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Chapter 1

The Two Slit Experiment

1.1 Discrete versus continuous models

It is sometimes said that the essential idea of quantum mechanics is best illustrated
by the two slit thought experiment. As in an old fashioned cathode ray tube we have
a source of electrons, call it S, an obstructing screen some distance from S with two
parallel slits which are close together, call the slits A and B, and a fluorescent screen,
call it F , beyond the two slits, which lights up each time an electron hits it. The
classical physicist would think that a diffuse, Gaussian sort of glowing pattern should
appear on the fluorescent screen, regardless of whether there are one, two, or more
slits in the obstructing screen. After all, given that electrons are like little billiard
balls, then they go through one or the other slit, and in doing so they possibly bounce
about on the billiard-like particles making up the walls of the slit, deflecting them in
some way or another to different angles onto the fluorescent screen, independent of
whichever slit they happen to pass through. Uncertainty arises from the fact that it
is, as a practical matter, impossible to know the details of the movements of all the
billiard-like particles in the experiment. In principle, if we knew all of these details
then by following the equations of physics we could calculate the exact outcome each
time.

But as we know, quantum mechanics confounds this simple picture. Rather than
having a Gaussian type of pattern, instead we see a wave-like pattern, as if the electron
has suddenly stopped being a billiard ball and instead become something like waves
of light progressing through the aether, passing through the two slits simultaneously
and then producing waves of interference in the space beyond the obstructing screen.
For the classical physicist, this strange behavior of the electron, being both a small
billiard ball and an aetherial wave, was a mystery.

Perhaps the mystery can be resolved if we think about the experiment in a different
way, using a different mathematical model which involves neither billiard balls nor
aetherical waves. For this model we will retain the picture of space being three
dimensional Euclidean space and time being measured using the real number line,
giving a four dimensional space with time.

According to the billiard ball model of the two slit experiment, the electron travels
in a straight line from the source S to either A or B, then after going through either
of the slits, it travels to some particular point P on the fluorescent screen F , again
following a straight line. Considered in the four dimensions of space and time, the
electron follows a path consisting of two straight line segments. Our model is similar
to this, but with the path of the electron now being a discrete set of points, equally
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spaced at intervals representing the wavelength of the supposed aetherial electron
wave. These discrete paths are taken to be straight from S to A, or to B, and then
straight to the point of landing P . In addition to this, all of the rest of the experiment
– the cathode source S, the obstructing screen, the fluorescent screen, and in fact
the whole universe surrounding everything – is taken to consist of similarly discrete
particles: discrete paths of points in space and time.

But now we must think about the role of probability in our model. As we have
seen, the classical physicist imagines that probability arises through a lack of perfect
knowledge of all the details of the experiment. In those terms the uncertainty intro-
duced by this discreteness would, indeed make the calculations of classical physics
even more complicated, but in principle it is the same classical model. It is based on
the idea that if we put some sort of box around the experiment in space and time,
then if we knew everything about the “outside world” outside the box, it would be
possible to use the laws of physics to calculate exactly what has happened within the
box. Or put anther way, given a fixed configuration of the universe outside the box,
there is only one, fixed, possible configuration of the experiment within the box.

Now surely the modern physicist, unlike his classical colleague, is prepared to be
open to other possibilities. If quantum mechanics implies that uncertainty exists as
an essential part of the physical world then we might imagine that even if a fixed
configuration of the universe is given outside our box, within the box various different
configurations might be possible. If this is the case then we arrive at a different
method of defining probabilities.

In the case of the two slit experiment, let us take two possible points, P and P ′, for
the electron to land on the fluorescent screen. P is a point of constructive interference
and P ′ is a point of destructive interference. Using the wave picture, the two possible
paths for the electron, going through either A or B to the point P , following straight
line segments, differ in length by an exact multiple of the wavelength. And then
the lengths of the straight line paths from S to A or B, and then to P ′, differ by a
multiple of the wavelength plus half a wavelength. Therefore we have two different
experiments: one leading to the result P and the other leading to the result P ′. Let
us call these the experiments E and E′.

So what are the relative probabilities of the two experiments E and E′? Our
electron comes from the outside universe into the box, passes through it, and emerges
on the other side back out into the outside universe. The outside universe is fixed,
while the events within the box are unknown to us, allowing various possibilities. In
particular the discrete path of the electron outside of the box, when it enters and
when it leaves, is given.

But now it is obvious that E will be more probable than E′. Given a particular
run of the experiment, we have a discrete path involving straight segments from S to
either A or B and then to P , finally emerging from the box correctly synchronized to
connect up with its path into the outside universe. But then, if one possible path was
through A, another possible path would be through B, and again the electron would
be correctly synchronized to connect up with its path into the outside universe. Thus
we have two possible universes which contain this experiment. Contrast this with the
experiment E′. There, if say the electron goes through slit A and connects properly
with itself when emerging from the box then the alternative variation through B is
blocked. The electron will not have the right synchronization to emerge into the
fixed outside universe. There is only one possible variation and so E′ is only half as
probable as is E.

Of course all the details of these fixed outside universes are not important. The
rule for calculating such local probabilities is that we assume that all possible outside
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universes are equally likely; then each of these is multiplied by the number of local
variations with which they are compatible. Thus, in reality, it is sufficient to simply
take all possible boundaries of the boxes and examine how many different variations
of the configurations within the boxes are compatible with these boundary values.1

1.2 The wave function

The result of the two slit experiment is not just a simple wave. The fluorescent screen
is lit up more strongly in the middle, near where the slits are. Looking to the right
or left it grows dimmer, as if a Gaussian curve is superimposed upon the wave, since
it is unlikely that the electrons are deflected way away from a more direct path, and
even the points of destructive interference are not completely dim. So we will imagine
that the quantum mechanical part of the experiment refers just to the results which
depend exclusively on the phase differences of the various possible paths. For the sake
of simplicity, all other factors will be ignored.

In the middle of the fluorescent screen, directly in front of the two slits, with the
maximum constructive interference, the intensity is strongest. Then moving to the
right or left we reach the first regions of destructive interference with reduced intensity.
By subtracting a suitable normalizing constant, let us say that a point of constructive
interference is given the value +1 and a point of destructive interference is −1. We
would like to show that the brightness, representing the quantum mechanical part of
the relative probabilities, is given by the cosine function.

Let us say that we have one possible discrete path in an experiment, call it γ1, and
there is another, different discrete path, γ2, which may or may not be fully compatible
with γ1 in the sense that the discrete phases might not completely line up going into
and out of the experiment. But even if they do not line up perfectly, still, perhaps
when taking a slightly more expansive view of the experiment it might be that an
expanded version of γ2 interacts with other particles and does, in the end, allow itself
to line up with an expanded version of γ1. Be that as it may, we will say that if the
phases of γ1 and γ2 line up perfectly, then the “influence” of the existence of γ1 on
the probability of γ2 also occurring has the value +1. And if they are perfectly out of
phase then the influence has the value −1. For phase differences between those two
extremes, the influence function is something between +1 and −1.

So let u be a real-valued function which assigns a value to the difference l1 − l2 of
the path lengths of γ1 and γ2, representing the influence of γ2 on γ1 when calculating
the quantum mechanical probability. Then we will have u being a symmetric function:

u(θ) = u(−θ).

And in order to tie in with more usual ways of thinking, we will assume that the
discrete path lengths have been somehow normalized so that the distance between

1It might be objected that the experiment E′ also has two possible scenarios, namely the particle
could go through slitA and connect up with one possible outside universe, and also it could go through
slit B and connect up with some other completely different outside universe. But if we are allowed
to consider two completely different outside universes for the experiment E′ then surely we should
also be allowed to do the same thing for the experiment E. Taking some different synchronization
(perhaps thought of with respect to the discrete particles which make up the slits A and B) and an
appropriate outside universe allowing this synchronization, we then again have two possible paths
for the particle leading to E with respect to this new outside universe.

More generally we can consider all boxes leading to the result E and all boxes leading to the result
E′. The assumption is that there are more or less equal numbers of outside universes compatible
with these various boxes. Then the number of possible universes (including the boxes) is multiplied
by 2 for the result E and only by 1 for the result E′ Therefore E is more probable.
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the points on the paths is 2π. Thus we have

u(k · 2π) = 1

and
u(k · 2π + π) = −1,

for all integer valued k.
We would like to prove that u = cos. One way to do this, following Gudder2, is

to assume that for any finite set of numbers θ1, . . . , θn which are such that

n∑
i=1

u(θi) = 0

then we also have
n∑

i=1

u(θi + τ) +

n∑
i=1

u(θi − τ) = 0,

for all real numbers τ . Functions which satisfy this condition will be called “causal”.

Theorem. If u is causal, continuous and has a zero, then there exists a k > 0 such
that u(a) = u(0) cos(a · k) for all a ∈ R.

Proof. We will prove this theorem in five steps, closely following Gudder’s proof.
(i) Can we have u(0) = 0? If so, then the causality property of u implies that

u(a+0)+u(a−0) = 2u(a) = 0 ⇒ u(a) = 0, for all a ∈ R, and the theorem is trivially
true. Therefore we will assume that u(0) ̸= 0. Without loss of generality we may
assume that u(0) = 1.

(ii) Let d be the smallest positive number such that u(d) = 0. (The fact that d
exits follows from the assumption that u has a zero.) We have u(a+d)+u(a−d) = 0
for all a, in particular for a = d. Therefore u(0)+u(2d) = 0, or u(2d) = −u(0) = −1.
More generally we have

u((a+ d) + d) + u((a+ d)− d) = u(a+ 2d) + u(a) = 0,

that is, u(a+ 2d) = −u(a), for all a ∈ R.
(iii) Assume that the number b is such that u(b) is rational, with u(b) = s/t, say,

where s and t are integers (we can assume that t is positive.) We will now prove that
u(a+ b) + u(a− b) = 2u(a)u(b) for all a ∈ R. For let {a1, . . . , as+t} be the following
set of real numbers. c1 = · · · = cs = 2d and cs+1 = · · · = cs+t = b. We then have

s+t∑
i=1

u(ci) = −s+ t · u(b) = 0 ⇒

0 =

s+t∑
i=1

(u(a+ ci) + u(a− ci))

= s [u(a+ 2d) + u(a− 2d)] + t [u(a+ b) + u(a− b)]

= −2s · u(a) + t · [u(a+ b) + u(a− b)]

Thus

u(a+ b) + u(a− b) =
2s

t
u(a) = 2u(a)u(b)

2Amplitudes and the Universal Influence Function, Journal of Mathematical Physics 32, 2106
(1991)
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and therefore we have established the result for all b with the property that u(b) is
rational. Since the function u was assumed to be continuous, we conclude easily that
the result holds for all real b.

(iv) Set a = b. Then we have

u(2b) + u(0) = 2u(b)2 ⇒
u(2b) + 1 = 2u(b)2 ⇒

u(b) =

(
u(2b) + 1

2

) 1
2

(v) We may now finally prove that u(a) = cos(a · π/2d) for all real numbers a of
the form

a =
n · d
2m

where n and m are integers, with m ≥ 1, using induction on m. According to the
steps (i) and (ii), the result is true for the case m = 1. Assume therefore that m > 1.
We have

u(a) =

(
u(2a) + 1

2

) 1
2

=

(
cos(2a) + 1

2

) 1
2

= cos(a)

The last equation follows from the inductive hypothesis and elementary trigonometry.
Finally, one need only notice that the numbers of the form n · d/2m are dense in

the set of all real numbers to conclude that u(a) = cos(a) for all a ∈ R.

In order to show that our influence function u is causal we will consider a modified
version of the two slit experiment. We begin with the simple case that we have some
phase difference θ which is such that u(θ) = 0. We must show that

u(θ + τ) + u(θ − τ) = 0,

for all possible τ .
In this case the modified experiment includes a segment before S and a segment

after P , both of which consist of further two slit experiments. The segment before S
has the electron starting at the new source S′, traveling through one of two slits and
then passing through S into the main experiment. These two new slits are such that
the path length through the left hand slit is τ greater than the path length through
the right hand slit. Then the segment after P consists of another two slit experiment
such that the path length through the left hand slit is −τ compared to the path length
through the right hand slit.

Let γ be the path from S′ to P ′ along the right hand path to S then along
the given path in the main experiment and finally along the right hand path to P ′.
We consider the influence the existence this path has on the probability that paths
through the alternative route through the main experiment are taken. For simplicity,
let us assume that the lengths of the right hand paths are both zero modulo 2π. That
is, they are multiples of the discrete distance between adjacent elements along the
paths. Then, following the various possible paths through the modified experiment,
the total influence will be:

u(0+ θ+0)+u(τ + θ+0)+u(0+ θ− τ)+u(τ + θ− τ) = 2u(θ)+u(θ+ τ)+u(θ− τ).
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On the other hand, we can consider the two possible paths from S′ to S, then the
given path through the main experiment, and then the two possible paths from P
to P ′ as giving four different experiments with fixed paths in and out of the main
experiment whose purpose is to compare possible varied paths just within the main
experiment. In each case the influence of the alternative path will then be u(θ) = 0,
since the phase difference between the given and the alternative path in the main
experiment is θ. Therefore

2u(θ) + u(θ + τ) + u(θ − τ) = u(θ + τ) + u(θ − τ) = 0,

showing that the rule for causality holds in this case.
More generally, let θ1 . . . , θn be such that

n∑
i=1

u(θi) = 0.

We modify the main experiment, adding in additional slits so that we have the slit
representing the given path, and then there are n further slits, such that for the path
going through the i-th slit, the phase difference to the given path is θi. With this,
the argument is then analogous to the case where n = 1.

Of course there is much more to physics than the two slit experiment. Nevertheless,
it can be used as a model for explaining why the method of Feynman diagrams success-
fully describes quantum electrodynamics. According to Feynman’s description, the
diagrams consist of straight line segments connecting points of interaction. Each such
segment is assigned a value proportional to an expression of the form exp(−iS(ξ)),
where S is a certain real function of the path ξ. (In our simple treatment of the
two slit experiment we have taken this function to be the path length.) Generalizing
things, let us say that a given experiment allows a certain set Ω of possible configura-
tions leading to a given result. We assume that Ω is finite, thus avoiding the divergent
integrals in the usual continuous description. Taking our influence function between
two configurations ξ and χ ∈ Ω to be

u(S(ξ)− S(χ)) = cos(S(ξ)− S(χ)),
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we can then say that the probability of Ω is proportional to3∑
ξ,χ∈Ω

cos(S(ξ)− S(χ)) =
1

2

∑
ξ,χ∈Ω

{ei(S(ξ)−S(χ)) + e−i(S(ξ)−S(χ))}

=
1

2

∑
ξ,χ∈Ω

{ei(S(ξ)−S(χ)) + ei(S(χ)−S(ξ))}

=
∑

ξ,χ∈Ω

ei(S(ξ)−S(χ))

= (
∑
ξ∈Ω

eiS(ξ))(
∑
χ∈Ω

e−iS(χ))

= |
∑
ξ∈Ω

eiS(ξ)|2

In other words, the probabilities can be calculated by summing the complex am-
plitudes over all possible configurations of the underlying model, and then taking
the square of the absolute value. This is the usual prescription for dealing with the
amplitude function in quantum mechanics.

3One way to think about the double sum here would be to assume that, as would be the case
in “classical” physics, each possible path through an experiment is compatible with a unique, ideal
outside universe. Then the second sum represents all the further, not quite ideal, variations within the
experiment for that given outside universe. More generally the assumption is that all the possible
outside universes which are compatible with paths within the experiment can be divided up into
approximately equally large equivalence classes, with each such class being associated with a different
path such that the outside universes in a given equivalence class all contain the path with which
they are associated in a relatively ideal way.
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Chapter 2

Partially Ordered Sets

2.1 Philosophical thoughts and a definition

Could it be that it is possible to describe the physical world in terms of some ultimately
simple principle?

Theoretical physics, as it is known today, is certainly not simple. Everything
is based on “field theories”. Various kinds of continuous functions on differential
manifolds. Even topological manifolds with complicated connectivity properties are
brought in. The basis of analysis is the system of real numbers. How many axioms
are needed to define the real numbers? What are the additional axioms for describing
vector spaces? Then Euclidean spaces; complex numbers; tensors; topology; mani-
folds; limit theorems, and so on and so forth. Does anybody seriously believe that
this is the basis for some ultimate theory of the physical world? But each step in the
accumulation of this vast system was undoubtedly plausible at the time it was added.

After all, looking about us we see things floating through the air, seemingly com-
pletely smoothly. Various schools of philosophy in ancient Greece concluded that
the world consisted of something called “space”, complete with particles, or “atoms”,
traveling about within this space. This is what we see when looking about at the
world around us. But to use a more modern philosophical analogy, what if the world
is not really what we see? I am writing this text on a computer and watching the
words appear on the screen as I type. But this is only the interface to a deeper real-
ity, making things comprehensible to my eyes and my brain. The reality is that my
typing causes complex patterns of electrical activities in microscopically small, yet
immensely complicated circuits in the computer which I could never comprehend in
detail, perhaps later resulting in electromagnetic interactions, again, in detail, incom-
prehensible, in a vast network connecting an unknown number of further computers
around the world. Yet this interface which I have before me, despite the fact that it
is only an illusion, allows me to function in some rational way.

Is the concept of space, and of particles traveling about within space, similarly
an illusion, an interface whose purpose is to allow us to function in the real world?
Something which should not be taken as being the basis of reality.

It is certainly not the intention here to delve further into meaningless philosoph-
ical speculation. Instead, let us try to imagine the simplest possible mathematical
structure, which is not so simple as to be totally trivial, and yet which might allow
a sufficient degree of complexity in order to form the basis for a description of the
physical world.
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For example we have the real number line. This is defined to be a field (in the
sense of pure mathematics). Thus we have the axioms for addition and multiplication,
associativity and commutitivity. It is an ordered field with the order respecting the
arithmetical operations. And then it is Dedekind-complete. In addition to being
overly complicated in its definition, it has the additional drawback of having a rigid,
one dimensional structure. It is fixed. The idea that the world is the real number
line is simply absurd.

Other, still simpler mathematical frameworks present themselves. For example,
could it be that the world is a group? Recall that a group is a set G containing various
elements. There is a binary operation which is associative. There is an identity
element, and for each element there is an inverse element. Clearly the framework
of groups is simpler and more comprehensive than that of real numbers. In fact the
concept of groups is used in the the definition of real numbers. There have been many,
very deep mathematical investigations into group theory. Perhaps an argument could
be made to support the proposition that the world is, in its basic structure, a group.
But I cannot see it.

Instead, we will base everything on the concept of partially ordered sets. A par-
tially ordered set is a pair X, together with a subset ⪯⊂ X × X of the Cartesian
product of X with itself which fulfills the conditions:

1. (a, a) ∈⪯ for all a ∈ X, (Reflexivity)

2. if (a, b) ∈⪯ and (b, a) ∈⪯ then a = b, (Antisymmetry)

3. if (a, b) ∈⪯ and (b, c) ∈⪯ then (a, c) ∈⪯, (Transitivity).

A more familiar way to describe these conditions is to say that the notation (a, b) ∈⪯
means a ≤ b, or “a is less than or equal to b”. Using this notation, we can say that a
partially ordered set is a pair (X,≤) satisfying our conditions. For brevity it is usual
to say “poset” rather than “partially ordered set”.

There is a natural partial order already given in most of the usual theories of
physics. For let x and y be two points of “space-time”. Then if we take x ≤ y to
mean that y is in the light cone above x, we obtain a partial ordering of some sort of
imagined space-time manifold. Or thinking in other terms, we might say that x ≤ y
means that it is possible to send a message from x to y, or that y is a “consequence
of” x,

But such continuous posets are surely too complicated to qualify as being things
of ultimate simplicity. Going to the opposite extreme, taking X to be the empty set,
leaves us with nothing, which is certainly not an appropriate model for the physical
world. Similarly finite posets, although they have been the subject of much mathe-
matical investigation, seem to be too restricted for our purposes. If we have a finite
poset then we have special elements which are extreme. That is to say they are max-
imal or minimal : there are no further elements which are greater than, or no further
elements which are less than the given element. Elements which are not extreme are
interior elements. Surely the existence of extreme elements adds a level of complexity
which we can do away with.

Some additional notation is called for here. Let X be a poset and let a, b ∈ X.
If either a ≤ b or b ≤ a then a and b are related, written a ⊥ b. If a and b are not
related then we write a∥b. Of course a < b means a ≤ b and a ̸= b. If a ≤ b then we
write a ≬ b to denote the set of elements between a and b. That is

a ≬ b = {c ∈ X : a ≤ c, and c ≤ b}.
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Given a ∈ X then a↓ is the set of elements less than a, and a⇓ is the set of elements
less than or equal to a. Which is to say

a↓ = {c ∈ X : c < a}, and a⇓ = {c ∈ X : c ≤ a}.

The definitions of a↑ and a⇑ are analogous, referring to elements greater than a.

Now in order to avoid the unnecessary complexity of continuity, let us specify that
only non-empty, discrete posets containing no extreme elements are to be allowed.
What do we mean by discrete? Perhaps the usual idea would be to say that it means
a ≬ b is finite for all a < b. This is the idea used in the definition of causal sets. But we
will choose a somewhat more restrictive definition which could be termed “strongly
discrete”. Namely we will say that X is discrete if a↓ \ b↓ is finite for all a and b in
X. Here “\” denotes the set difference, the set of all elements in a↓ which are not in
b↓.

The poset is called connected if for any two elements a, b ∈ X, there exists a
(finite) sequence of elements of X, starting with a and ending with b, such that
adjacent pairs of elements in the sequence are always related. It is no restriction to
only allow connected posets since otherwise we could deal with the different connected
components separately.

We will also specify a condition which is analogous to the axiom of extensionality
in set theory. A poset X will be called extensional if for all a, b ∈ X with a ̸= b we
have both a↓ ̸= b↓ and a⇓ ̸= b↓.

The poset X will be called confluent below if for any two elements a, b ∈ X we
have a↓ ∩ b↓ ̸= ∅.

Then finally, the poset X will be called upwardly separating if for any two elements
a and b with b ̸≥ a we have b↑ \ a↑ ̸= ∅. (Note that the condition that a poset is
upwardly separating implies by itself that the poset contains no maximal elements.)

Definition 1. Let us denote by W the class of all non-empty, discrete, upwardly sep-
arating, confluent below, connected posets X, fulfilling the condition of extensionality,
such that all elements of X are interior.

The aim here will be to argue that the physical world can best be described in
terms of some particular poset X ∈ W. Since we only have limited information about
the details of everything in the world, we cannot know precisely which poset in W is
the one which describes the actual world. We must consider all possible posets which
are compatible with the information we have. And therefore we will be dealing with
a probability space, based upon the class W of posets.

Are the properties which we are using to define W in some sense “natural”? Or
would it be better to use some other properties, giving a different class of posets —
or indeed, would it be better to use some entirely different mathematical structure all
together?

To begin it might be useful to compare our framework for defining W with the
usual theory of sets. Thinking in these terms, the elements of a poset X ∈ W would
be themselves sets, and the ordering of X would be given by set inclusion.

The property of extensionality is one of Zermelo-Fraenkel’s axioms. However the
requirements that X be confluent below, and particularly that there be no extreme
elements, are a decided departure from Zermelo-Fraenkel set theory. According to
Zermelo-Fraenkel, the possibility of an infinitely descending chain of set inclusions is
explicitly excluded.

Another way to think about our framework would be to compare it with the idea
of cause and effect. Or in logic, the idea of assumptions leading to conclusions. If
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a and b ∈ X are two events, then we will write a < b to mean that a is one of the
causes of b. Or b is one of the effects of a. Then we might contemplate the question
of whether or not the conditions defining W are reasonable ones for describing cause
and effect.

2.2 Chains and anti-chains

Within the theory of posets, the ideas of chains and anti-chains are important. A
chain C ⊂ X is a totally ordered subset. That is, if a, b ∈ C then a ⊥ b. An anti-
chain is a subset A ⊂ X such that for any two elements a, b ∈ A with a ̸= b, we have
a∥b.

A chain is maximal if it cannot be properly contained in another chain. Similarly
a maximal anti-chain cannot be properly contained in another anti-chain. Obviously,
a maximal anti-chain Y ⊂ X is such that every element of X is either in Y , or at
least related to an element of Y .

Since X is extensional, we cannot have a maximal anti-chain consisting of just a
single element. But much more than this, we have the following theorem.

Theorem 2.1. For every poset in W, all maximal chains and maximal anti-chains
are infinite.

Proof. The fact that maximal chains are infinite follows from the condition that all
elements are interior elements. To see that maximal anti-chains are also infinite,
assume to the contrary that A ⊂ X is a finite maximal anti-chain. Since X is
confluent below, there exists an element a which is less than all elements of A. Choose
an element b ∈ X with b∥a. Such an element b must exist since we can choose some
d < a with d↑ ∩ a↓ = ∅ and then observe that the set d↑ \ a↑ ̸= ∅, since X is upwardly
separating. Similarly we have b↑ \ a↑ ̸= ∅. In fact though, the set b↑ \ a↑ must be
finite. To see this, begin by noting that there can only be finitely many elements of
X which are greater than b, yet less than an element of A. On the other hand, if
c ∈ b↑ \ a↑ is not less than any of the elements of A, then we must have c∥A. That
is c is unrelated to all the elements of A, contradicting the fact that A is a maximal
anti-chain.

Thus b↑\a↑ must be finite but non-empty and so we can choose a maximal element
h ∈ b↑ \ a↑. But then we must have h↑ \ a↑ = ∅, which contradicts the condition that
X is upwardly separating.

Later on, we will consider what might be called “generalized” chains, as being
models for the elementary particles of physics.

2.3 Positions

Given any poset (X,≤) (not necessarily in W), we can define the set of positions
within X, as follows.

Definition 2. A position P ⊂ X consists of a pair of non-empty subsets U , V ⊂ X,
such that U ≤ V (that is, u ≤ v for all u ∈ U and v ∈ V ) and such that the pair
is maximal in the sense that if U is properly contained in U ′, then we cannot have
U ′ ≤ V , and also if V is properly contained in V ′ then we cannot have U ≤ V ′. We
also write P↓ for U and P↑ for V .
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Given any element a ∈ X, then the pair (a⇓, a⇑) forms a position in X. We will
call such positions elementary positions. The set Ω(X) of all possible positions in X is
itself a poset in a natural way. It contains X, but in general it is much larger than X.
One could say that Ω(X) is the completion of X. If X is equal to its completion, then
we say that X is complete. Within the theory of finite posets, if we add in a single
minimal element and a single maximal element, then the completion is the Macneille
completion, which is a lattice (in the sense of mathematical combinatorics).

Any position P = (U, V ) is determined by its lower and upper sets U and V . After
all that is the definition of the position. But it may be possible to find two subsets
U∗ ⊂ U and V∗ ⊂ V such that P is the only position lying between U∗ and V∗. In
this case we can say that P is determined by the pair (U∗, V∗).

Definition 3. Let U∗, V∗ ⊂ X be two subsets, such that U∗ ≤ V∗. If there is only one
position P in X such that U∗ ≤ P ≤ V∗, then we will say that P is determined by
the pair (U∗, V∗). The pair will be called minimal, if there is no smaller pair (Y, Z)
with Y ⊂ U∗ and Z ⊂ V∗ which also determines P. When considering pairs of subsets
which determine a given position, we will usually assume that the pair is minimal.

Now it is obvious that each elementary position is determined by just one single
element, namely the element which the position represents. Furthermore, if P is a
non-elementary position, determined by the minimal pair (Y,Z), then both Y and Z
must have at least two elements.

Another way to look at these things is the following. Let U∗ ⊂ X be some subset
such that U∗↑ ̸= ∅. Then take V = U∗↑, and U = V↓. If we assume that U∗↑ is
not the upper set of some element of X, then the pair (U, V ) is a position P in X.
Therefore, given that P is determined by some pair (U∗, V∗), then we can also say that
P is determined by the lower set U∗ alone, following this procedure. Analogously, a
position can be determined by an upper set.

At this stage, it is useful to consider a further idea.

Definition 4. Let (X,≤) be a poset (again, not necessarily in W), and let P be a
position in X. We will say that an element a ∈ X is associated with P if P \ {a}
is not a position in X \ {a}. If an elementary position is associated with itself (that
is, with the element generating the position), then we will say that the element is an
essential element. Otherwise, the element is non-essential; it can simply be removed
without affecting the set of positions of X.

We now confine our attention to posets in our class W.

Theorem 2.2. Let a ∈ X be associated with the non-elementary position P ⊂ X.
Then a < P. That is a ∈ P↓.

Proof. Let P = U ∪ V with U ≤ V . If a ̸∈ P then P \ {a} = P. Since a is associated
with P, it must be that the pair (U, V ) is not maximal in X \ {a}. But that implies
that (U, V ) is not maximal in X, which is a contradiction.

If a ≥ P (that is, a ∈ V , the upper set of the position), then since P \{a} is not a
position in X \ {a}, it must be that the pair (U, V \ {a}) is not maximal in X \ {a}.
That is, there must be an element b < V \ {a}, such that b ̸∈ U , and so b∥a. But
since X is upwardly separating, there exists some c ∈ a↑ \ b↑. Since a is in the upper
set of P, we must have c also being in the upper set. i.e. c ∈ V \ {a}. However, this
contradicts the fact that b < V \ {a}.

Theorem 2.3. Assume that the non-elementary position P is determined by the
minimal pair (U∗, V∗), where U∗ < V∗. Assume furthermore that A is the set of all

13



elements of X which are associated with P (and therefore A ⊂ P). Then we have
A ⊂ U∗.

Proof. Let a ∈ A. Since P is associated with a, we must have another position
R in X with P↓ = R↓ ∪ {a}. If a ̸∈ U∗ then we would have both P and also R
being between U∗ and V∗ so that P is not determined by the pair (U∗, V∗). This is a
contradiction.

We have shown that A ⊂ U∗. Nevertheless our given formulation of the theory
does not rule out the possibility that U∗\A ̸= ∅, but we expect this to be the exception.
The elements of U∗ \A ̸= ∅ could be thought of as being associated with the position
in a more generalized sense. In any case the position P is determined by the set U∗.
And for the sake of simplicity in further arguments where it is of no consequence, we
will generally assume that positions are just determined by the elements with which
they are associated.

2.4 General properties of the physical world

1. The past and the future are different from one another. The future develops
out of the past. Similarly in W, given that the ordering of a poset X ∈ W
represents time, then we have the result that all non-elementary positions P are
determined by elements of X which come before P in time.

2. The universe appears to be expanding. That is to say, the light from distant
galaxies appears to be red-shifted. Put another way, it appears that the measure
of time in the earlier universe is longer than it is now; time appears to be
speeding up. Similarly in W, if a, b ∈ X are two related elements in a poset in
W with say a < b, then a certain measure of time could be obtained by taking
the number of elements in b↓ \a↓. This is reflected in the fact that X is discrete,
yet upwardly separating.

3. The material of the world appears as particles, many of which persist for long
periods of time. Again, W certainly contains posets whose elements are not
arranged in tight chains. But perhaps there is some probabilistic effect which
would lead us to the conclusion that most such posets are composed of collec-
tions of chains.
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Chapter 3

The Geometry of Posets

3.1 Dimension

For finite posets the idea of dimension is defined in the following way1. Given a poset
X with its partial ordering ⪯, it is linearly ordered if it is simply a chain. Otherwise
there must exist at least two elements a, b ∈ X which are unrelated: a∥b, or in other
words, neither (a, b) ∈⪯ nor (b, a) ∈⪯. But then we can simply add in either the pair
(a, b) to ⪯ to create the new partial order ⪯1 or else we can add in the pair (b, a)
to ⪯ to create the new partial order ⪯2. It is a simple matter to confirm that the
three rules for partial orderings will still apply. After a finite number of such steps,
we obtain a linear order ⪯L which contains the original order ⪯. (In fact one sees
that the set of all possible partial orders on a finite set X is itself a partially ordered
set, with the ordering given by set inclusion.) ⪯L is called a linear extension of ⪯.

A set of linear extensions {⪯L1 , . . . ,⪯Ln} of ⪯ such that their intersection is ⪯ is
called a realizer of ⪯, that is

n⋂
i=1

⪯Li=⪯ .

If the poset has a realizer then the dimension of the poset is defined to be the least
possible number of linear extensions in a realizer. It is not difficult to see that if a
poset (X,≤) has the dimension n, then it can be embedded in an order preserving
way in n-dimensional Euclidean space Rn, where the partial ordering of Rn is given
by the rule: (x1, . . . , xn) ≤ (y1, . . . , yn) if xi ≤ yi for all i = 1, . . . , n.

I have discussed a somewhat generalized version of this definition, perhaps more
suitable for physics, in a recent paper.2 Nevertheless, it is unclear whether or not
typical posets X ∈ W can be expected to be 4-dimensional in any sense at all. And
certainly W contains posets of arbitrarily large dimension. In fact, since all posets
in W are infinite, we would expect them to have no fixed dimension at all. At most
we can expect that 4-dimensionality might arise through some sort of probabilistic
effect, at least at a local level.3

The interesting thing here is that dimension – a property of geometry – is defined
independently of any of the structures (vector spaces, differential manifolds) which

1The book, “Combinatorics and Partially Ordered Sets”, by William T. Trotter, contains many
further results in this direction.

2Poset Dimension: Various Definitions,
http://www.math.uni-bielefeld.de/∼hemion/dimension.pdf

3This question is dealt with more fully in the Appendix.
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physicists normally associate with the concept of “space”. A poset exists by itself in
its own discrete space.

3.2 Distance

There are various possible methods of defining the idea of distance in a poset. For
example we could define the distance from a to b to be the number

d(a, b) = #((a↓ \ b⇓) ∪ (b↓ \ a⇓)),

where the symbol “#” denotes the number of elements in the set. This is the sym-
metric difference metric4.

But it is perhaps more sensible to concentrate on the set of positions in a poset
X ∈ W, rather than just the elements themselves. Thinking about the physical
world, we can imagine material objects as being large collections of chains of elements,
representing the particles which the objects are made of in space and time. The Earth
would be a very large collection of such discrete particles. Then we have the whole
Solar System, the Galaxy, and even the billions of further galaxies in the observable
universe. These elements are certainly not uniformly distributed throughout the
space and time which we see. The material is concentrated in very compact regions
with extremely dense collections of element, but between these regions there are
almost incomprehensibly vast distances which are practically devoid of any elements.
Applying our symmetric difference metric would give absurd distortions in comparison
with any sensible geometry for describing the physical world.

On the other hand, thinking about the entire observable universe as being a vast,
discrete poset, with the partial order given in the usual way: a < b if b lies in the light-
cone above a, then it is obvious that the set of positions would form an extremely,
almost unimaginably dense and uniform network throughout space and time. Even in
the most empty regions in the vast cavities where there are no galaxies for millions of
light years in any direction, the density of positions would be nearly as great as in the
middle of a star. For these positions would be mainly determined by the far distant
galactic material. Only a few of the nearby elements in the star would be associated
with a given position.

And so a concept of space-time could be developed using the set of positions as
substitutes for the idea of points in the normal space-time continuum of physics. For
example, given a < b, we might consider all possible chains of positions connecting a
to b. Let

a = p1 < · · · < pn = b,

with pi being a position in X for all i, be a maximal such chain in the sense that there
is no chain containing more elements. Then we can consider l = {p1, . . . , pn} to be,
in some sense, a straight line in space-time from a to b. Its length is n. The system
of lengths which would result from the definition would correspond roughly with the
length given by the usual Lorentz metric of relativity theory, and so a close analogue
of the usual theory develops. But of course such concepts as “singularities” – “black
holes” and what have you – which arise from differential equations, are meaningless
in a discrete theory.

We will use this framework, where positions correspond roughly with points in
space-time, to think about the theory of gravity in the next chapter.

4Note that it is, at first, only a pseudometric. However we have assumed that the posets we are
considering are confluent below and extensional. Thus d(a, b) = 0 means a↓ = b↓, and so a = b.
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But questions remain. The idea of first taking the usual continuous space-time,
then using some sort of process to change it into something discrete, seems unsat-
isfactory. It is an artificial, ad-hoc construction. We are no longer thinking about
some sort of ultimately simple theory of physics. And so in Chapter 6, and in the
Appendix, some ideas will be discussed in an attempt to make this framework appear
to be more natural.
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Chapter 4

Gravity

4.1 Schwarzschild-like spaces

The Schwarzschild metric is used to describe the gravitational field of a stationary
mass m (m being proportional to the amount of the mass) concentrated at the center
of four-dimensional Euclidean space R4 (but existing along the axis used to denote
time). Using the isotropic coordinate system, the metric is given by

ds2 =

(
1− m

2r

1 + m
2r

)2

dt2 −
(
1 +

m

2r

)4

(dr2 + r2(dθ2 + sin2 θφ2))

= A(m, r)dt2 −B(m, r)(dr2 + r2(dθ2 + sin2 θdφ2))

= A(m, r)dt2 −B(m, r)(dx2 + dy2 + dz2)

(4.1)

Here r is the distance from the time coordinate axis:

r =
√
x2 + y2 + z2.

We can imagine that this formula gives us a way of comparing Schwarzschild
space with flat Euclidean space. For a region near to a point (x, y, z, t), it is as if time
slows down and spacial distances expand in comparison with the original Euclidean
measure. There are three spatial directions and one of time so that the volume of
space-time is changed by the factor(

A(m, r)×B(m, r)3
) 1

2 =
(
1− m

2r

)(
1 +

m

2r

)5

(4.2)

Put another way, in comparison with the original Euclidean space, more volume
has been packed into a given region. Or, in some sense, the “density” of space-time
has increased. Thinking about this in terms of the positions of X ∈ W representing
points of space-time, we would have an increased density of positions near to the
mass.

Given that the mass doesn’t change, then m becomes a constant, and so let us
simply write A(r) and B(r) to express the variations with the distance from the time
axis. Generalizing things, let us say that for any choice of the functions A and B,
equation 4.1 gives a Schwarzschild-like space.

The local speed of light remains constant, but for a distant observer the speed
of light will appear to be the same everywhere if we have A(r) = B−1(r), giving
Schwarzschild-like spaces of the form

ds2 = B(r)−1dt2 −B(r)(dx2 + dy2 + dz2) (4.3)
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Of course the rule represented by formula 4.3 does not give a solution to the
equations of the theory of general relativity, except in the trivial case that B is a
constant function. On the other hand, some gravitational spaces with metrics of the
form 4.3 are indeed sufficiently similar to Schwarzschild space to lead to the same
classical predictions as given by the general theory of relativity. In particular, if
we take B(r) = eκm/r, where κ is an appropriate constant, then (away from some
neighborhood of the time axis) we obtain a theory of gravity which satisfies the
classical tests of general relativity (advance of the perihelion of Mercury, deflection of
light by the Sun, and the gravitational red-shift of light).1

4.2 Adding in elements to a given poset

Theorem 4.1. Let X ∈ W and let the subset Y ⊂ X with Y ∈ W be such that Y is
‘upwardly dense’ in X in the sense that for any two elements a∥b of X, there exist
elements of Y in a⇑ \ b↑. Assume that P is a position in X and P ∩ Y is also a
position in Y . Then if an element y ∈ Y is associated with the position P in X, it
follows that y is also associated with the position P ∩ Y in Y .

Proof. Since y is associated with P, we must have some u > P⇓ \ {y} with u ̸> y.
But then u⇑ \ y↑ ̸= ∅.

What is the meaning of this theorem? Let Y ⊂ X as in the theorem, and let Q
be a position in Y . Then, considered in X, Q can be expanded to reach a position
P in X. The position P is defined as follows. The upper cone of P is the set of
all elements of X which are greater than all elements in the lower cone of Q. Then
the lower cone of P is the set of all elements of X which are less than all elements
in the upper cone of P. The position P in X is thus uniquely defined, and we have
P ∩ Y = Q. Furthermore, no elements of X \ Y can be associated with P. On the
other hand, there may be many other positions P∗ in X, with P∗ ∩Y = Q. But each
of them must be associated with at least one element of X \ Y . To summarize then,
let P(X) and P(Y ) be the set of positions in X and Y , respectively. Then there is a
unique embedding P(Y ) ⊂ P(X), such that the relationship of association between
elements and positions is preserved in the subset.

Now let x ∈ X be given. Consider the set xP of positions in X with which x
is associated. All positions in xP must be above x. Considering these positions as
being embedded in R4, we may associate them with the light cones above and below
various points of space-time. Let us say that the real function ρ : R+ → R+ gives
the expected density of the positions of X with which x is associated. That is, let
∆ ⊂ R4 be some small region along the light-cone from x at a Euclidean distance r
from x. Then the expected number of elements of xP in ∆ is approximately given
by ρ(r)× S(∆), where S(∆) is the volume of the future light-cone from x contained
within ∆. What can we deduce about the form of this function ρ?

Choose an upwardly dense subset Y ⊂ X, with x ∈ Y . We assume that the
average density of Y in horizontal hyper-planes of R4 (with respect to the time axis)
is reduced by some constant factor ν, when compared with the original set X. Let
ρν : R+ → R+ be the density function for the set of positions in Y with which
x is associated. But then it is reasonable to expect that the form of the density
function ρν is similar to the original density function ρ. That is, we will assume that
ρν(r) = ρ(ν × r), for all distances r from x.

1The idea is discussed in §18.2 of H. Yilmaz, ‘Introduction to the Theory of Relativity and the
Principles of Modern Physics’, Blaisdell Pub. Co. 1965, and in Yilmaz, Phys. Rev., 111, (1958),
1417.
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If the density of the elements of X in R4 is reduced by the factor ν, then the
similarity of Y to X means that the density of the positions of X in R4 must be
reduced by the same factor. This gives the equation ρ(r) = ν×ρ(ν× r). Therefore, if
the equation holds true for arbitrary choices of ν, we can choose ν = 1/r. This gives

ρ(r) =
1

r
× ρ(1) =

constant

r

4.3 Gravitational effects

Let us imagine some region of space-time which is free of any particular concentrations
of matter. Within such a region, space-time is – more or less – flat. This corresponds
to the idea that the positions of X are more or less homogeneously distributed within
that region of R4. But then we imagine placing some great mass of material into
the region: for example the Earth, or the Sun. This mass is composed of very many
particles. By introducing the particles, we introduce many new elements into X, and
thus many new positions are introduced as well.

Let us say that this additional mass consists of n particles. We first imagine X
without these n particles, then they are added back intoX, one by one. Without these
particles, we have flat space. That is, the positions of X in R4 are homogeneously
distributed, say with a density of d positions per unit volume of R4.

After adding in the first particle, we have that the density of positions away from
the origin, in space-like hyper-planes, becomes approximately

d

(
1 +

k

r

)
,

for some constant k. Adding in the second particle, the density of positions is incre-
mentally increased by the factor (1 + k/r), giving a total density of

d

(
1 +

k

r

)(
1 +

k

r

)
= d

(
1 +

k

r

)2

.

Continuing in this manner, we obtain that the density of positions in the full set
X is approximately given by

d

(
1 +

k

r

)n

≈ dek·n/r

But there are n particles, thus the physical mass of the gravitating object is propor-
tional to n, so that we can write

dek·n/r = deκm/r,

for some constant κ, where m is the mass of the object. And thus we have established
a correspondence with the ideas in section 4.1.

What about such effects as Lense-Thirring, or gravitational waves? Such things
can be calculated using the differential equations of the usual theory. But the discrete
theory offers no practical tools for making such calculations and it is difficult to
imagine how a calculus of discrete posets could be formulated. On the other hand,
the idea of frame-dragging would seem to be a natural phenomenon in the discrete
theory, since the idea of space (given by the set of positions) is directly determined
by physical matter (given by the elements of the poset).
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Chapter 5

Probability

When discussing probabilities in Chapter 1 we imagined a certain 4-dimensional vol-
ume of space and time – a box whose space-like and time dimensions were finite. An
experiment with various possible outcomes was placed within this box, and outside
the box was the rest of the universe. But the overriding idea was that all possible
universes, containing both everything within and outside the box, are equally likely.
How can this idea be realized in our framework of discrete posets?

Instead of a finite 4-dimensional box in a space-time continuum, an analogous idea
in the framework of discrete posets would be to take a related pair of elements a < b
and then to consider the space between, namely a ≬ b, the set of elements greater than
a and less than b, to represent the interior of the box. The set of elements not between
a and b would represent the outside universe. By placing different configurations of
elements into the region between a and b we could represent an experiment having
various different outcomes. Thus an experiment with a given outcome would be
nothing more than a finite collection of elements placed between a and b, together with
ordering relations amongst those elements and with other elements in the rest of the
poset. As in Chapter 1, we might imagine that the set of all possible such collections
of elements could be divided up into different equivalence classes, representing the
different possible results of the experiment. By counting how many members each
equivalence class contains we would obtain the relative probabilities.

In the discussion of the two slit experiment we imagined a single fixed universe
outside the box and then counted how many configurations within the box are com-
patible with this outside universe. And then we repeated this for all possible outside
universes. Thus, in the end, the probabilities were found by counting the total number
of universes in each case.

Translating this into the theory of discrete posets raises certain problems. The
sets we are considering are infinite so that simple counting makes no sense. Also the
idea of a configuration within a box — in this case in a ≬ b — being compatible with
the rest of the poset outside of a ≬ b makes no sense. What does “compatible” mean
here? Therefore we will have to reduce things to finite sets and also we will have to
consider the total number of those sets for each configuration, irrespective of any idea
of compatibility.

Being more specific, let us consider a few simple examples. Imagine that we have
a finite poset containing the elements a < b and with a further n elements which are
not in a ≬ b. The first configuration we consider will be that of two unrelated elements
x1 and x2 in a ≬ b. For each u with u∥b and u > a we have four possibilities for its
relationships with x1 and x2.
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1. u > x1 and u > x2

2. u > x1 and u∥x2

3. u > x2 and u∥x1

4. u∥x1 and u∥x2

There are analogously four possibilities for each v with v < b and v∥a. Let us call
this configuration C1.

Another configuration would be three unrelated elements: y1, y2 and y3 Now for
each u with u∥b and u > a we have 8 possibilities, representing the condition that u
is either above, or not above yi for each i. This is configuration C2.

Since there are more possible “universes” containing C2 than is the case with C1,
are we justified in concluding that C2 is more probable than C1? Of course not.
This is a case of the simple observation that in general the more elements there are,
the more possible combinations. C1 and C2 cannot be sensibly compared with one
another. What restrictions are necessary in order to allow sensible comparisons?

One idea would be to say that only configurations in a ≬ b which have the same
number of elements should be compared with one another. But this ignores the basic
partially ordered structure of the sets we are dealing with. For example consider the
configuration C3 in a ≬ b which consists of three elements: z1, z2 and z3 with

z1 < z2 < z3.

For this configuration an element u with u∥b and u > a has just four possibilities for
its relationships with the zi, namely

1. u > z3

2. u∥z3 and u > z2

3. u∥z2 and u > z1

4. u∥z1

This is the same as for the configuration C1 despite the fact that there are more
elements in C3 than there are in C1. But as far as elements not in a ≬ b are concerned,
they are similar.

And so as a general principle we will say that two local configurations in a ≬ b can
be compared only if within the larger set with n elements not in a ≬ b there are the
same number of possible different posets.

Given a set of elements in a ≬ b we will say that the transitive power set T (a ≬ b)
consists of all subsets S of a ≬ b such that given any x ∈ S we have that for all
y ∈ a ≬ b with y < x we also have y ∈ S. Therefore given any element S of the
transitive power set T (a ≬ b), an element u with u∥b and u > a could1 be assigned
to be greater than all the elements of S and not related to the elements not in S in
a ≬ b. Each of the different elements of T (a ≬ b) therefore represent different possible
relations of u to the elements in a ≬ b. This leads to the general rule:

Given a < b and a number m, then all possible configurations of elements between a
and b having precisely m elements in their transitive power sets will be taken to be
equally likely.

1We are ignoring here possible relations between u and elements below a ≬ b
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This rule ignores the size of the set of elements not in a ≬ b and it also ignores
the restrictions which might follow from possible ordering relations between those
elements. Also it ignores possible relationships with elements v not in a ≬ b with
v < b and v∥a. In fact it completely ignores everything outside of a ≬ b. Nevertheless
we will take this rule as justified owing to the fact that the sets in W which we are
considering are infinite and upwardly separating.

The rule can also be formulated more simply using the language of partially or-
dered sets:

Given a < b and a number m, then all possible configurations of elements between a
and b having precisely m antichains will be taken to be equally likely.

For if u is an element with u∥b and u > a then given any antichain in a ≬ b, we will
obtain a possible variation of the poset by taking u to be greater than all elements of
the antichain (and thus necessarily also all elements which are less than at least one
element of the antichain) and not greater than all other elements of a ≬ b.

Another way of thinking about this is to take the set of all positions of the poset
and imagine that this is what is meant by the idea of “space” in physics. If we have a
large volume of space, containing many positions, and compare it with a small volume
of space then obviously there are many more possibilities for varying the large volume
- trying out alternative configurations within it - in comparison with the small volume.
But it would be absurd to say that the large volume is thus more probable than the
small volume. It only makes sense to compare different variations of a region with
one another if they leave the volume of space unchanged.

Given a < b, we assume that all of the elements of the poset in a ≬ b are essential
elements. Let V be the set of positions between a and b which are not associated
with any of the elements in a ≬ b. That is to say they are positions determined by
elements in b↓ \ a↓ which are not greater than a. The positions in V remain given,
regardless of how we place possible variations of elements into the space between a
and b. Thus we can ignore them when the different possible variations are compared
with one another. On the other hand let W be the set of positions determined just
by the elements between a and b in a given variation. Our rule is then that if a
different variation produces the corresponding set W ′, then that variation can only
be compared with the original one ifW andW ′ contain the same number of positions.2

Of course this ignores all the positions which are determined by elements in b↓ \ a↓,
as well as possible varied elements in a ≬ b. Our assumption is that on average, given
that we are assuming no specific knowledge of the details of the elements outside
of a ≬ b, then we have no reason to assume that these positions might favor one or
another variation, and therefore they can be ignored.

2But note that transitive power sets might exist which do not represent the lower sets of positions.
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Chapter 6

Physics Without Laws

6.1 An ultimately simple theory?

This chapter contains much speculation. Perhaps some of the ideas might be amenable
to mathematical proof. Or perhaps they might be supported by some sorts of com-
puter simulations. And our basic hypothesis might seem, at first, to be completely
absurd. Yet I think that, on second thoughts, most of the obvious objections can be
dealt with.

Hypothesis. Choosing any random poset X ∈ W – with no further conditions at all
– will almost certainly produce an accurate model of the physical world.

How could this possibly be true? Thinking about examples of finite posets shows
that all sorts of chaos is possible. Elements are scattered here and there – indeed,
randomly – giving no particular pattern at all. How can this be reconciled with the
fact that the behavior of physical objects obey very definite laws, down to the finest
limits of our ability to measure them? Think of the vast, majestic motions of the
planets in the solar system. The randomness hypothesis seems absurd.

But let us imagine a coin tossing experiment, where a coin is tossed infinitely
many times. One possible outcome is that each and every time, heads comes up.
More generally, there are an infinite number of possible outcomes where only finitely
many tails comes up. Yet, according to the theory of probability, if we have a fair
coin then the probability that such an unusual thing happens is precisely zero. In
fact, the probability that in the limit, the ratio of heads to tails is not precisely 1 is
again zero!

In a similar way, we would expect there to be infinitely many posets in W which
do not look at all like the real world. Yet it might be that the probability is zero that
such a poset might be randomly chosen from W. Or put another way, from the point
of view of probability theory, we would like to show that it is almost certainly true
(that is, the probability is 1), that a randomly chosen poset in W appears to obey
the usual laws of physics.

When calculating the probabilities for the coin tossing experiment, the procedure
is to only count finite numbers of throws — say the first n — and then extrapolate the
probabilities for an infinite number based on these finite samples. Surely an analogous
procedure would be called for when examining the probabilities in W.

Given X ∈ W, the obvious idea would be to take sets of the form a↑ ∩ b↓, for
pairs of elements a < b. But then some of the elements of X might be non-essential.
Thus we would be justified in saying that we have the same poset X, whether such
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non-essential elements are included or not. For this reason, it seems more sensible to
consider the completion of the poset, and thus given a < b in X, a measure of ‘space’
between a and b could be the number of positions of X between them. Following the
ideas of Chapter 5, we might consider all possible variations of X between a and b
which leave the number of positions between a and b constant, and of course such
that the varied poset X ′ is still a member of W. One might think of this as being
the requirement that the amount of physical space between a and b should remain
constant for all allowed variations.

In the Appendix, the idea of concentrating on local probabilities will be developed
further, but framed in terms of finite posets – a restriction which can be easily re-
moved. It is shown there that generalized chains of elements are probable and that
isolated elements by themselves are improbable, and also, at least on a local level,
4-dimensionality is probable.

6.2 Are chains more probable?

Let a < b in a poset X ∈ W be such that we are comparing various possible configu-
rations of essential elements a and b such that they all have some given number m of
positions in a ≬ b. For example let two such collections of elements be {v1 . . . , vn} and
{v′1 . . . , v′n′}. As described in Chapter 5, if the configuration {v1 . . . , vn} has fewer
ordering relations amongst its members than {v′1 . . . , v′n′} then it must follow that
{v′1 . . . , v′n′} has more elements. That is n < n′. These are the essential elements.
Taking a and b to be farther apart in X and choosing ever larger values of m, we
will find that there are many more possibilities for configurations which have many
related elements as compared with configurations with few related elements.

Unfortunately though, the possibilities for these variations of X are much more
varied than is the case in the coin tossing experiment. And the individual variations
of essential elements are not independent of one another. Therefore we must resort
to speculating about what might be most probable. Perhaps in the future these
speculations will be justified by theoretical arguments, or even computer experiments
with appropriate models.

6.3 How the positions of elements are determined
by other elements

Let x ∈ X be some element in a posetX ∈ W. Then the pair (x⇓, x⇑) is an elementary
position in X. But now let us consider the pair (x↓, x↑) in X \{x}. If x is an essential
element of X, then (x↓, x↑) is not a position in the poset X \ {x}. Still, x↓ is the
lower set of a position in X, namely (x↓, V ), where x⇑ ⊂ V and V \ x⇑ ̸= ∅. Let us
call this the position directly beneath the element x.

All elements v ∈ V \x⇑ are such that x∥v. On the other hand, since v > x↓, if v is
a lowest element of V \ x⇑, a variation of X could be performed, adding in the single
new relation x < v. According to our previous considerations, this will be probable if
v is near to x. Therefore, given that the configuration around x is a probable one, we
must conclude that all the elements of V \ x⇑ are far away from x. This means that
locally — near to x — the pair (x↓, x↑) does correspond with the position (x↓, V ) in
X \ {x}.

Concentrating on the situation near to x, let us say that the element a ∈ x↓ is
associated with the position directly beneath x. That means that there must be some
element b ̸> a, yet with b > x↓ \{a}. If b is nearer to x than is a, then we can perform
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a variation, removing the relation x > a (so that in the varied poset, we have x∥a),
and adding in the new relation x < b. The net result is to have exchanged the close
unrelated pair x∥b for the more distant unrelated pair a∥x. Thus this variation leads
to a more probable poset.

In a similar way, it might be the case that there is an element c∥x which is such
that all elements of x↑ \ c↑ are further from x than is c. In this case, a variation
adding in the new relation c < x, and removing the relations of x to all elements of
x↑ \ c↑, would also result in a more probable poset. In both cases we see that it is
probable that (as far as is possible without changing their mutual relationships) the
elements near to x are related to x.

We can also consider positions above the essential element x. Let (U, V ) be a
position which is greater than x (so that x⇓ is a proper subset of U), such that there
is no other position between (U, V ) and x. That is, (U, V ) is a position directly above
x. In contrast to the single position which is directly beneath x, there may be more
than one position directly above x (assuming of course that they are non-elementary).

What possibilities are there for a non-elementary position (U, V ) directly above
x? Remembering that all positions are only associated with elements beneath the
position, we see that we must have U = x⇓ ∪ {a1, . . . , an}, for some finite number of
elements ai, i = 1, . . . , n, with ai∥x, and then V = U⇑.

The simplest idea would be to simply choose some single element a ∈ X with a∥x
and a↓ ⊂ x↓. This would give us U = x⇓ ∪{a} and V ⊂ x↑. In general we can expect
to have many such elements as a, and so we would have many different positions
directly above x.

But is it probable that there are, in fact, many different positions directly above
x? Let us examine a position (U, V ) whose lower set is of the form x⇓ ∪ {a}. Thus
U = x⇓ ∪ {a} and all elements of V are above both x and a. However, for all further
elements b∥x with b ̸= a, there must be some element z ∈ V with z ̸> b.

Given such a b near to x in the sense that b↓ ⊂ x↓, let us take a lowest z ∈ V
with z ̸> b. If z is not far away from x, our argument shows that a variation which
introduces the new relation z > b is probable. This would bring with it also the new
relations y > b, for all the elements y ∈ z↑. The same could be said for other elements
z′ ∈ V with z′∥z and z′ ̸> b. Thus we would have to add in the element b to the lower
set of our position directly above x.

So the conclusion we draw is that it is most probable that there are relatively few
different positions directly above x, and given such a position (U, V ), then the set
U \ x⇓ contains a relatively large (but of course only finite) number of elements.

All of this can be related to the geometry of Minkowski space. If we take R4 to
be partially ordered using the Lorentz metric, then consider the following pair (U, V )
of subsets of R4. Let L = {(0, x, 0, 0) ∈ R4 : x ∈ [−1, 1]}, and take U = {p ∈ R4 :
∃l ∈ L, p ≤ l}, then V = U⇑. This is a position in R4, yet it is not “localized”, in the
sense that it can be identified with the double “light-cone” around a specific point of
R4.

Taking our discrete poset X to be embedded in R4, we see that there are also
many non-localized positions in X — at least with respect to this specific embedding
in R4. On the other hand, our arguments have shown that if X is probable, then none
of the essential elements of X will have such a non-localized geometry. They can all
be identified with specific points of R4.
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6.4 Generalized chains

If it is more probable that nearby elements are related, rather than being unrelated,
then it follows that in a typical poset X ∈ W, the elements will tend to form discrete
chains, the adjacent elements of which are close together. Let C be typical chain.
Perhaps it is infinitely long, or perhaps it is only finite. Let x1 < x2 < · · · < xn

be some finite segment of adjacent elements along C. Now take some other chain
C′, disjoint from C, which is sufficiently long that it contains elements less than x1

and also elements greater than xn. Given some particular element xi of C, then if C
and C′ are far apart, we expect to have many elements of C′ being unrelated to the
element xi. On the other hand, if C and C′ are close together, then there will be fewer
elements of C′ which are unrelated to xi. Does this mean that it is more probable
that C is close to C′?

In fact, our previous argument cannot be applied to chains. Recall that if (U, V )
is some position, then if two given elements a and b are related to one another, we
can only have the position being associated with at most one of the elements, a or b.
On the other hand, if a and b are unrelated, then the position could — in addition —
be associated with both a and b together. So the conclusion was that a configuration
with a being related to b would be more probable.

But now take the two chains C and C′, and again consider some position (U, V ) in
X. Assuming that the chains are long enough to contain both elements in U , and also
elements not in U , then the position can be associated with at most a single element
from each chain — either one element from one of the chains, or two elements, namely
one element from the chain C and another element from the chain C′. This is true
regardless of whether or not the two chains are close together; in either case, just a
single element of each chain is available to be associated with the position.

On the other hand, an argument can be made that a kind of “generalized” chain
might be probable. That is to say, given two distinct chains C and C′, they might be
so close together that each element of each chain is only unrelated to a single element
of the other chain. Thus, if x1 < · · · < xn is a segment of C and x′

1 < · · · < x′
n the

corresponding segment of C′, then we have xi∥x′
i for each i, yet xi < x′

j and x′
i < xj

if i < j. Let us now imagine that C is near to C′, in the sense that both xi↓ \ x′
i↓ and

x′
i+1↓ \ xi↓ have few elements, for each i. In this case it is unlikely that a randomly

chosen position (U, V ) in X will be associated with both an element of C and also
an element of C′. Instead, just a single element from the union of the two chains
C ∪C′ would be more likely. Therefore such a configuration where two chains run very
closely parallel with one another would be probable.

More generally, the argument shows that generalized chains of the form
{. . . , x−1, x0, x1, x2, . . . }, with the relations generated by xi < xi+m, for all i, and
for some fixed m > 1, yet xi∥xj for i < j < i + m, would also be probable. Let us
call this a generalized chain of order m.

6.5 The geometry of generalized chains

How would such a generalized chain be embedded in R4? After all, the individual
elements of the chain are essential positions of X, and so they should correspond with
points of R4.

Let us consider a generalized chain of order 4. Its elements are

. . . , x−1, x0, x1, . . .
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with xn < xn+4, for each n. But xn∥xn+1, xn∥xn+2, xn∥xn+3 and xn∥xn+4. In
particular if we concentrate on the elements x1, x2, x3 and x4, we see that they are
all unrelated to one another. But the element x8 is greater than all of them. In fact
xm is greater than xi, for i = 1, 2, 3, 4, if and only if m ≥ 8. Thus each of the four
elements x1, x2, x3 and x4 must be in the lower set of the position directly beneath x8.
But then, since the justification for having generalized chains was based on the idea
that the elements are as close together as possible, we see that it would be reasonable
to assume that x8, considered as a point in R4, is near to the lowest possible point
above the 4 points where x1, x2, x3 and x4 are situated. Then x9 would be near to
the point of R4 which is the lowest point above the four unrelated points x2, x3, x4

and x5. And so forth. Thus we obtain a spiraling chain of points, such that the spiral
as a whole proceeds upwards through R4 in a straight line.

Generalized chains of orders other than 4 are also conceivable. However 4 fits so
naturally into 4-dimensional space-time that we are tempted to associate it with the
electron lines in Feynman diagrams. Perhaps chains of higher orders could represent
quarks, with their “hidden” dimensions.1

6.6 Particles and antiparticles

Consider an essential element x ∈ X, which we take to be an element of a generalized
chain and let (U, V ) be the position directly beneath x. The fact that x is essential
means that V \x⇑ is not empty. On the other hand, since X is probable, the elements
of V \ x⇑ are far from x. Thus, at least within a reasonably large neighborhood of x,
we have x↓ = U and x⇑ = V .

If the generalized chain is of order n then the next n − 1 elements of the gen-
eralized chain are unrelated to x. Let us say that x is the zeroth element of the
generalized chain; call it x0. Then x1, . . . , xn−1 are unrelated to x0. But the elements
xn, . . . , x2n−1 are all greater than x0, and they are all unrelated to one another.
Then going downwards through the generalized chain, we find that the elements
x−2n+1, . . . , x−n are unrelated to one another.

Let C− = {x−2n+1, . . . , x−n} and C+ = {xn, . . . , x2n−1}. Therefore the element
x0 lies between C− and C+, and we have C− ⊂ U and C+ ⊂ V . But we can imagine
that not only the position (U, V ) lies between C− and C+. There may be numbers of
other positions as well. That is to say, there is a certain amount of room for adjusting
the exact position of the element x0 within the generalized chain.

Nevertheless, the elements of the generalized chain should be closely spaced. One
way to do this is to require that x0 be nearly as low as possible in the ordering of X,
while still being above C−. If this is true of x0, then in order to keep the generalized
chain being closely spaced, we would have the next element, x1, also being as low as
possible with respect to the highest elements in the generalized chain beneath x1, and
so on. Call such a generalized chain a “particle”.

Alternatively, the close spacing of the generalized chain might be achieved by hav-
ing x0 as high as possible, yet beneath C+. And this requirement would hold for the
other elements in the generalized chain. In this case we would have an “antiparticle”.

1And thus they would not be so nearly associated with localized points in an embedding X →
R4. That is, for such higher order generalized chains, the embedding would not be exactly order
preserving. But after all, we expect Minkowski space to give only an approximation of the exact
ordering structure of X.
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6.7 Photons

We have seen that an element x0 of X, situated somewhere along a generalized chain,
if it is a particle, can be thought of as being as low as possible with respect to C−,
the set of highest elements of the generalized chain beneath x0. This would certainly
be the case if the position directly beneath x0 was associated with the elements of
C−, and no others. Given that this is also true of the elements along the generalized
chain near to x0, then as we have seen in the last section, the generalized chain
would follow a straight path through R4. But what would then happen if the position
directly beneath x0 was associated with all but one of the elements of C−, and to
compensate for this, the position is associated with some other element y ∈ X, which
lies on some other generalized chain?

Let us say that it is the element c ∈ C− which — unexpectedly — is not associated
with the position directly beneath x0. Since the generalized chain should be as closely
spaced as possible, we would expect that the next element in the generalized chain,
namely x1, would be such that the position directly beneath x1 would be associated
with c. Then, continuing the pattern of the generalized chain on from x1, we will find
that the sequence of the spiral in the generalized chain will have changed. One can
think of this as being a change of “spin”.

What is the effect of all this on the generalized chain which contains y? Let D−
denote the set of highest elements of this generalized chain beneath y, and D+ is
the set of lowest elements above y. If y is on a generalized chain representing an
antiparticle, then it is as high as possible, while being constrained to be beneath D+.
Yet the relationship with x0 gives a further definite constraint. So we would expect
the interaction to be such that now y is the highest element beneath all but one of the
elements of D+, and instead of this one element left out of D+, we have x0. Therefore
the generalized chain containing y also experiences a change of spin.

An interaction is also possible if the y generalized chain represents a particle, or
if the x generalized chain represents an antiparticle. For the elements x0 and y0 can
be determined by a combination of elements both above, and below. They are not
subject to the constraints we have when the determining elements are exclusively
within the single generalized chain.

This relationship between pairs of elements of different generalized chains would
explain the idea of a photon — or a gluon, and so forth in the case of generalized
chains of higher order. Within this picture, a photon is not a particle, in the sense
of it being represented by some sort of chain of elements in X. Nevertheless, such a
photon would transfer spin, as expected.

But more than this; photons (also gluons, and whatever similar higher order “ex-
change” particles there might be) exert forces on the true, massive particles involved
in the photon exchange. That is to say the directions of the particles are altered after
such a particle exchange. Thinking about Feynman diagrams, this is just what we see.
The points where the photons are emitted or absorbed are vertices of the diagrams.
Between these vertices, the electron or positron edges in a diagram are straight lines.

We still haven’t accounted for the fact that pairs of electrons repel one another,
while electrons and positrons attract one another. But an argument can again be
made to explain this within our model. Namely the exchange of a photon will allow
the corresponding generalized chains to be more closely spaced at the point where the
photon is emitted or absorbed, owing to the fact that an element of the generalized
chain is left out of the sequence. If the photon connects a particle with an antiparticle
then this effect will be greater than if the photon connects two like particles. However,
in either case a closer spacing will result. Why is it then that the weaker effect leads
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to the particles repelling one another? This will follow from the fact that on the
whole, the density of X remains unchanged. Thus a stronger attraction will result in
a true attraction within the geometry of X, while a weaker attraction will appear as
a repulsion.

6.8 The density of discrete space

In Chapter 4 we considered a poset embedded in an order preserving way in 4-
dimensional Minkowski space. The set of positions of the poset could also be repre-
sented by points in Minkowski space, preserving their ordering as well. We assumed
that these positions, mainly determined by the far distant matter in the universe,
were distributed more or less uniformly in space-like hyperplanes perpendicular to
the time axis. Furthermore in a region near to the origin, the density of the positions
— that is the average number of positions in 4-dimensional cubes of the Euclidean
space — was assumed to be approximately constant.2 Then adding in an extra collec-
tion of elements representing a gravitational body situated along the time axis near
the origin, we deduced that extra positions would be added into the poset, and thus
into Minkowski space, changing the density of the points representing these positions
in the region by something of the form

deκm/r

And so, considered with respect to 4-dimensional cubes in Euclidean space, the density
of the positions near the origin has increased.

Another way of looking at this, as an alternative to thinking about 4-dimensional
cubes, would be to consider say two points p and q in Minkowski space with p < q,
say a distance −1 apart when taken with respect to the Lorentz metric. Or, to avoid
being too pedantic, let us just say that they are a unit distance apart. Then we
consider the number of positions between p and q to be a measure of the density of
positions near to those points.

But as we have seen, according to the theory of general relativity, in the presence of
the gravitational body the metric is altered, and consequently the ordering relations
in the poset are altered as well, particularly those near to the gravitational body.
For p and q to be a unit distance apart in this new, altered metric, they must be
stretched further apart in the underlying Euclidean space, to the points p′ and q′.
That is to say, the Euclidean distance from p′ to q′ is greater than that between p
and q. On the other hand, in this altered metric the space between p′ and q′ —
that is the intersection of the light-cone above p′ with the light-cone below q′ — has
become narrower so that all in all, the volume of Euclidean space between p′ and
q′ is less than the volume between p and q. In this smaller volume there are fewer
positions. Thus if we choose the gravitational constant appropriately we will find
that when the gravitational mass has been added in, the number of positions between
p′ and q′ using the metric of general relativity will be nearly equal to the number
of positions between p and q in the original poset with the Lorentz metric. Or put
simply, the density of positions remains approximately constant, regardless of whether
the gravitational mass is included or not.

Up to now we have been thinking about the idea of the density of positions by
relating this to some assumed embedding in 4-dimensional Minkowski space. But

2Of course, keeping in mind our definition of strong discreteness, if we were to think of embedding
the whole of the poset in Minkowski space then the density of positions would have to decrease
strongly when going very far backwards along the time axis.
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there is a simple way to define this density purely in terms of the poset itself. Let
P and Q be two positions with P < Q. Take n to be the number of elements of the
poset in the set difference Q⇓ \ P⇓ and let N be the number of positions between P
and Q. Then we define the density of the poset between P and Q to be the ratio
N/n.

This definition depends on the particular positions P and Q which were chosen
and is thus overly special to just those two positions. In order to be able to compare
the density in one region of the poset with another we might fix the number n and
then compare the density in one region with another region using some different pair
of positions, R < S, with precisely the same number n of elements in S⇓ \ R⇓. We
obtain some number N ′ of positions between R and S. Then we compare the ratios
N/n and N ′/n.

Of course this method does not give a definite, unambiguous number which we
could call the absolute density of positions at some given position in the poset. It
depends on the number n we choose and the particular positions chosen for counting
what is between them. Nevertheless, assuming that n is not too large so that it reflects
the idea of looking at local densities, we might consider some sort of average of all
possible such densities at a given position, where the average is taken over all pairs
of positions with respect to the number n with the given position between them.

The assertion is then that for randomly chosen posets in our class W, it is almost
always the case that the density is nearly constant throughout the poset, and this
would give an explanation of gravity analogous to that of general relativity.

Indeed, this idea of a nearly constant density of positions is only natural. After all,
most of the elements associated with a given position are in the far distant universe.
And given some set of n elements around the periphery of some Q⇓ \ P⇓, we would
expect the different possible combinations of those elements to be associated with
nearly the same number of positions, regardless of where in the poset the positions
P and Q were taken. Anything else would result from some very improbable special
configuration of those very distant unrelated elements.
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Chapter 7

Is the Discrete Model
Reasonable?

It is natural to consider posets as a whole, rather than extracting small subsets and
ignoring the rest. In physics, the corresponding idea would be the subject of cosmol-
ogy.

The standard view of cosmology is that everything started with a big bang about
15 billion years ago. Since then everything has been expanding, and we can see that
this expansion continues since the light from distant galaxies appears to us to be
red-shifted. This is attributed to a Doppler-shift effect. Since matter and energy,
taken together, can neither be created nor destroyed, it follows that the universe is
becoming less and less dense as time progresses. Despite this, the universe is filled
with black holes of various sizes. In particular, galaxies form around large black holes,
sited at their cores. Perhaps there is also a dense assemblage of small black holes,
making up the mysterious “dark” energy and matter, which is needed in order to
explain the rotational properties of galaxies — under the assumption that gravity is
the main force for determining the shape of a galaxy.

The discrete model we have been describing fails to have almost all of these things.

• In order to reduce the number of defining properties, or axioms, to a minimum,
it was found to be sensible to assume that the underlying poset has no extreme
elements. In particular there is no single minimal element (that is, no “big
bang” element).

• The red-shift in the model arises from the asymmetry which results from having
x↓ \ y↓ being finite, while x↑ \ y↑ is infinite, for any two elements x∥y. Thus the
measure of time changes if we progress upwards in the ordering of the poset.
The difference in the measure of time would result in the illusion of a red-shift
of light from distant galaxies.

• The model does not include an abstract law of conservation of mass-energy.
On the contrary, these things can only be measured with respect to an imagi-
nary background “space-time continuum” In the discrete model, the measure of
space-time is determined by the matter contained in it — the elements of our
poset. Thus the density of this mass-energy is determined by the mass-energy
itself, hence it remains more or less constant throughout the poset.

• The idea of black holes is untenable in any discrete model.
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• Thus there would be no apparent limit to the mass of a neutron star. The con-
cept of super-massive black holes would be replaced by super-massive collapsed
stars. Ancient, inert collapsed stars might exist in large numbers, emitting little
visible light.

• Finally, an argument can be made that in a region of the poset which has few el-
ements, the positions directly beneath essential elements are not as constrained
to be “round” in comparison with essential elements which are surrounded by a
dense configuration of essential elements. That is, following the argument of the
last chapter, they may depart somewhat from having a double cone structure in
an embedding in R4. Thus in a relatively empty region of space, more positions
come into consideration for determining individual essential elements in com-
parison with regions containing many essential elements. This could produce
the illusion of “dark matter”.

Although the discrete model departs from the standard differential manifold model
in all these points, still, the observational evidence provides no basis for ruling either
of these models out. However one possible, practical test does suggest itself. This
test would involve the observation of pulsars. The newest observations seem to have
established beyond question the idea that the pulsing of pulsars is due to rotation,
not to any sort of radial pulsation. Given that, then the general theory of relativity
places an upper limit on the possible periods of pulsars. The millisecond pulsars are
very near to this limit already. Therefore, if a pulsar with a still much shorter period
of pulsation were to be found, it would falsify general relativity

Our arguments have been motivated by Feynman’s formulation of quantum elec-
trodynamics in terms of his Feynman diagrams. Thus, if the arguments could be
shown to have substance, then the discrete theory would be nothing more than a
justification for the mathematical methods used when working with such diagrams.
Perhaps the quarks can be shown to arise as an expression of generalized chains of
order greater than 4 in the discrete model.
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Appendix A

Local Probabilities in Finite
Partially Ordered Sets

A.1 Definitions

A set a is transitive if for any element b ∈ a which is itself a set containing an element
c ∈ b we have also c ∈ a. We will consider transitive sets which are such that all
elements which are sets are themselves transitive1. Call this hereditarily transitive.
In other words, this is a way of describing partially ordered sets such that the ordering
becomes set inclusion. Thus we might interchangeably use the notation a < b or a ∈ b
to mean the same thing. An element a in a partially ordered set can then be thought
of alternatively as the set of all elements which are less than or equal to a, allowing
us sometimes to simplify the notation.

Let X be a partially ordered set. For elements a, b ∈ X we use the notation a∥b
to mean that both a ̸≤ b and b ̸≤ a, and a ⊥ b to mean that either a ≤ b or b ≤ a.
Given a < b then a ≬ b is the set of elements {c ∈ X : a < c < b}.

As a first idea of what we mean by local probabilities, consider the following. Let
n and N be two numbers with n < N . We then take all possible partially ordered
sets X consisting of N elements, and for each such X we consider all possible pairs
x < y of elements in X such that x ≬ y consists of precisely n elements. These
different sets of the form x ≬ y fall into equivalence classes, where two such sets are
equivalent if they are isomorphic as partially ordered sets. Then we can say that
the relative probabilities of the different equivalence classes of these “between sets”
is proportional to the number of sets in each class. Given n, the relative probabilities
will depend upon the choice of N . Perhaps in the limit as N becomes larger, these
relative probabilities might converge to some limiting values.

But there is a problem with this method. To illustrate the problem, consider the
situation with n = 2. That is, we have two elements x < y and two further elements
u and v with x < u < y and x < v < y. There are two cases: either u∥v or u ⊥ v.
In the case u ⊥ v, we either have u < v or else v < u. But both are isomorphic as
partially ordered sets, so to be definite we choose u < v.

Let us take x ≬ y to be contained within some larger partially ordered set X which
also contains both x and y, and which is such that u < v in X. Thinking in terms of
hereditarily transitive sets, between x and y we have the two different sets u and v,
where of course u ∈ v.

1Thus they are identical with their transitive closures.
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On the other hand let X ′ be identical with X except that we now have u∥v.
This gives three different sets between x and y, namely: u, v, and u ∪ v in X ′. A
correspondence between X and X ′ could be given by the following rule: An element
s of X ′ which is not between x and y (and therefore s is an element of X as well)
considered as a set, is to contain the set u∪ v if and only if v ∈ s in X. Furthermore,
u ∈ s in X ′ if and only if u ∈ s in X. On the other hand, s is contained in u ∪ v if
and only if s ∈ v in X, and s ∈ u in X ′ if and only if s ∈ u in X.

But this leaves us with the additional set v in X ′. Therefore by rearranging the
elements of X ′ we can generally obtain new sets X ′′, containing the configuration u∥v,
which do not correspond with any rearrangement of X containing the configuration
u < v. That is, the configuration u∥v gives us, in effect, three elements to work with,
while the configuration u < v has only two.

Obviously there are always more possible combinations of three objects than there
are of two. It would be nonsense to thus conclude that three things are always more
probable than two. One must compare like with like. In our case we take this to mean
that it is only fair to compare two different possible configurations between x and y if
they have the same number of elements in their power sets. (Where we assume that
an element of the power set, considered as a union of sets in x ≬ y, contains all the
elements in each of those sets.) This leads to the definition, which we formulate in
terms of hereditarily transitive sets:2

Definition 5. Let n be a given number and let x ∈ y be two elements. Denote by Ψ
the set of all different hereditarily transitive sets between x and y which are such that
there are precisely n elements in their power sets. If there are m members of Ψ then
we will define each to have the relative probability 1/m.

This definition involves a number of assumptions. No mention is made of the larger
partially ordered sets within which the possible configurations between the elements
x and y are supposed to exist. Our assumption is that the number of possible ways a
configuration can be embedded in the total of all the various larger partially ordered
sets is the same for all configurations with a given number of elements in their power
sets. Or put another way, it is the assumption that the relative probabilities for
different configurations, taken with respect to possible partially ordered sets of N
elements in which they are contained, converge to a limit as N → ∞.

A.2 Generalized chains

Let some region x ≬ y be given and let us consider the case that x ≬ y consists of
n unrelated elements. (As always, we will assume that all elements are themselves
sets.) That is

x ≬ y = U = {u1, . . . , un}

such that for any i ̸= j we have ui∥uj . Then the power set consists of 2n subsets.
Another possible configuration for x ≬ y might be a chain of length 2n − 1. That

is
x ≬ y = V = {v1, . . . , v2n−1}

2Strictly speaking we should consider the number of elements in the MacNeille completion of the
poset between x and y. That is, using the notation of the main text, the set of positions between
x and y. But the given argument in terms of hereditarily transitive sets is simpler and it suffices in
general. And for the application in the main text it is appropriate, considering that we have shown
that in W, the elements associated with any given position always lie below that position.
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with vi ∈ vi+1 for all 1 ≤ i ≤ 2n−2. Again, there are 2n subsets in this configuration,
so that it has the same probability as does U .

A third possibility for x ≬ y consists of 2n − 2 elements which form a simple
generalized chain, namely

x ≬ y = W1 = {w1, . . . , w2n−2}

with w1∥w2, w1 ∈ w3, w2 ∈ w3, and then wi ∈ wi+1 for all 3 ≤ i ≤ 2n − 3. Once
again the number of subsets is 2n so that W1 has the same probability as the other
two configurations which we have considered so far.

But then we also have

x ≬ y = W2 = {w1, . . . , w2n−2}

with w2∥w3, w1 ∈ w2, w1 ∈ w3, w2 ∈ w4, w3 ∈ w4, and then wi ∈ wi+1 for all
4 ≤ i ≤ 2n − 3. Again, the number of subsets is 2n.

In fact, following this pattern one sees that we have 2n−3 such generalized chains
W1, . . . ,W2n−3, all of which have 2n subsets, and thus they are all equally probable.

Many further configurations fit into this pattern. For example we have generalized
chains with two pairs of unrelated elements: wi∥wi+1 and wj∥wj+1 for |i− j| ≥ 2 and
the rest of the elements forming a simple chain. If i = j − 2 we might also consider
wi ∈ wj , while wi+1 ̸∈ wj , and so on. There are nearly n2 such configurations. And
then we can have generalized chains with three pairs of unrelated elements. There
are nearly n3 such configurations, although we do notice that the number of elements
in the configuration is reduced by one for each such addition.

Once we have exhausted all these possibilities we can then consider generalized
chains having various numbers of unrelated triples, quadruples, and so forth. Even-
tually we come back to our single original set V consisting of n unrelated elements.
All of these configurations are equally probable.

If we restrict ourselves to just the types of configurations which have been de-
scribed here, it is obvious that if the number n is reasonably large and a configuration
C for the set x ≬ y is chosen at random, then we expect the height of C to be much
greater than its width. Here the height is taken to be the length of the largest possible
simple chain, and the width is the number of elements in the largest possible subset
consisting of mutually unrelated elements. Therefore C resembles a chain; a fuzzy, or
generalized chain.

A.3 Other structures

The generalized chains considered in the last section are characterized by having a
limited width such that for each element u in the chain, the number of elements
unrelated to u is limited. If the number of elements we are considering is much
greater than these limits then other structures than a single generalized chain might
be probable.

As an example let us consider two simple chains, of height k and l:

U = {u1, . . . , uk : ui ∈ ui+1,∀1 ≤ i < k},

V = {v1, . . . , vl : vi ∈ vi+1,∀1 ≤ i < l}.

If ui∥vj for all i and j then the number of subsets in the power set is simply k × l.
Thus if we are to compare this with a single chain, that chain would have to have
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height k×l. But in general there may be some relations of the form ui ∈ vj or vi ∈ uj .
How many possible different relations and how many subsets can there be?

To begin to estimate how many different possible relations there are, let us consider
the possibilities for relations of the form ui ∈ vj . The thing to note is that if ui ∈ vj
then we must also have ui−1 ∈ vj and also ui ∈ vj+1. Let is write F (k, l) to represent
the number of possible relations here. Then we see that if uk ∈ vl, it is clear that the
number of possible relations for the further l−1 elements of V is given by F (k, l−1).
If uk ̸∈ vl, but uk−1 ∈ vl then the number of possible relations for the further l − 1
elements of V is F (k− 1, l− 1). Proceeding down through U , we obtain the recursive
formula:

F (k, l) =

k∑
t1=1

F (t1, l − 1)

=

k∑
t1=1

t1∑
t2=1

F (t2, l − 2)

...

=

k∑
t1=1

t1∑
t2=1

· · ·
tl−2∑

tl−1=1

F (tl−1, 1)

=

k∑
t1=1

t1∑
t2=1

· · ·
tl−2∑

tl−1=1

tl−1

since F (tl−1, 1) = tl−1.
We can bound this sum from below by taking integrals.

k∑
t1=1

t1∑
t2=1

· · ·
tl−2∑

tl−1=1

tl−1 >

∫ k

0

∫ t1

0

· · ·
∫ tl−2

0

stl−1
dstl−1

. . . ds2ds1

=

∫ k

0

∫ t1

0

· · ·
∫ tl−3

0

stl−2
2

2
dstl−2

. . . ds2ds1

=

∫ k

0

∫ t1

0

· · ·
∫ tl−4

0

stl−3
3

3 ∗ 2
dstl−3

. . . ds2ds1

...

=
kl−1

(l − 1)!

Stirling’s formula is

(l − 1)! ≈
√
2π(l − 1)

(
l − 1

e

)l−1

,

giving

F (k, l) ⪆
1√

2π(l − 1)

(
ke

l − 1

)l−1

.

Assuming that we have chosen the chain U to be not shorter than V , then we have
k ≥ l and so F (k, l) grows very rapidly as the height of the chains grows. (Note that
even if l > k, the number F (k, l) will still be large despite the fact that our integral
approximation will now underestimate things drastically.)
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In addition to the possible relations of the form ui ∈ vj , we also have the relations
of the form vi ∈ uj to take into account. For each possible configuration considered in
the calculation of F (k, l) we have many such further relations, the number of which
should be multiplied by F (k, l) to obtain the total number of different configurations.
But note however that we can never have a pair with both ui ∈ vj and at the same
time vj ∈ ui; a set cannot be contained in one of its elements.

These different configurations generally have different numbers of subsets in their
power sets so that they cannot be compared with one another. However if we consider
configurations with relatively large numbers n of elements then the equivalence classes
of the configurations which are comparable will generally be large. This follows since,
as we have seen, there are less than n2 possible such equivalence classes, yet many
more possible configurations.

The conclusion is that if n is reasonably large, and if we restrict ourselves to con-
figurations having either one or two simple chains, then it is overwhelmingly probable
that we will have a configuration with two simple chains.

But it is also obvious that there are many more possibilities besides these. For
example we might consider generalized chains whose width is limited by some fixed
value w. For n large in comparison to w, any element of the generalized chain is
not related to only a small number of further elements in the chain. Thus we can
think of the generalized chain as consisting of a large number of segments which act
somewhat as if they were elements of a simple chain. We can then compare the
probability of having a single generalized chain with two interacting, but separate
shorter generalized chains. We can apply our argument in this case as well to show
that for large n, it is probable that we will have two separate generalized chains.
Extending the argument to larger numbers of generalized chains, we see that as n
increases, it is probable that we will have proportionally more of these interacting
generalized chains.

Are there other structures besides generalized chains, or at least configurations
constructed from pieces of generalized chains, which are probable as local structures
in finite partially ordered sets? Perhaps not.

A.4 Dimension

As in the last section, let us assume that we have two distinct, simple chains of height
p and q:

U = {u1, . . . , uk : ui ∈ ui+1,∀1 ≤ i < p},

V = {v1, . . . , vl : vi ∈ vi+1,∀1 ≤ i < q}.

We would like to examine a region which can be “indexed” by the elements along U
and V in the following manner.

Let x be some element in this region. Then there are four unique elements,
{ui, uj , vk, vl}, two along U and two along V , which index the element x. The two
elements ui and uj on U indexing x are such that x ∈ ui but x ̸∈ ui−1 and uj ∈ x
but uj+1 ̸∈ x. The elements along V are similarly such that x ∈ vk but x ̸∈ vk−1

and vl ∈ x but vl+1 ̸∈ x. We assume that the elements in the region are uniquely
represented by this indexing. That is, if x′ is some other element in the region indexed
by the four elements {ui′ , uj′ , vk′ , vl′}, then at least one of those elements is different
from the indexing of x.

We are interested in the question of whether or not x and x′ are related to one
another. Given the way we have chosen the index elements, we see that if x ∈ x′

then we must have ui ⊆ ui′ , uj ⊆ uj′ , vk ⊆ vk′ , and vl ⊆ vl′ . (Here we use the
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notation “a ⊆ b” to mean the same thing as “a ∈ b or a = b”.) Or, in other words,
the index elements for x are all less than or equal to the respective index elements
for x′. For all other relationships of the indexing elements, we must have x ̸∈ x′. A
similar condition holds for x′ ̸∈ x. If both conditions hold, then we must have x∥x′.

Therefore we must have x∥x′ in all cases except when the indexing elements of
x are all less than (or they are all greater than) or equal to the respective indexing
elements of x′. But if, say, the indexing elements of x are all less than or equal to
the respective indexing elements of x′ then the situation is unclear. We might have
either x ∈ x′ or x∥x′.

So let us consider the case that all the respective indexing elements of x are less
then or equal to those of x′. We then have two different possible configurations: W∈
where x ∈ x′ and W∥ where x∥x′. How many subsets does W∈ have in comparison
with W∥? The answer is that there are more subsets in W∥ than there are in W∈.

To see this, begin by observing that most of these subsets are the same, both for
W∈ and for W∥. Only those which contain x and/or x′ might be different. So let us
assume that there are m elements along U between uj′ and ui, and furthermore we
assume that there are n elements along V between vl′ and vk. (If either m or n were
to be zero then we must have x ∈ x′, and so the case x∥x′ would not occur.) Each of
the subsets of W∈ corresponds with a subset of W∥. In particular each subset in W∈
of the form us∪vt∪x, for j′ < s < i and l′ < t < k, we have the corresponding subset
us ∪ vt ∪ x in W∥. Similarly, for each subset in W∈ of the form us ∪ vt ∪ x′, we have
the corresponding subset us ∪ vt ∪ x ∪ x′ in W∥. But then in addition to these, we
have the m× n subsets of the form us ∪ vt ∪ x′ in W∥ (each of which do not contain
the element x), and there are no corresponding subsets to these in W∈.

Therefore, since W∈ and W∥ contain different numbers of subsets, they cannot
be compared with one another. But, as before, it is possible to add in some extra
elements to W∈ in various ways, producing an expanded version W ∗

∈ of W∈ which does
have the same number of subsets as does W∥. For example, we could lengthen the
chain U in W∈ by attaching m×n new elements {up+1, . . . , up+m×n} with up ∈ up+1,
and then ui ∈ ui+1, for all i between 1 and p +m × n. To complete the picture, we
assume that also vq ∈ up+1.

There are many other possibilities for adding new elements into W∈. For example
we could add elements to the other chain V , to both, or midway along the chains at
various positions, adjusting the number of new elements in each case so that the total
number of subsets remains constant. Therefore we conclude that it is very probable
that x ∈ x′ if the index elements of x are all less than or equal to the corresponding
index elements of x′, becoming overwhelmingly probable when the indexing chains
are long.

So let us assume that we have two distinct chains, U and V , and also many
elements in a region which are indexed by these chains such that for any two of these
elements, the indexing is not identical, and furthermore, given two such elements a
and b, we have a ∈ b if and only if the indexing elements for a are all less than or
equal to the corresponding indexing elements for b. Then we conclude that the set of
these elements, considered as a partially ordered set, is 4-dimensional.

Recall the definition of dimension within the theory of partially ordered sets. Each
partial order for a given set can be expanded by adding in further ordering relations
to obtain a totally ordered set which contains the original partial order. A realizer of
the partial ordering is a collection of total orders, each of which contains the original
partial order, such that the original partial order is the intersection of all the ordering
relations in the realizer. A partially ordered set has the dimension n if there is a
realizer consisting of n totally ordered sets, where n is the smallest such number.
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Applying this to our situation with the two chains U and V , we can find a realizer
consisting of just 4 totally ordered sets. They are obtained by using the ordering
of each of the four indexing elements. For example, given that a∥b, the first total
ordering involves adding in the relation a < b if the upper indexing element along U
of a is contained in the upper indexing element of b along U . In this way we obtain
the first of our total orderings. The other three are obtained similarly.

When thinking about this argument, it might be objected that the same ideas
could be applied to the situation with just one single indexing chain, thus seemingly
leading to the conclusion that we would have 2 dimensions rather than 4. That is to
say, let the single chain

U = {u1, . . . , uk : ui ∈ ui+1,∀1 ≤ i < p}

be given, together with two elements x and x′ not in the chain, but such that the
chain has elements which contain both x and x′ and also elements contained in both
x and x′. As before, we take the indexing elements for x to be ui and uj , and for x′

to be ui′ and uj′ . Let W∥ be the configuration with x∥x′ and W∈ with x ∈ x′.
Assuming there are m elements along the chain U between uj′ and ui, then there

are m more subsets in W∥ than there are in W∈. Following the argument as before,
we must add in further elements to W∈ in order to be able to compare the two
configurations with one another. There are a number of different ways to add in new
elements, always preserving the total number of subsets, and these different ways give
different pairs of indexing elements for x and x′, all of which are equally probable. But
since we have x ∈ x′, all of these sets must preserve the condition that the indexing
elements for x are contained in (or equal to) the indexing elements for x′. On the
other hand, for W∥ we now have fewer elements than W∈ in the chain U , but more
freedom to choose the indexing elements. All possibilities are open except the case
where both indexing elements for x are contained in both indexing elements for x′ (for
that would imply that we must have x ∈ x′), or conversely, if both indexing elements
for x′ are contained in both indexing elements for x. Taken together, the number of
possible configurations with x ∈ x′ is not greater than the number with x∥x′, and so
the argument fails.

We see then that the presence of the second indexing chain, adding in so many
further possible configurations in the case x ∈ x′, is essential for our argument.
Having three or more indexing chains adds nothing, since they will only confirm the
correlation between the ordering of the elements and that of their indexing elements.
After all, the dimension is given by the least possible number of total orderings in a
realizer.

A.5 Conclusion

From the few considerations dealt with here, it is obvious that our very natural way
of defining probabilities in finite partially ordered sets will lead to structures which
depart strongly from what might at first be expected. Rather than having a chaos
of unordered sets, we see that chain-like structures which might interact with one
another in orderly ways are probable.
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