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1 Introduction

The purpose of this paper is to make more precise some of the assertions made
in previous papers. We begin with a short summary of the basic framework
which is to be used, and the properties of the partially ordered sets which
will be particularly needed.

Let (X,≤) be a partially ordered set (poset). We use the following no-
tation: given x ∈ X, then x↓ = {y ∈ X : y < x}, x⇓ = {y ∈ X : y ≤ x},
x↑ = {y ∈ X : y > x}, and x⇑ = {y ∈ X : y ≥ x}. Furthermore, if U ⊂ X,
then U↓ = {y ∈ X : y < u,∀u ∈ U}, and U⇓ = {y ∈ X : y ≤ u,∀u ∈ U}.
The notation U↑ and U⇑ is analogous. Given a pair of elements x and y in X,
then the notation x‖y means that both x 6≤ y and x 6≥ y. An element x will
be called a minimal element if x↓ = ∅. It is a maximal element if x↑ = ∅. If
an element is either minimal or maximal, then we will say that it is extreme.

The poset (X,≤) will be called discrete if x↓ \ y↓ is finite, for all pairs
of elements x and y in X. It is upwardly separating if for all x and y with
x 6≥ y, we have x↑ \ y↑ 6= ∅. It is called confluent below if for all x and y, we
have x↓ ∩ y↓ 6= ∅. It is called extensional if x↓ = y↓ ⇒ x = y.

Therefore, let W denote the class of all non-trivial, discrete, upwardly
separating, confluent below, extensional, connected posets which contain no
extreme elements. From now on, it will be assumed that all posets which we
consider will be elements of W.

In previous papers it was shown that if X ∈ W, then both the height
and the width of X must be infinite. That is, any maximal chain (totally
ordered subset), and also any maximal anti-chain (set of mutually unrelated
elements) must be infinite.
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2 Positions

Given some poset (X,≤) in W, and two non-empty subsets U , V ⊂ X, we
will say that the pair (U, V ) is a position in X if U ≤ V (that is, u ≤ v,
for all elements u ∈ U and v ∈ V ) such that if (U ′, V ′) is another pair with
U ′ ≤ V ′ and U ⊂ U ′, V ⊂ V ′, then we must have U = U ′ and V = V ′. Thus
the pair (U, V ) can be thought of as being a maximal double cone in X. We
denote the set of all positions in the poset (X,≤) by the symbol P(X).

For any element x ∈ X, the pair (x⇓, x⇑) is obviously a position. Such a
position will be called an elementary position. We distinguish between two
different kinds of elements of X. An element x ∈ X will be called essential
if the pair (x↓, x↑) is not a position in the poset (X \ {x},≤). Otherwise the
element is non-essential. Therefore it is reasonable to say that the structure
of X, as a poset, remains unchanged if a non-essential element is removed.
Put another way, the structure of X is essentially the same as that of the
complete poset generated by X, namely the set of all positions in X. For
finite posets, the analogous idea would be the MacNeille completion.

Theorem 1. An element x in a poset X ∈W is essential if and only if there
is no element y ∈ X with y‖x and x↓ ⊂ y↓.

Proof. Let U = x↓ and V = U⇑. Then the pair (U, V ) must be a position
since, if z < V with z 6< x, then since X is upwardly separating, there exists
some w ∈ x↑ \ z↑. But then w ∈ V , contradicting z < V .

If V = x⇑ then x is not essential and in this case, for all y ∈ V , that is,
for all y with x↓ ⊂ y↓, we have y > x. On the other hand, if V 6= x⇑ then x
is essential and there exists some y ∈ V \ x↑, that is, we have x↓ ⊂ y↓.

More generally, we can find positions in a poset X using the following
procedure. Let U∗ ⊂ X be some non-empty subset such that U∗⇑ 6= ∅. Then
take V = U∗⇑ and finally U = V⇓. Clearly the pair (U, V ) which is thus
produced is a position in X. Alternatively one could start with some non-
empty subset V ∗ ⊂ X such that V ∗⇓ 6= ∅. Then for U = V ∗⇓ and V = U⇑, we
again have (U, V ) being a position in X.

Given a position (U, V ) in X, we will say that an element x is associated
with the position if (U \ {x}, V \ {x}) is not a position in (X \ {x},≤). Thus
we can say that an element is essential if it is associated with itself. As was
shown in previous papers, if x is associated with the position (U, V ), then
x ∈ U . That is, x is below (less than or equal to) the position. Since X
is discrete, a position (U, V ) in X is associated with at most finitely many
elements of X. We will say that the poset X is essential if all its elements
are essential.
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Theorem 2. If the position (U, V ) in the poset X ∈ W is associated with
the element x ∈ X, then x is an essential element.

Proof. Since (U \ {x}, V ) is not a position in X \ {x}, there must be an
element y > U \ {x} with y 6∈ V . Therefore y 6> x, yet y > x↓.

Given any X ∈ W, let (S, T ) be some pair of subsets of X with S < T .
Then clearly there must be a position (U, V ) in X which is such that S ⊂ U
and T ⊂ V . Thus if we have two elements x, y ∈ X with x‖y, then since
X is upwardly separating, there is an element a ∈ x↑ \ y↑ Let S = {x} and
T = {a}. Any position (U, V ) with S ⊂ U and T ⊂ V is then above x
and not above y. Therefore X is also upwardly separating with respect to
positions.

A condition which sharpens the relationship between positions and the
elements with which they are associated is the following

Theorem 3. Let X ∈W. Assume furthermore that for any three elements
x, y, z in X such that x is not related to either y or z, there must exist
a further element a which is greater than x and greater than just one of y
and z. Then every non-elementary position is uniquely determined by the
elements with which it is associated. Specifically, each position is the lowest
position above all of the elements with which it is associated.

Proof. Let (U, V ) be a non-elementary position in X. Since (U, V ) is non-
elementary, there exist at least two maximal elements in U . Call them x and
y. They are unrelated, and since X is discrete, there are only finitely many
elements in U \ x⇓, one of which is y. If y is the only element in U \ x⇓,
then the position (U, V ) is associated with y. Otherwise, let z be another
element in U \ x⇓. Let a be above x and one of the elements y or z. If a is
above z then there are fewer elements in U \ a⇓ than there were in U \ x⇓.
If a is above y, then reverse the roles of y and z. Proceeding in this way, we
conclude that there is an element y ∈ U and an element a ∈ X such that
U \ a⇓ = {y}. Therefore we must have y being associated with (U, V ). This
shows that every position is associated with at least one element.

Assume now that the position (U, V ) is associated with the elements
x1, . . . , xn. Let (U ′, V ′) be a lowest possible position above x1, . . . , xn. We
have U ′ ⊂ U . If U ′ 6= U then we must have U \ U ′ 6= ∅ and therefore
V ′ \ V 6= ∅. Let a ∈ V ′ \ V . Then there exists some y ∈ U \ U ′ with a‖y.
As before, we now consider the finite set U \ a⇓, and we find an element in
it which is associated with (U, V ). However all the elements x1, . . . , xn are
contained within a⇓. This contradiction shows that U ′ = U .
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In order to describe the situation, let us say that a poset satisfying the
conditions of the theorem is strongly separating. From now on it will be
assumed that the posets of W are strongly separating.

Of course every poset in W contains many essential elements. This fol-
lows from the fact that such posets are discrete. But more than this, we have
shown that all positions, and hence the entire structure of such a poset, is de-
termined exclusively by the essential elements. Therefore, when considering
some specific X ∈W, we loose nothing if we simply discard all non-essential
elements. They may be considered to provide a sort of skeleton of the poset
X, allowing us to fill in the non-essential structure as much as we please, but
adding nothing essentially new in the process.

3 Defining probabilities in W

The procedure for defining probabilities in finite sets seems obvious.Given
some number n, then we consider all possible finite posets with n elements.
The probabilities are then fixed by saying that all of these posets are equally
likely. If we are interested in some particular configuration of elements which
might occur in a given poset with n elements, then the probability for such
a configuration would be the number of posets having that configuration,
divided by the total number of posets with n elements.

But even in finite posets, one could argue that this simple counting pro-
cedure is not the best. Given the idea of positions, we can think about
whether or not the various elements of the poset are essential or not. But
non-essential elements contribute nothing new to the structure of the poset.
Even if we were to discard them, their positions still remain. So should we
count them, or not, when calculating probabilities? The rule we will follow
is to calculate probabilities with respect to complete posets.

In particular, for the posets in W we will take the complete posets — that
is, posets consisting of all the positions in a given poset X ∈ W. Of course
X has both infinite width as well as infinite height. On the other hand, both
X and also P(X), the completion of X, are discrete so that it makes sense
to consider finite sub-posets when thinking about probabilities.

So the question is, what types of sub-posets should we choose? The
simplest system would be to take sets of the form a↓ \ b↓, for given elements
a > b in the poset X. Then, in particular, all positions (U, V ) lying between
b and a — that is, in a↓ ∩ b↑ — are completely determined by their lower
positions U , and these in turn are determined by the essential elements with
which they are associated, which must all be in a↓ \ b↓.

In the earlier paper Discrete Partially Ordered Sets in Physics, we have
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argued that a poset X in W is more probable than other possible finite
variations of X if for a given number of positions between given pairs of
elements b < a, the number of essential elements in a↓ ∩ b↑ is large. Or
put another way, for a given number of essential elements within a↓ \ b↓, the
number of positions between b and a is small.

In general, there will be many possible configurations of essential elements
to consider, leading to the idea that one or another of these configurations will
be more or less probable. However in one particular case we can assert that
a certain configuration of the poset X will be less probable than a slightly
varied configuration of X. The situation is the following.

4 A particular configuration

Assume we have two essential elements x and y in X with x‖y, yet x↓ ⊂ y↓.
Now we change X to the new poset X ′ by simply adding in a number of
additional ordering relations between x and the elements in y⇑. That is, X ′

consists of precisely the same elements as X, the ordering of X ′ contains all
of the ordering relations of X, and in addition we have all the relations given
by x < y⇑. Adding in these extra relations gives us a new ordering on the
set of elements of X. Clearly what results is still a poset, although it may
no longer be an element of our class W. So let us call this new, varied poset
(X ′,≤′), where of course the elements of X ′ are the same as those of X.

We would like to be able to say that this varied poset X ′ has fewer
positions than does X. Thus, as long as it remains in our class W, it would
be more probable than X. A first step in this direction would be to show
that, at least, X ′ has no more positions than does X. That is, to show that
there exists an injective mapping P(X ′)→ P(X).

Theorem 4. There exists an injective mapping ψ : P(X ′)→ P(X).

Proof. Given (U ′, V ′) ∈ P(X ′), let V = U ′⇑ in the ordering of X, and then
take U = V⇓, again in the ordering of X. We define ψ(U ′, V ′) = (U, V ). To
show that ψ is an injection, assume that there were two different positions
(U ′, V ′) and (U ′′, V ′′) in P(X ′), such that U ′⇑ = U ′′⇑ , when considered in X.
But then, since the ordering relations of all elements a 6= x with further
elements in the upwards direction are the same, both in X and in X ′, it
follows that U ′ and U ′′ can only differ in that one of these sets contains the
element x, while the other set doesn’t contain x. So let us say that x 6∈ U ′,
while U ′′ = U ′ ∪ {x}. Therefore there must be some element b ∈ V ′ \ V ′′
with b 6> x in the ordering of X ′. In particular, b 6> x in the ordering of X.
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But then also in the ordering of X we would have b > U ′, while b 6> U ′′.
Therefore in X we must have U ′⇑ 6= U ′′⇑ , which is a contradiction.

Theorem 5. There exists a position in X which is associated with both x
and y.

Proof. Let (U, V ) be the lowest position above both x and y. That is, V =
{x, y}⇑ and U = V⇓. If (U, V ) is not associated with x, then let z1 6= y be an
element with which (U, V ) is associated. Since X is assumed to be strongly
separating, there exists an element w1 > y for which either

1. w1 > x, w1 6> z1 or

2. w1 > z1, w1 6> x.

But w1 6> z1 is impossible, for then we would have z1 6∈ U . Thus, w1 >
{z1, y}, while w1 6> x. However since (U, V ) is not associated with x, there
must then be some further element z2 with which (U, V ) is associated, such
that z2 6< w1. Again, take w2 > w1 such that w2 is only greater than one
of x or z2. As before, we conclude that there is a further element z3, not
equal to z1 or z2, with which the position (U, V ) is associated. And so forth,
producing an infinite sequence of elements zi, i ∈ N. However every position
can only be associated with finitely many elements. Therefore we conclude
that (U, V ) must be associated with x. Reversing the roles of x and y shows
that (U, V ) is also associated with y.

Therefore our variation, changing x‖y to x < y, will eliminate this lowest
position above x and y, and so the varied poset should be more probable.

On the other hand we have seen that an element x ∈ X is essential
precisely when some other element y ∈ X exists such that x‖y and x↓ ⊂
y↓. Furthermore, all posets in W contain infinitely many essential elements.
Therefore it is clear that if we wish to remain in W, then we must allow
many such pairs to remain unrelated to one another.

The question then is, which pairs should be varied, adding new ordering
relations, allowing us to obtain a more probable poset which is still in W?
For this, we return to the argument showing that the posets having fewer
positions in relation to the essential elements are more probable. According
to theorem 5, a position (U, V ) in the poset X ∈ W will disappear in the
variation which adds the new relations x < y⇓ if it is associated with both x
and y.

Now each position in X is associated with only finitely many elements of
X. Given that a position (U, V ) is associated with some element z ∈ X say,
then we can define the distance between the position (U, V ) and the element
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z to be the number of essential elements in the set U \z⇓. Let us assume that
in a typical poset X in W, given two elements a > b in X which are a given
distance apart (that is, the number of essential elements in a↓ \ b↓ is some
given number N), the positions between a and b are associated, on average,
with some number nP of essential elements. Therefore nP is a function of
the number N . Furthermore, the average distance between those positions
and the elements with which they are associated is some number dP . Given
this, then it is clear that if we have a pair of essential elements (x, y), with
x‖y and x↓ ⊂ y↓, which is such that the set y↓ \ x↓ is much larger than dP ,
then it is not probable that many positions are associated with both x and
y. Therefore we conclude that for a pair which is such that x is close to y,
in the sense that the number of elements in the set y↓ \ x↓ is small, then the
variation giving the new relations x < y⇓ is probable. On the other hand,
if x is far away from y, then the variation does not lead to a more probable
poset. Put another way, a probable poset is such that these pairs are far
apart from one another; it is improbable that a pair with x‖y and x↓ ⊂ y↓ is
such that the number of elements in y↓ \ x↓ is small. And we can take this
conclusion to be true independently of which elements a > b are chosen for
specifying some region a↓ \ b↓ within the poset X.

5 Generalized chains

If we were dealing with finite posets rather than the posets in W, then the
results of the last section would show that the variation described there would
result in fewer positions. However the same cannot always be said for infinite
posets. After all, if there are infinitely many positions, then removing a few
of them leaves us still with infinitely many positions. Nevertheless, it seems
reasonable to assume that a probable poset in W would consist of definite
chain-like structures so that for any element, it would be clear which chain
it belongs to. A chain such as · · · < yi−1 < yi < yi+1 < · · · (which could also
be finite), would be identified by the fact that the distance between adjacent
elements, that is the number of essential elements in the set yi+1↓\yi↓ is small
for each i.

So if we assume that a typical poset in W consists of closely-packed
chains then another consideration comes into effect, which again is contrary
to the conclusion which was drawn in the last section, namely that it is
improbable that a pair (x, y) with x‖y and x↓ ⊂ y↓ is close together. For let
us say that we have two distinct chains, · · · < xi−1 < xi < xi+1 < · · · and
· · · < yj−1 < yj < yj+1 < · · · in the poset X. If the chains are far apart,
then given some element xi of the first chain, we find that there are many
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elements yj, yj+1, . . . , yj+n of the second chain with xi‖yk, for k = j, . . . , j+n.
Thus we have many pairs of unrelated elements, and each such pair could be
associated with some position. On the other hand, if the two chains are close
together, then there are fewer unrelated pairs between the chains, thus fewer
positions which are associated with elements of both chains. Thus it will be
probable that the two chains are close together, and this leads to the idea
that generalized chains of some order n are probable. That is, chains of the
form . . . , xi−1, xi, xi+1, . . . , with xi < xi+n for all i, yet xi‖xj if |i− j| < n.

But now the question arises as to whether even these generalized chains
will become packed together as closely as possible. However at this point
another effect, involving the overall geometry of the poset, may become im-
portant. To illustrate this, consider three dimensional Euclidean space R3,
with the partial ordering (x1, y1, t1) ≤ (x2, y2, t2) precisely when t1 ≤ t2 and
x21 + y21 ≤ x22 + y22. If we then consider four separate “time-like” lines, say
L1, L2, L3 and L4 in R3, and if we restrict ourselves to positions of the form
(p⇓, p⇑), for points p ∈ R3, then we find that if the intersections of the surface
of the cone p⇓ with three of the lines, say L1, L2 and L3 are given, then there
is no further freedom in our choice of the point of intersection with L4. Anal-
ogously, taking chains in our posets rather than time-like lines, and assuming
that the posets have some definite dimension, we would expect that it would
not necessarily be probable for these generalized chains to be close together
rather than far apart.

All of this leads to further speculation on possible structures which would
be probable in posets in W. In the previous paper Discrete Partially Ordered
Sets in Physics, we have argued that structures might arise which model
phenomena occurring in physics.
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