · .

Therefore cn = 1 if n is even, and cn = −1 if n is odd. This is not particularly interesting.
So let us go one term lower and look at the coefficient cn−1. Where does xn−1 occur in the

Leibniz formula? Well, as we have just seen, there certainly is the term

(−1)n−1(a11 + a22 + · · ·+ ann)xn−1,
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which comes from the product of the diagonal elements in the matrixA−xIn. Do any other terms
also involve the power xn−1? Let us look at Leibniz formula more carefully in this situation. We
have

det(A− xIn) = (a11 − x)(a22 − x) · · · (ann − x)

+
∑

σ∈Sn
σ 6=id

sign(σ)
n∏

i=1

(
aσ(i)i − xδσ(i)i

)

Here, δij = 1 if i = j. Otherwise, δij = 0. Now if σ is a non-trivial permutation — not just the
identity mapping — then obviously we must have two different numbers i1 and i2, with σ(i1) 6= i1
and also σ(i2) 6= i2. Therefore we see that these further terms in the sum can only contribute at
most n− 2 powers of x. So we conclude that the (n− 1)-st coefficient is

cn−1 = (−1)n−1(a11 + a22 + · · ·+ ann).

Definition. Let A =



a11 · · · a1n

...
. . .

...
an1 · · · ann


 be an n × n matrix. The trace of A (in German: the

“Spur” of A) is the sum of the diagonal elements:

tr(A) = a11 + a22 + · · ·+ ann.

Theorem 3.42. tr(A) remains unchanged under a similarity transformation.

An example

Let f : R2 → R2 be a rotation through the angle θ. Then, with respect to the canonical basis of
R2, the matrix of f is

A =
(

cos θ − sin θ
sin θ cos θ

)
.

Therefore the characteristic polynomial of A is

det

[(
cos θ − sin θ
sin θ cos θ

)
− x

(
1 0
0 1

)]
= det

(
cos θ − x − sin θ

sin θ cos θ − x
)

= x2 − 2x cos θ + 1.

That is to say, if λ ∈ R is an eigenvalue of f , then λmust be a zero of the characteristic polynomial.
That is,

λ2 − 2λ cos θ + 1 = 0.

But, looking at the well-known formula for the roots of quadratic polynomials, we see that such a
λ can only exist if | cos θ| = 1. That is, θ = 0 or π. This reflects the obvious geometric fact that a
rotation through any angle other than 0 or π rotates any vector away from its original axis. In any
case, the two possible values of θ give the two possible eigenvalues for f , namely +1 and −1.

3.15 Scalar products, norms, etc.

From now on, we will assume that all vector spaces considered are either Euclidean, or else unitary
vector spaces. That is, we assume that they are defined either over the field of real numbers R —
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so that the vector space is of the form Rn, for some n ∈ N — or else over the field of complex
numbers, giving Cn. Within these vector spaces, it makes sense to define the idea of a “distance”
between two vectors. More particularly, we have the idea of the “length” of a given vector.

So let V be some finite dimensional vector space over R, or C. Let v ∈ V be some vector
in V. Then, since V ∼= Rn, or Cn, we can write v =

∑n
j=1 ajej , where {e1, . . . , en} is the

canonical basis for Rn or Cn, and aj ∈ R or C, respectively, for all j. Then the length of v is
defined to be the non-negative real number

‖v‖ =
√
|a1|2 + · · ·+ |an|2.

But in mathematics, we wish to extend this concept beyond the normal idea of simply defining
lengths in the normal Euclidean space. Infinite dimensional spaces, or even abstract spaces of
functions should also be dealt with.

Definition. Let F = R or C and let V, W be two vector spaces over F . A bilinear form is a
mapping s : V ×W → F satisfying the following conditions with respect to arbitrary elements
v, v1 and v2 ∈ V, w, w1 and w2 ∈W, and a ∈ F .

1. s(v1 + v2,w) = s(v1,w) + s(v2,w),

2. s(av,w) = as(v,w),

3. s(v,w1 + w2) = s(v,w1) + s(v,w2) and

4. s(v, aw) = as(v,w).

If V = W, then we say that a bilinear form s : V × V → F is symmetric, if we always have
s(v1,v2) = s(v2,v1). Also the form is called positive definite if s(v,v) > 0 for all v 6= 0.

On the other hand, if F = C and f : V→W is such that we always have

1. f(v1 + v2) = f(v1) + f(v2) and

2. f(av) = af(v)

Then f is a semi-linear (not a linear) mapping. (Note: if F = R then semi-linear is the same as
linear.)

A mapping s : V ×W→ F such that

1. The mapping given by s(·,w) : V→ F , where v→ s(v,w) is semi-linear for all w ∈W,
whereas

2. The mapping given by s(v, ·) : W→ F , where w→ s(v,w) is linear for all v ∈ V

is called a sesqui-linear form.
In the case V = W, we say that the sesqui-linear form is Hermitian (or Euclidean, if we only

have F = R), if we always have s(v1,v2) = s(v2,v1). (Therefore, if F = R, an Hermitian form
is symmetric.)

Finally, a scalar product is a positive definite Hermitian form s : V×V→ F . Normally, one
writes 〈v1,v2〉, rather than s(v1,v2).

Well, these are a lot of new words. To be more concrete, we have the inner products, which
are examples of scalar products.
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Inner products

Let u =




u1

u2
...
un


 ,v =




v1
v2
...
vn


 ∈ C

n. Thus, we are considering these vectors as column vectors,

defined with respect to the canonical basis of Cn. Then define (using matrix multiplication)

〈u,v〉 = utv = (u1 u2 · · · un)




v1
v2
...
vn


 =

n∑

j=1

ujvj .

It is easy to check that this gives a scalar product on Cn. This particular scalar product is called
the inner product.

Remark. One often writes u ·v for the inner product. Thus, considering it to be a scalar product,
we just have u · v = 〈u,v〉.
Definition. A real vector space (that is, over the field of the real numbers R), together with a
scalar product is called a Euclidean vector space. A complex vector space with scalar product is
called a unitary vector space.

Now, the basic reason for making all these definitions is that we want to define the length —
that is the norm — of the vectors in V. Given a scalar product, then the norm of v ∈ V — with
respect to this scalar product — is the non-negative real number

‖v‖ =
√
〈v,v〉.

More generally, one defines a norm-function on a vector space in the following way.

Definition. Let V be a vector space over C (and thus we automatically also include the case
R ⊂ C as well). A function ‖ · ‖ : V → R is called a norm on V if it satisfies the following
conditions.

1. ‖av‖ = |a|‖v‖ for all v ∈ V and for all a ∈ C,

2. ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖ for all v1,v2 ∈ V (the triangle inequality), and

3. ‖v‖ = 0⇔ v = 0.

Theorem 3.43 (Cauchy-Schwarz inequality). Let V be a Euclidean or a unitary vector space, and
let ‖v‖ =

√
〈v,v〉 for all v ∈ V. Then we have

|〈u,v〉| ≤ ‖u‖ · ‖v‖
for all u and v ∈ V. Furthermore, the equality |〈u,v〉| = ‖u‖ · ‖v‖ holds if, and only if, the set
{u,v} is linearly dependent.

Proof. It suffices to show that |〈u,v〉|2 ≤ 〈u,u〉〈v,v〉. Now, if v = 0, then — using the prop-
erties of the scalar product — we have both 〈u,v〉 = 0 and 〈v,v〉 = 0. Therefore the theorem is
true in this case, and we may assume that v 6= 0. Thus 〈v,v〉 > 0. Let

a =
〈u,v〉
〈v,v〉 ∈ C.
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Then we have

0 ≤ 〈u− av,u− av〉
= 〈u,u− av〉+ 〈−av,u− av〉
= 〈u,u〉+ 〈u,−av〉+ 〈−av,u〉+ 〈−av,−av〉
= 〈u,u〉 − a〈u,v〉︸ ︷︷ ︸

〈u,v〉〈u,v〉
〈v,v〉

− a〈u,v〉︸ ︷︷ ︸
〈u,v〉〈u,v〉
〈v,v〉

+ aa〈v,v〉︸ ︷︷ ︸
〈u,v〉〈u,v〉
〈v,v〉

.

Therefore,
0 ≤ 〈u,u〉〈v,v〉 − 〈u,v〉〈u,v〉.

But
〈u,v〉〈u,v〉 = |〈u,v〉|2,

which gives the Cauchy-Schwarz inequality. When do we have equality?
If v = 0 then, as we have already seen, the equality |〈u,v〉| = ‖u‖ · ‖v‖ is trivially true. On

the other hand, when v 6= 0, then equality holds when 〈u− av,u− av〉 = 0. But since the scalar
product is positive definite, this holds when u− av = 0. So in this case as well, {u,v} is linearly
dependent.

Theorem 3.44. Let V be a vector space with scalar product, and define the non-negative function
‖ · ‖ : V→ R by ‖v‖ =

√
〈v,v〉. Then ‖ · ‖ is a norm function on V.

Proof. The first and third properties in our definition of norms are obviously satisfied. As far
as the triangle inequality is concerned, begin by observing that for arbitrary complex numbers
z = x+ yi ∈ C we have

z + z = (x+ yi) + (x− yi) = 2x ≤ 2|x| ≤ 2|z|.

Therefore, let u and v ∈ V be chosen arbitrarily. Then we have

‖u + v‖2 = 〈u + v,u + v〉
= 〈u,u〉+ 〈u,v〉+ 〈v,u〉+ 〈v,v〉
= 〈u,u〉+ 〈u,v〉+ 〈u,v〉+ 〈v,v〉
≤ 〈u,u〉+ 2|〈u,v〉|+ 〈v,v〉
≤ 〈u,u〉+ 2‖u‖ · ‖v‖+ 〈v,v〉 (Cauchy-Schwarz inequality)

= ‖u‖2 + 2‖u‖ · ‖v‖+ ‖v‖2
= (‖u‖+ ‖v‖)2.

Therefore ‖u + v‖ ≤ ‖u‖+ ‖v‖.

3.16 Orthonormal bases

Our vector space V is now assumed to be either Euclidean, or else unitary — that is, it is defined
over either the real numbers R, or else the complex numbers C. In either case we have a scalar
product 〈·, ·〉 : V ×V→ F (here, F = R or C).

As always, we assume that V is finite dimensional, and thus it has a basis {v1, . . . ,vn}.
Thinking about the canonical basis for Rn or Cn, and the inner product as our scalar product, we
see that it would be nice if we had
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• 〈vj ,vj〉 = 1, for all j (that is, the basis vectors are normalized), and furthermore

• 〈vj ,vk〉 = 0, for all j 6= k (that is, the basis vectors are an orthogonal set in V).8

That is to say, {v1, . . . ,vn} is an orthonormal basis of V. Unfortunately, most bases are not
orthonormal. But this doesn’t really matter. For, starting from any given basis, we can successively
alter the vectors in it, gradually changing it into an orthonormal basis. This process is often called
the Gram-Schmidt orthonormalization process. But first, to show you why orthonormal bases are
good, we have the following theorem.

Theorem 3.45. Let V have the orthonormal basis {v1, . . . ,vn}, and let x ∈ V be arbitrary.
Then

x =
n∑

j=1

〈vj ,x〉vj .

That is, the coefficients of x, with respect to the orthonormal basis, are simply the scalar products
with the respective basis vectors.

Proof. This follows simply because if x =
∑n

j=1 ajvj , then we have for each k,

〈vk,x〉 = 〈vk,
n∑

j=1

ajvj〉 =
n∑

j=1

aj〈vk,vj〉 = ak.

So now to the Gram-Schmidt process. To begin with, if a non-zero vector v ∈ V is not
normalized — that is, its norm is not one — then it is easy to multiply it by a scalar, changing it
into a vector with norm one. For we have 〈v,v〉 > 0. Therefore ‖v‖ =

√
〈v,v〉 > 0 and we have

∥∥∥∥
v
‖v‖

∥∥∥∥ =

√〈
v
‖v‖ ,

v
‖v‖

〉
=

√
〈v,v〉
〈v,v〉 =

‖v‖
‖v‖ = 1.

In other words, we simply multiply the vector by the inverse of its norm.

Theorem 3.46. Every finite dimensional vector space V which has a scalar product has an or-
thonormal basis.

Proof. The proof proceeds by constructing an orthonormal basis {u1, . . . ,un} from a given, ar-
bitrary basis {v1, . . . ,vn}. To describe the construction, we use induction on the dimension, n. If
n = 1 then there is almost nothing to prove. Any non-zero vector is a basis for V, and as we have
seen, it can be normalized by dividing by the norm. (That is, scalar multiplication with the inverse
of the norm.)

So now assume that n ≥ 2, and furthermore assume that the Gram-Schmidt process can be
constructed for any n − 1 dimensional space. Let U ⊂ V be the subspace spanned by the first

8Note that any orthogonal set of non-zero vectors {u1, . . . ,um} in V is linearly independent. This follows because
if

0 =

mX
j=1

ajuj

then

0 = 〈uk,0〉 = 〈uk,

mX
j=1

ajuj〉 =

mX
j=1

aj〈uk,uj〉 = ak〈uk,uk〉

since 〈uk,uj〉 = 0 if j 6= k, and otherwise it is not zero. Thus, we must have ak = 0. This is true for all the ak.
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n − 1 basis vectors {v1, . . . ,vn−1}. Since U is only n − 1 dimensional, our assumption is that
there exists an orthonormal basis {u1, . . . ,un−1} for U. Clearly9, adding in vn gives a new basis
{u1, . . . ,un−1,vn} for V. Unfortunately, this last vector, vn, might disturb the nice orthonormal
character of the other vectors. Therefore, we replace vn with the new vector10

u∗n = vn −
n−1∑

j=1

〈uj ,vn〉uj .

Thus the new set {u1, . . . ,un−1,u∗n} is a basis of V. Also, for k < n, we have

〈uk,u∗n〉 =

〈
uk,vn −

n−1∑

j=1

〈uj ,vn〉uj
〉

= 〈uk,vn〉 −
n−1∑

j=1

〈uj ,vn〉〈uk,uj〉

= 〈uk,vn〉 − 〈uk,vn〉 = 0.

Thus the basis {u1, . . . ,un−1,u∗n} is orthogonal. Perhaps u∗n is not normalized, but as we have
seen, this can be easily changed by taking the normalized vector

un =
u∗n
‖u∗n‖

.

3.17 Orthogonal, unitary and self-adjoint linear mappings

Definition. A finite dimensional vector space is called a Euclidean vector space if it is defined
over the real numbers R; if it is defined over the complex numbers C, then it is called a unitary
vector space. Thus a Euclidean vector space is isomorphic with Rn, for some n ∈ N; a unitary
vector space is isomorphic with some Cn.

But this definition, using the word “unitary”, should not be confused with the the definition of
unitary mappings. Both orthogonal and unitary mappings use the fact that both Rn and Cn have a
natural scalar product, thus giving us an idea of the length of a vector. So these mappings are such
that the lengths of vectors are not changed under the mappings. Orthogonal and Unitary mappings
can be thought of as length-preserving mappings of Rn, and Cn respectively, into themselves.

Definition. Let V be a Euclidean vector space. The linear mapping f : V→ V is an orthogonal
mapping if

〈v,w〉 = 〈f(v), f(w)〉,
for all v, w ∈ V. Similarly, if V is a unitary vector space, then linear mapping f : V → V is
called a unitary mapping if

〈v,w〉 = 〈f(v), f(w)〉,
for all v, w ∈ V.

9Since both {v1, . . . ,vn−1} and {u1, . . . ,un−1} are bases for U, we can write each vj as a linear combination of
the uk’s. Therefore {u1, . . . ,un−1,vn} spans V, and since the dimension is n, it must be a basis.

10A linearly independent set remains linearly independent if one of the vectors has some linear combination of the
other vectors added on to it.
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Obviously, since we have defined the “length” of a vector v to be ‖v‖ =
√
〈v,v〉, it follows

that under an orthogonal or unitary mapping f , we must have ‖v‖ = ‖f(v)‖, for all v ∈ V. But
we also have the following theorem.

Theorem 3.47. Let V be a Euclidean or a unitary vector space, and let f : V → V be such that
‖v‖ = ‖f(v)‖, for all v ∈ V. Then f is Euclidean, or unitary respectively.

Proof. I will give the proof in the case that V is a Euclidean vector space. The proof in the unitary
case is left as an exercise.

Let u, v ∈ V be given. Then we have

〈f(u + v), f(u + v)〉 = 〈u + v,u + v〉,

and, of course both
〈f(u), f(u)〉 = 〈u,u〉

and
〈f(v), f(v)〉 = 〈v,v〉.

But
〈f(u + v), f(u + v)〉 = 〈f(u), f(u)〉+ 2〈f(u), f(v)〉+ 〈f(v), f(v)〉.

Similarly,
〈u + v,u + v〉 = 〈u,u〉+ 2〈u,v〉+ 〈v,v〉.

Therefore, it follows that
〈f(u), f(v)〉 = 〈u,v〉.

Theorem 3.48. Let f : V → V be either orthogonal or unitary, and let λ be an eigenvalue of f .
Then |λ| = 1.

Proof. Take v ∈ V to be an eigenvector corresponding with the eigenvalue λ, so that f(v) = λv.
We may assume that ‖v‖ = 1; that is 〈v,v〉 = 1. Then we have

1 = 〈v,v〉 = 〈f(v), f(v)〉 = 〈λv, λv〉 = λλ〈v,v〉 = λλ = |λ|2.

Finally, we have a further definition involving linear mappings and scalar products.

Definition. Let the linear mapping f : V→ V be such that

〈u, f(v)〉 = 〈f(u),v〉,

for all u, v ∈ V. Then the mapping f is a self-adjoint mapping.
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3.18 Characterizing orthogonal, unitary, and Hermitian matrices

3.18.1 Orthogonal matrices

Let V be an n-dimensional real vector space (that is, over the real numbersR), and let {v1, . . . ,vn}
be an orthonormal basis for V. Let f : V→ V be an orthogonal mapping, and let A be its matrix
with respect to the basis {v1, . . . ,vn}. Then we say that A is an orthogonal matrix.

Theorem 3.49. The n × n matrix A is orthogonal⇔ A−1 = At. (Recall that if aij is the ij-th
element of A, then the ij-the element of At is aji. That is, everything is “flipped over” the main
diagonal in A.)

Proof. For an orthogonal mapping f , we have 〈u,w〉 = 〈f(u), f(w)〉, for all j and k. But in the
matrix notation, the scalar product becomes the inner product. That is, if

u =



u1
...
un


 and w =



w1
...
wn


 ,

then

〈u,w〉 = ut ·w = (u1 · · · un)



w1
...
wn


 =

n∑

j=1

ujwj .

In particular, taking u = vj and w = vk, we have

〈vj ,vk〉 =

{
1, if j = k,

0, otherwise.

In other words, the matrix whose jk-th element is always 〈vj ,vk〉 is the n× n identity matrix In.
On the other hand,

f(vj) = Avj =



a11 · · · a1n

...
. . .

...
an1 · · · ann


 · vj =



a1j

...
anj


 .

That is, we obtain the j-th column of the matrixA. Furthermore, since 〈vj ,vk〉 = 〈f(vj), f(vk)〉,
we must have the matrix whose jk-th elements are 〈f(vj), f(vk)〉 being again the identity matrix.
So

(a1j · · · anj)



a1k

...
ank


 =

{
1, if j = k,

0, otherwise.

But now, if you think about it, you see that this is just one part of the matrix multiplication AtA.
All together, we have

AtA =



a11 · · · an1

...
. . .

...
a1n · · · ann


 ·



a11 · · · a1n

...
. . .

...
an1 · · · ann


 = In.

Thus we conclude that A−1 = At. (Note: this was only the proof that f orthogonal⇒ A−1 = At.
The proof in the other direction, going backwards through our argument, is easy, and is left as an
exercise for you.)
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3.18.2 Unitary matrices

Theorem 3.50. The n× n matrix A is unitary⇔ A−1 = A
t. (The matrix A is obtained by taking

the complex conjugates of all its elements.)

Proof. Entirely analogous with the case of orthogonal matrices. One must note however, that the
inner product in the complex case is

〈u,w〉 = ut ·w = (u1 · · · un)



w1
...
wn


 =

n∑

j=1

ujwj .

3.18.3 Hermitian and symmetric matrices

Finally, we say that a matrix is Hermitian if it represents a self-adjoint mapping f : V → V with
respect to an orthonormal basis of V.

Theorem 3.51. The n× n matrix A is Hermitian⇔ A = A
t.

Proof. This is again a matter of translating the condition 〈vj , f(vk)〉 = 〈f(vj),vk〉 into matrix
notation, where f is the linear mapping which is represented by the matrix A, with respect to the
orthonormal basis {v1, . . . ,vn}. We have

〈vj , f(vk)〉 = vtj ·Avk = vtj



a1k

...
ank


 = ajk.

On the other hand

〈f(vj),vk〉 = Avtj · vk = (a1j · · · anj) · vk = akj .

In particular, we see that in the real case, self-adjoint matrices are symmetric.

3.19 Which matrices can be diagonalized?

The complete answer to this question is a bit too complicated for me to explain to you in the short
time we have in this semester. It all has to do with a thing called the “minimal polynomial”.

Now we have seen that not all orthogonal matrices can be diagonalized. (Think about the
rotations of R2.) On the other hand, we can prove that all unitary, and also all Hermitian matrices
can be diagonalized.

Of course, a matrix M is only a representation of a linear mapping f : V→ V with respect to
a given basis {v1, . . . ,vn} of the vector space V. So the idea that the matrix can be diagonalized
is that it is similar to a diagonal matrix. That is, there exists another matrix S, such that S−1MS
is diagonal.

S−1MS =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 .
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But this means that there must be a basis for V, consisting entirely of eigenvectors.
In this section we will consider complex vector spaces — that is, V is a vector space over the

complex numbers C. The vector space V will be assumed to have a scalar product associated with
it, and the bases we consider will be orthonormal.

We begin with a definition.

Definition. Let W ⊂ V be a subspace of V. Let

W⊥ = {v ∈ V : 〈v,w〉 = 0,∀w ∈W}.

Then W⊥ is called the perpendicular space to W.

It is a rather trivial matter to verify that W⊥ is itself a subspace of V, and furthermore W ∩
W⊥ = {0}. In fact, we have:

Theorem 3.52. V = W ⊕W⊥.

Proof. Let {w1, . . . ,wm} be some orthonormal basis for the vector space W. This can be
extended to a basis {w1, . . . ,wm,wm+1, . . . ,wn} of V. Assuming the Gram-Schmidt pro-
cess has been used, we may assume that this is an orthonormal basis. The claim is then that
{wm+1, . . . ,wn} is a basis for W⊥.

Now clearly, since 〈wj ,wk〉 = 0, for j 6= k, we have that {wm+1, . . . ,wn} ⊂ W⊥. If
u ∈W⊥ is some arbitrary vector in W⊥, then we have

u =
n∑

j=1

〈wj ,u〉wj =
n∑

j=m+1

〈wj ,u〉wj ,

since 〈wj ,u〉 = 0 if j ≤ m. (Remember, u ∈ W⊥.) Therefore, {wm+1, . . . ,wn} is a linearly
independent, orthonormal set which generates W⊥, so it is a basis. And so we have V = W ⊕
W⊥.

Theorem 3.53. Let f : V → V be a unitary mapping (V is a vector space over the complex
numbersC). Then there exists an orthonormal basis {v1, . . . ,vn} for V consisting of eigenvectors
under f . That is to say, the matrix of f with respect to this basis is a diagonal matrix.

Proof. If the dimension of V is zero or one, then obviously there is nothing to prove. So let us
assume that the dimension n is at least two, and we prove things by induction on the number n.
That is, we assume that the theorem is true for spaces of dimension less than n.

Now, according to the fundamental theorem of algebra11, the characteristic polynomial of f
has a zero, λ say, which is then an eigenvalue for f . So there must be some non-zero vector
vn ∈ V, with f(vn) = λvn. By dividing by the norm of vn if necessary, we may assume that
‖vn‖ = 1.

Let W ⊂ V be the 1-dimensional subspace generated by the vector vn. Then W⊥ is an
n− 1 dimensional subspace. We have that W⊥ is invariant under f . That is, if u ∈W⊥ is some
arbitrary vector, then f(u) ∈W⊥ as well. This follows since

λ〈f(u),vn〉 = 〈f(u), λvn〉 = 〈f(u), f(vn)〉 = 〈u,vn〉 = 0.

But we have already seen that for an eigenvalue λ of a unitary mapping, we must have |λ| = 1.
Therefore we must have 〈f(u),vn〉 = 0.

11This says that every polynomial P (z) ∈ C[z] of degree at least one has a zero. That is, there exists some λ ∈ C
with P (λ) = 0. The proof is not difficult, but it takes too much time to explain in this lecture.
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So we can consider f , restricted to W⊥, and using the inductive hypothesis, we obtain an
orthonormal basis of eigenvectors {v1, . . . ,vn−1} for W⊥. Therefore, adding in the last vector
vn, we have an orthonormal basis of eigenvectors {v1, . . . ,vn} for V.

Theorem 3.54. All Hermitian matrices can be diagonalized.

Proof. This is similar to the last one. Again, we use induction on n, the dimension of the vector
space V. We have a self-adjoint mapping f : V → V. If n is zero or one, then we are finished.
Therefore we assume that n ≥ 2.

Again, we observe that the characteristic polynomial of f must have a zero, hence there exists
some eigenvalue λ, and an eigenvector vn of f , which has norm equal to one, where f(vn) =
λvn. Again take W to be the one dimensional subspace of V generated by vn. Let W⊥ be the
perpendicular subspace. It is only necessary to show that, again, W⊥ is invariant under f . But
this is easy. Let u ∈W⊥ be given. Then we have

〈f(u),vn〉 = 〈u, f(vn)〉 = 〈u, λvn〉 = λ〈u,vn〉 = λ · 0 = 0.

The rest of the proof follows as before.

In the particular case where we have only real numbers (which of course are a subset of the
complex numbers), then we have a symmetric matrix.

Corollary. All real symmetric matrices can be diagonalized.

Note furthermore, that even in the case of a unitary matrix, the symmetry condition, namely
ajk = akj , implies that on the diagonal, we have ajj = ajj for all j. That is, the diagonal elements
are all real numbers. But these are the eigenvalues. Therefore we have:

Corollary. The eigenvalues of a self-adjoint matrix — that is, a symmetric or a Hermitian matrix
— are all real numbers.

Orthogonal matrices revisited

Let A be an n×n orthogonal matrix. That is, it consists of real numbers, and we have At = A−1.
In general, it cannot be diagonalized. But on the other hand, it can be brought into the following
form by means of similarity transformations.

A′′ =




±1
. . . 0
±1

R1

0
. . .

Rp




,

where each Rj is a 2× 2 block of the form
(

cos θ ± sin θ
sin θ ∓ cos θ

)
.

To see this, start by imagining that A represents the orthogonal mapping f : Rn → Rn with
respect to the canonical basis of Rn. Now consider the symmetric matrix

B = A+At = A+A−1.
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This matrix represents another linear mapping, call it g : Rn → Rn, again with respect to the
canonical basis of Rn.

But, as we have just seen, B can be diagonalized. In particular, there exists some vector
v ∈ Rn with g(v) = λg(v), for some λ ∈ R. We now proceed by induction on the number n.
There are two cases to consider:

• v is also an eigenvector for f , or

• it isn’t.

The first case is easy. Let W ⊂ V be simply W = [v]. i.e. this is just the set of all scalar
multiples of v. Let W⊥ be the perpendicular space to W. (That is, w ∈W⊥ means that 〈w,v〉 =
0.) But it is easy to see that W⊥ is also invariant under f . This follows by observing first of all that
f(v) = αv, with α = ±1. (Remember that the eigenvalues of orthogonal mappings have absolute
value 1.) Now take w ∈ W⊥. Then 〈f(w),v〉 = α−1〈f(w), αv〉 = α−1〈f(w), f(v)〉 =
α−1〈w,v〉 = α−1 · 0 = 0. Thus, by changing the basis of Rn to being an orthonormal basis,
starting with v (which we can assume has been normalized), we obtain that the original matrix is
similar to the matrix (

α 0
0 A∗

)
,

where A∗ is an (n−1)× (n−1) orthogonal matrix, which, according to the inductive hypothesis,
can be transformed into the required form.

If v is not an eigenvector of f , then, still, we know it is an eigenvector of g, and furthermore
g = f + f−1. In particular, g(v) = λv = f(v) + f−1(v). That is,

f(f(v)) = λf(v)− v.

So this time, let W = [v, f(v)]. This is a 2-dimensional subspace of V. Again, consider W⊥.
We have V = W ⊕W⊥. So we must show that W⊥ is invariant under f . Now we have another
two cases to consider:

• λ = 0, and

• λ 6= 0.

So if λ = 0 then we have f(f(v)) = −v. Therefore, again taking w ∈W⊥, we have 〈f(w),v〉 =
〈f(w),−f(f(v))〉 = −〈w, f(v)〉 = 0. (Remember that w ∈ W⊥, so that 〈w, f(v)〉 = 0.) Of
course we also have 〈f(w), f(v)〉 = 〈w,v〉 = 0.

On the other hand, if λ 6= 0 then we have v = λf(v) − f(f(v)) so that 〈f(w),v〉 =
〈f(w), λf(v) − f(f(v))〉 = λ〈f(w), f(v)〉 − 〈f(w), f(f(v))〉, and we have seen that both of
these scalar products are zero. Finally, we again have 〈f(w), f(v)〉 = 〈w,v〉 = 0.

Therefore we have shown that V = W ⊕W⊥, where both of these subspaces are invariant
under the orthogonal mapping f . By our inductive hypothesis, there is an orthonormal basis for f
restricted to the n − 2 dimensional subspace W⊥ such that the matrix has the required form. As
far as W is concerned, we are back in the simple situation of an orthogonal mapping R2 → R2,
and the matrix for this has the form of one of our 2× 2 blocks.
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