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1 Definitions

To begin with, let us fix a certain notation. Let the pair (X,≤) be a given
poset. For a ∈ X, let a↓ = {x ∈ X : x < a} and a↑ = {x ∈ X : x > a}.
Furthermore, let a⇓ = {x ∈ X : x ≤ a} and a⇑ = {x ∈ X : x ≥ a}.
More generally, if Y ⊂ X is given, then Y↓ = {x ∈ X : x < y, ∀y ∈ Y }.
Also Y⇓ = {x ∈ X : ∃y ∈ Y with x ≤ y}. The sets Y↑ and Y⇑ are defined
similarly.

Given two elements a, b ∈ X, we write a‖b to mean that both a 6≤ b and
b 6≤ a. Also a ⊥ b means that either a ≤ b or else b ≤ a.

An element a ∈ X is a minimal element if a↓ = ∅. Similarly, a is maximal
if a↑ = ∅. Minimal and maximal elements are extremal elements. Elements
which are not extreme are interior elements. If a non-empty poset has no
extreme elements, then obviously it must be infinite.

The poset is called connected if for any two elements a, b ∈ X, there
exists a (finite) sequence of elements of X, starting with a and ending with
b, such that adjacent pairs of elements in the sequence are always related.

The usual definition of “discreteness” is that the set a↓ ∩ b↑ should be
finite, for all possible a, b ∈ X. However this is not the definition we will
use. Instead we will say that X is discrete (or strongly discrete if we would
like to emphasize the difference with the usual definition) if a↓ \ b↓ (the set
difference) is finite, for all a, b ∈ X.

Furthermore, we will be interested in a condition which is analogous to
the axiom of extensionality in set theory. A poset X will be called extensional
if for all a, b ∈ X with a 6= b we have a↓ 6= b↓.

The poset X will be called confluent below if for any two elements a,
b ∈ X we have a↓ ∩ b↓ 6= ∅.

The poset X will be called upwardly seperating if for any three elements
a, b and c ∈ X with both a 6> c and b 6> c, we have (a↑ ∩ b↑) \ c↑ 6= ∅. In
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particular, this implies the simpler condition that a↑ \ b↑ 6= ∅, for all a‖b.
(Note that the condition that a poset is upwardly seperating implies by itself
that the poset contains no maximal elements.)

Definition 1. Let us denote by W the class of all discrete, upwardly seper-
ating, confluent below, connected posets X, fulfilling the condition of exten-
sionality, such that all elements of X are interior.

So one sees that the theory of posets in the class W is really nothing
other than the theory of finite sets, with the difference that the empty set
is excluded. That is, we are dealing with set theory, but without Zermelo-
Fraenkel’s axiom of regularity.

From now on, when taking some poset X, we will generally assume that
X belongs to the class W, at least unless otherwise stated or implied by the
context.

Within the theory of posets, the ideas of chains and antichains are im-
portant. A chain C ⊂ X is simply a totally ordered subset. (Of course the
subset C here inherits the ordering relations of the containing poset.) An
antichain is a subset A ⊂ X such that for any two elements a, b ∈ A with
a 6= b, we have a‖b.

A chain is maximal if it cannot be properly contained in another chain.
Similarly a maximal antichain cannot be properly contained in another an-
tichain. Obviously, a maximal antichain Y ⊂ X is such that X = Y⇓ ∪ Y⇑.

If we assume that the poset X (in W) contains a finite maximal antichain
Y then, since X is discrete, all antichains contained within Y⇓ are also finite.
Furthermore, given any x ∈ Y⇑, where Y is a finite maximal antichain, then
there exists a finite maximal antichain containing x. To see this one only need
observe that the set x↓∩Y⇑ must be finite. Then take the set of least elements
above x↓ ∪ Y . (That is, the minimal elements in the subset of X consisting
of X \ (x↓∪Y⇓).) The fact that X is confluent below and extensional implies
that this set must be finite.

Since X is extensional, we cannot have a maximal antichain consisting
of just a single element. But much more than this, we have the following
theorem.

Theorem 1. For every poset in W, all maximal chains and maximal an-
tichains are infinite.
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Proof. The fact that maximal chains are infinite follows trivially from the
condition that all elements are interior elements. To see that maximal an-
tichains are also infinite, assume to the contrary that A ⊂ X is a finite max-
imal antichain. Since X is confluent below, there exists an element a which
is less than all elements of A. Choose an element b ∈ X with b‖a. Such
an element b must exist since we can choose some d < a with d↑ ∩ a↓ = ∅
and then observe that the set d↑ \ a↑ 6= ∅, since X is upwardly seperating.
Similarly we have b↑ \ a↑ 6= ∅. In fact though, the set b↑ \ a↑ must be finite.
To see this, begin by noting that A⇓ ∩ b↑ must be finite. Then observe that
if c 6∈ A⇓, yet c ∈ b↑ \ a↑, then we cannot have c ∈ A⇑ (for then we would
have c > a), therefore c‖A. But this is also impossible, since A is assumed
to be a maximal antichain.

Thus b↑\a↑ must be finite but non-empty and so we can choose a maximal
element d ∈ b↑ \ a↑. But then we must have d↑ \ a↑ = ∅, which contradicts
the condition that X is upwardly seperating.

2 Positions

Given any poset (X,≤) — not necessarily in W — then we can define the
set of positions within X as follows.

Definition 2. A position P ⊂ X consists of a pair of non-empty subsets U ,
V ⊂ X, such that U ≤ V (that is, u ≤ v for all u ∈ U and v ∈ V ) and such
that the pair is maximal in the sense that if U is properly contained in U ′,
then we cannot have U ′ ≤ V , and also if V is properly contained in V ′ then
we cannot have U ≤ V ′. We also write P↓ for U and P↑ for V .

Obviously, given any element a ∈ X, then the pair (a⇓, a⇑) forms a posi-
tion in X. We will call such positions elementary positions. The set Ω(X)
of all possible positions in X is itself a poset in a natural way. It contains
X, but in general it is much larger than X. One could say that Ω(X) is the
completion of X. Within the theory of finite posets, if we add in a single
minimal element and a single maximal element, then the completion is the
Macneille completion, which is a lattice.

Given the position P = (U, V ), then it is obviously determined by its lower
and upper sets U and V . After all that is the definition of the position. But
it may be possible to find two subsets U∗ ⊂ U and V∗ ⊂ V such that P is
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the only position lying between U∗ and V∗. In this case we can say that P is
determined by the pair (U∗, V∗).

Definition 3. Let U∗, V∗ ⊂ X be two subsets, such that U∗ ≤ V∗. If there
is only one position P in X such that U∗ ≤ P ≤ V∗, then we will say that P
is determined by the pair (U∗, V∗). The pair will be called minimal, if there
is no smaller pair (Y, Z) with Y ⊂ U∗ and Z ⊂ V∗ which also determines P.
When considering pairs of subsets which determine a given position, we will
usually assume that the pair is minimal.

Now it is obvious that each elementary position is determined by just
one single element, namely the element which the position represents. Fur-
thermore, if P is a non-elementary position, determined by the minimal pair
(Y, Z), then both Y and Z must have at least two elements.

Another way to look at these things is the following. Let U∗ ⊂ X be
some subset such that U∗↑ 6= ∅. Then take V = U∗↑, and U = V↓. If we
assume that U∗↑ is not the upper set of some element of X, then the pair
(U, V ) is a position P in X. Therefore, given that P is determined by some
pair (U∗, V∗), then we can also say that P is determined by the lower set U∗
alone, following this procedure. Analogously, a position can be determined
by an upper set.

At this stage, it is useful to consider a further idea.

Definition 4. Let (X,≤) be a poset (again, not necessarily in W), and let
P be a position in X. We will say that an element a ∈ X is associated
with P if P \ {a} is not a position in X \ {a}. If an elementary position
is associated with itself (that is, with the element generating the position),
then we will say that the element is an essential element. Otherwise, the
element is non-essential; it can simply be removed without affecting the set
of positions of X.

We now confine our attention to posets in our class W.

Theorem 2. Let a ∈ X be associated with the non-elementary position P ⊂
X. Then a < P. That is a ∈ P↓.
Proof. Let P = U ∪ V with U ≤ V . If a 6∈ P then P \ {a} = P . Since a is
associated with P , it must be that the pair (U, V ) is not maximal in X \{a}.
But that implies that (U, V ) is not maximal in X, which is a contradiction.
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If X ∈ W and if a ≥ P (that is, a ∈ V , the upper set of the position),
then since P \ {a} is not a position in X \ {a}, it must be that the pair
(U, V \ {a}) is not maximal in X \ {a}. That is, there must be an element
b < V \{a}, such that b 6∈ U , and so b‖a. But since X is upwardly separating,
there exists some c ∈ a↑ \ b↑. Since a is in the upper set of P , we must have
c also being in the upper set. i.e. c ∈ V \ {a}. However, this contradicts the
fact that b < V \ {a}.
Theorem 3. Let a, b ∈ X, and P be a position in X such that a 6> b and
P 6> b. If X ∈ W then (a↑ ∩ P↑) \ b↑ 6= ∅.
Proof. If P is an elementary position, then this is just the definition of up-
wardly seperating. Assume therefore that P is non-elementary. If a ⊥ P
then either a↑ ∩ P↑ = a↑, or else a↑ ∩ P↑ = P↑. In either case, since X is
upwardly seperating, we must have (a↑ ∩ P↑) \ b↑ 6= ∅.

If a‖P then since P 6> b, there must exist an x > P with x‖b. Then
∅ 6= (a↑ ∩ x↑) \ b↑ ⊂ (a↑ ∩ P↑) \ b↑.

Theorem 4. Assume that the non-elementary position P is determined by
the minimal pair (U∗, V∗), where U∗ < V∗. Assume furthermore that A is the
set of all elements of X which are associated with P (and therefore A ⊂ P).
Then we have A ⊂ U∗.

Proof. Let a ∈ A. Since P is associated with a, we must have another
position R in X with P↓ = R↓ ∪ {a}. If a 6∈ U∗ then we would have both P
and also R being between U∗ and V∗ so that P is not determined by the pair
(U∗, V∗). This is a contradiction.

Conversely, we have

Theorem 5. With the same assumptions as before, U∗ ⊂ A.

Proof. Let u ∈ U∗. The problem is to show that u ∈ A. Since the pair
(U∗, V∗) is minimal, if we remove u from U∗ then there must exist some other
position Q with Q 6= P , such that U∗ \{u} ⊂ Q↓ and V∗ ⊂ Q↑. So we choose
Q to be the greatest position which is less than P , yet U∗ \ {u} ⊂ Q↓.

Now, if u ∈ A then we are finished. Otherwise, P\{u} remains a position
in X \ {u}. In this case, P↓ \Q↓ must contain more elements than just u. So
let v ∈ P↓\Q↓, with v 6= u. We must either have v 6> u or else u 6> v. If v 6> u
then since X is upwardly separating, there exists some b ∈ (v↑ ∩Q⇑) \ u↑. In
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particular, b 6> P . Then let Q′ be a position less than P↑ ∪ {b} and greater
than Q↓ ∪ {v}. We must have P > Q′ > Q, which is impossible, since Q
was chosen to be a maximal position beneath P . The case that u 6> v is
analogous.

Therefore we see that, for posets in W, the elements associated with
a position uniquely determine that position. Furthermore they always lie
beneath the position. Given the position P , and an element a < P with
which it is associated, then P↓ \ {a} is the lower set of a new position Q
in X, lying directly beneath P . Of course, Q may be associated with quite
different elements than those which were associated with P . Nevertheless,
we see that it is possible to descend systematically through the positions in
a poset in W by successively discarding single elements which are associated
with the positions.

Theorem 6. Let P be a non-elementary position in the poset X ∈ W, such
that P is associated with the elements a1, . . . , an. Then given any finite subset
K ⊂ X, there exists a finite subset Xf ⊂ X, with K ⊂ Xf , containing all
the elements a1, . . . , an, such that Pf = P ∩Xf is a position in Xf , and Pf

is also associated with precisely the elements a1, . . . , an.

Proof. For each ai there must exist an element ci of X with ci 6> ai, yet
ci > aj, for all j 6= i. Choose Xf ⊃ K so that it contains at least one such
element, for each i. Then for each element b ∈ Xf \P , there must exist some
d > P with d 6> b. Include at least one such d in Xf , for each such b.

3 Dimension

For finite posets, the standard definition of dimension is as follows. Let
(P,≤) be a poset, that is a finite set P , and an ordering relation, denoted
‘≤’, with ≤⊂ P × P . Different partial orderings can be assigned to P . The
set of all these partial orderings is itself a partially ordered set. Any given
partial ordering is contained within a maximal partial ordering, which is a
total ordering of P . Such a total ordering is a linear extension of the original
partial ordering. If two elements a, b ∈ P were related in the original partial
ordering, say a ≤ b, then obviously they will still have the same relation
in any linear extension. On the other hand, if a‖b in the original partial
ordering, then either a < b or a > b in any given linear extension. A realizer
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of the partial order is a set of linear extensions, denoted {L1, . . . , Ln}, such
that for any unrelated pair a‖b, we have a < b in one of these Li and a > b
in some other Lj. The minimum number of linear extensions necessary to
create a realizer is then defined to be the dimension of the poset (P,≤).

This definition is more appropriate for finite posets, rather than infinite
posets. Let us therefore say that an infinite poset is locally n-dimensional if
any finite subset, with the inherited partial ordering, is at most n-dimensional,
and this n is the minimum such number. But then, since no other definition
will be used, we can simply leave out the qualifier ‘locally’, and say that the
poset is n-dimensional.

To begin with, it is easy to show that all posets in W must be at least
3-dimensional.

Theorem 7. Let X ∈ W. Then the dimension of X is at least three.

Proof. Since every maximal anti-chain in X is infinite, we certainly do not
have the dimension being only one. But also we can find three elements x1,
x2, and x3 in X which are pairwise mutually unrelated.

Since X ∈ W, for each permutation (i, j, k) of the three numbers 1, 2,
3, there exists some y(i,j,k) ∈ X with y(i,j,k) greater than xi and xj, but
not greater than xk. Choose some finite subset Xf of X containing these
elements.

If Xf were two dimensional, then there would be a realizer consisting of
two linear extensions, L1 and L2. Let us say that in the linear extension
L1 we have x1 < x2 < x3. Then in the linear extension L2 we must have
x3 being less than both x1 and x2, and furthermore, x2 must be less than
x1. That is, we have x3 < x2 < x1 in L2. Since y(1,3,2) > x3, it must be
greater than x2 in L1. Also, since y(1,3,2) > x1, it must be greater than x2 in
L2. Therefore y(1,3,2) > x2 in both L1 and L2, hence also in Xf , which is a
contradiction.

Theorem 8. Assume that the dimension of the poset (X,≤) in W is n.
Then each position in X can be associated with at most n elements.

Proof. Let P be some position in X, and assume that it is associated with
n+1 different elements {x1, . . . , xn+1} of X. Then there is some finite subset
Xf ⊂ X, having the properties that {x1, . . . , xn+1} ⊂ Xf , and furthermore,
there exists a position R in Xf which is associated with {x1, . . . , xn+1}, such
that each xi is contained in R↓. Let {L1, . . . , Ln} be a realizer for Xf . For
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each i = 1, . . . , n, let j(i) be the number such that xj(i) is the highest element
in the linear order Li. Since there are n + 1 elements in {x1, . . . , xn+1}, it
must be that at least one of them, say xn+1, is not the highest element in any
of the linear orders in the realizer. But then, given any element p ∈ Xf , with
p > {x1, . . . , xn}, we must have p > xn+1, since it has this relation throughout
the realizer. Therefore we must have xn+1 < R, for all positions R which
contain {x1, . . . , xn}, and so if R is associated with xj, for j = 1, . . . , n, then
it cannot be associated with xn+1.

Theorem 9. Again assume that (X,≤) is a poset in W, which has dimension
n. We add in a further element p to X to obtain the larger set X ′ = X∪{p}.
The partial ordering of X is also extended by including new ordering relations
involving the element p in such a way as to make X ′ a poset in W. Assume
furthermore that in this extended poset X ′, we have that if q ∈ X with q‖p
then both the sets q↓\p↓ and p↓\q↓ are not empty. Then X ′ also has dimension
n.

Proof. Assume to the contrary that there exists some finite subset K ⊂ X ′

with dimension greater than n. Then we must have p ∈ K. For each q ∈ K
with q‖p, there must be some u ∈ X with u ∈ p↓ \q↓. Include one such u into
K for each such q. Since X is upwardly seperating and u‖q, there must be
some v ∈ X with v ∈ q↑ \ u↑. So include such a v into K as well. Therefore
we have u‖v and also u < p and v > q.

Similarly we can find u′, v′ in X such that u′‖v′ with u′ < q and v′ > p.
Add these elements in to K as well.

Now K \ {p} has dimension at most n. Therefore, let {L1, . . . , Ln} be
a realizer for K \ {p}. The extra element p can be included into each of
the linear extensions Li in some way. But note that since u‖v, we must
have u > v in one of the linear extensions, say in Lj. Therefore in Lj we
have p > u > v > q. On the other hand, by symmetry, one of the other
linear extensions, say Lj′ , has q > u′ > v′ > p. Therefore our set of n
linear extensions {L1, . . . , Ln}, when restricted to the original subset K, is a
realizer for that K. Thus the dimension of the original subset was at most
n. A contradiction.

In particular, an obvious procedure would be to add in the new element
p to X in such a way that p↓ is the lower set of a non-elementary position in
X.
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Thinking about this, it is interesting to consider constructing finite sub-
sets of posets in W in some systematic way. For example, one might begin
with some finite set M = {x1, . . . , xn}, of unrelated elements of X. Then,
starting from M as a set of lowest elements, we might add in more elements of
X above M , doing so in such a way that these elements have lower sets which
are non-elementary positions in the finite set, as it has been constructed up
to that stage. The possibilities then depend upon the number n of elements
in the starting set M .

• If M only consists of a single element x1, then the construction is very
limited. The only possibility is to construct the element a > x1 directly
above x1, so that there is no element between them. However, in this
case we have a↓ = {x1}, which is the lower set of x1 itself. Therefore
no construction is possible.

• If M consists of two elements M = {x1, x2}, then if we attempt to
construct a new element a above M , the only choice is to have a↓ = M ,
and so the construction again comes to a stop.

• If M has three elements, {x1, x2, x2}, then we either construct the first
element a above all three, but this again leads to a stop in the con-
struction. Alternatvely, a can be taken to be above two of the elements
of M , but not above the third. This gives three possibilities, but once
they have been constructed we can only construct three on top of them,
and so forth. This leads to a simple “generalized” chain.

• So it is only when M has at least four elements that a non-trivial
poset can be constructed, at least under these assumptions. With some
additional assumptions, this minimal number of 4, if taken, leads to the
constructed poset having dimension 4.

4 Variations

Let (X,≤) be a poset in W, and let a‖b be two unrelated elements in X such
that a↓ \ b↓ = ∅. For any given b, there must exist such a corresponding a,
owing to the fact that X is discrete.

Next, take P to be the greatest position which is less than both a and b.
That is, let U = {u ∈ X : u ∈ a↓ ∩ b↓}, and then let V = {v ∈ X : v > U}.
The pair (U, V ) is the position P .
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If P is a non-elementary position, then one possible variation which we
might consider is obtained by removing the element a from X, and then
inserting it into the position P . Let us denote the new poset thus obtained
X ′. Since in X we had a > P , it follows that a was not associated with P in
X so that it remains a position in X ′.

It is obvious that X ′ is a discrete poset. However, it is possible that the
property of extensionality is lost in X ′. This would be the case if there are
two elements p‖q in X with p↓ = q↓ ∪ {a}. In this case we might perform a
further variation so that the relation q < p results. It might also be the case
that X ′ is not upwardly seperating. This would be true if there were two
elements u and v, with u 6> a and v 6> a, and (u↑ ∩ v↑) \ a↑ ⊂ b↑.

But generally speaking, we will say that any finite reordering of the el-
ements of X, producing a new poset in W, will be called a valid variation.
(Finite here in the sense that if we examine the pairs of elements of X which
experience a change in their ordering relations, then there is a finite subset of
X such that each of the pairs has at least one member in that finite subset.)

5 Positions vs. Elements

Up till now, we have not specified any conditions which would tend to favor
one poset in W over another. But for various reasons, it seems interesting
to investigate the class of posets in W which are such that the proportion
of positions to elements is as low as possible. Since all posets in W are infi-
nite, it follows that there are always infinitely many positions and elements.
Therefore, in order to compare the proportion of positions to elements, we
need a method which only involves counting finite subsets.

Definition 5. Let X ∈ W. Given a, b ∈ X, then the subset B(a, b) = a↑∩b↓
is finite. Now let X ′ be a variation of X in the sense that X ′ is identical with
X in X \B(a, b). But in a↑ ∩ b↓, X ′ might differ from X. In fact in X ′, we
have that a↑ ∩ b↓ = B′, where B′ is in general different from B(a, b). On the
other hand, we require B′ to have the same number of elements as B(a, b),
and furthermore, we require that X ′ ∈ W. Given this, then we say that X ′

is an admissible variation of X between a and b.

So given two elements a < b in X, it is easy to compare the proportion
of positions to elements between a and b. There can only be finitely many
of each, so we only need to count them. The poset X will have the smallest
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proportion of positions to elements — at least between a and b — if there is
no admissible variation between a and b, such that the number of positions
between a and b in the varied poset X ′ is less than the corresponding number
in X.

But there is a problem. It may be that X is optimal between the two
points a < b in the sense that the number of positions there is as small as
possible with respect to admissible variations between a and b. But then we
can always take two further elements a′ < b′, such that a′ < a < b < b′,
so that admissible variations between a′ and b′ include those between a and
b. And then it might be that for such a pair, a′ and b′, there does exist a
variation X ′, having fewer positions between a′ and b′. This varied poset
could be different between a to b, even though in this varied version, the
number of positions between a and b might be greater. In fact, it may even
be the case that no elements in the varied poset X ′ correspond to our original
pair a and b.

Since X is upwardly separating, given elements like a and b, they can
be located in a larger variation X ′ by examining their upper sets a↑ and b↑
outside the varied region, assuming that corresponding elements a′ and b′

exist in X ′. This leads to the following definition.

Definition 6. The poset X ∈ W will be called dense if for any two related
elements a < b there exist further elements a′ < a < b < b′ such that for all
variations of X which include a′ and b′, a variation with the fewest positions
leaves the subset a↑ ∩ b↓ unchanged.

Therefore, the question is, what properties do the dense posets have (as-
suming that dense posets exist in the first place)?

To begin with, it is always possible to consider variations of the form
dealt with in the previous section. Let p, q ∈ X, with p‖q and p↓ ⊂ q↓.
Then, in the varied version X ′, the relation p‖q is changed to p < q, perhaps
together with sufficient further relations involving p to ensure that X ′ is still
in W.

Does X ′ have fewer positions than X? Since the only difference between
X ′ and X is the fact that in X ′, there are more relations involving the element
p, it is obvious that we need only consider positions with are associated with
p. But, as we have seen, positions are determined by their lower sets. And the
variation from X to X ′ only involves changes above the element p. Therefore
we need only examine positions above p, which are associated with p. (It may
be that in the variation, taking X to X ′ still more new ordering relations,
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not involving p, are necessary. But they must also be above p in X. Such
additional orderings will not be considered here.)

For simplicity, let us consider only the elements p and q in relation to
possible positions in X and X ′.

To begin, take two positions, A and B with B < A. Then we can descend
from A to B by observing first that A is associated with various elements
a1, . . . , an. So if we remove one of these elements, say p1 from A↓, where
a1 6< B, then we descend to a lower set A′ say, which has {a2, . . . , an} ⊂ A′

and A′ ≥ Q. The procedure is then repeated, using A′, rather than A. In
this way we descend through finitely many steps from A to B, at each stage
simply removing one single element with which the position is associated.

In particular, if we start from a position A above our two elements p and
q, then descend to a position B below both of the elements, then we can
compare the steps in X, and in X ′. There are generally many ways to do
this. However, let us consider what happens if, at some stage, descending
through X, we reach a position P which is associated with both p and q?

In this case, we can think about three different positions which will occur
in X, namely P itself, then the position R, whose lower set is P↓ \ {q},
and finally the position Q, whose lower set is P↓ \ {p}. On the other hand,
in X ′, the position P will have disappeared; it will have merged into Q.
Furthermore, R may, or may not, have disappeared.

Thus it seems reasonable to consider the following property. Namely, we
expect that a dense poset X does not contain any pairs of elements p and q,
with p‖q and p↓ \ q↓ = ∅, such that there exists a position P in X which is
associated with both p and q and such that the variation which is given by
indroducing the extra relations implied by p < q⇑, produces a poset in W.

Definition 7. Let us call a poset X ∈ W having this property a conditionally
dense poset.

The question of whether or not conditionally dense posets are necessarily
dense, or conversely, remains perhaps unclear. Nevertheless, this definition
gives us a practical method for testing finite configurations which might be
subsets of dense posets. So the question is, what properties do conditionally
dense posets have?
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6 Finite models for conditionally dense posets

The problem with our theory is that the posets in W are always infinite. Yet
we would like to know which finite configurations might occur in possible
dense, or at least conditionally dense posets in W. Computer experiments,
calculating possible variations, cannot be performed with infinite posets since
computers only have finite memories. Therefore it may be useful to change
the framework of our theory to allow finite posets, and thus enable us to
think about computer experiments with finite models.

The experiment we have in mind is the following. Begin by taking some
random finite poset X, which the computer generates using some arbitrary
procedure. The computer should then check that X is connected. Further-
more, we require that for all pairs of interior elements x and y of X, we have
x↓ 6= y↓. This gives us a kind of extensionality property for the finite model
X. Then we must check that X is future separating, in the sense that for
all interior triples of elements x, y and z with x 6> z and y 6> z, we always
have (x↑ ∩ y↑) \ z↑ 6= ∅. Given that we have found such a finite model, then
obviously we would expect it to have a great number of maximal elements in
comparison with the number of its interior elements.

Assuming that we have found such a finite poset X, then we would like to
see if it is possible to simplify X using some system of admissible variations
which give us a finite analog of a conditionally dense poset in W. To begin
with, it is reasonable to require that such an admissible variation would only
be allowed with respect to the interior elements of X. Therefore, given that
we have two interior elements p and q in X with p↓ \ q↓ = ∅, such that there
are no positions of X which are associated with both p and q, and such that
the variation which introduces all the relations implied by p < q⇓ produces
an extensional poset (with respect to the interior elements), then we will
consider this to be an admissible variation.

Note that the property of being upwardly separating (for the interior
elements of X) may become lost when such an admissible variation is per-
formed. We consider two ways different of dealing with such a possibility in
a computer simulation.

• On the one hand, we could say that if X is no longer upwardly separat-
ing after the variation, then this variation should not be taken after all;
we will no longer consider it to be an admissible variation. Unfortu-
nately though - as a practical matter - at each stage of the calculation,
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the computer would then be forced to check through many triples of
interior elements to see if any instances of a violation of the condition
of upward separation occurs in the varied poset. This would involve an
extreme increase in the complexity of the calculation.

• The alternative is to simply ignore the question of whether or not the
interior elements of the varied poset satisfy the condition of upward
separation. This procedure might be justified by observing that if the
finite model X were to actually occur as a finite subset of some poset
W ∈ W, then there will always be infinitely many elements in the
upper sets x↑, for all x ∈ X, when considered in W . The reason that
the variation of the finite model X might not be upwardly separating is
that there might be two interior elements a and b with a 6> p and b 6> p,
yet (a↑ ∩ b↑) \ p↑ ⊂ q↑ in X. Yet that does not rule out the possibility
that in the infinite set W , we do actually have (a↑∩ b↑)\p↑ 6⊂ q↑, owing
to the possible existence of many extra elements of W , upwards of X.

Using this procedure, a computer program could rapidly find all vari-
ations needed to reduce a randomly given poset satisfying our initial
conditions to one which is conditionally dense.
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