
Poset Dimension: Various Definitions

by Geoffrey Hemion

1 Simplicial orderings

Let X be a finite partially ordered set (poset). The order ‘�’ can be taken to
be a subset of the product X×X satisfying the usual conditions: (a, a) ∈ �,
for all a ∈ X; (a, b) ∈ � and (b, a) ∈ � implies a = b ; and (a, b) ∈ � and
(b, c) ∈ � implies (a, c) ∈ �. A linear order � is such that for any two
elements a, b ∈ X we have either (a, b) ∈ �, or (b, a) ∈ �. Rather than
writing ‘(a, b) ∈ �’, it is more usual to write ‘a ≤ b’. If we write a < b, then
that implies that a 6= b. The standard notation a‖b means both a 6≤ b and
b 6≤ a. Also a ⊥ b means that either a ≤ b or b ≤ a.

Given two possible partial orders �1, �2⊂ X×X, then if �1⊂�2, we say
that �2 is an extension of �1. It is not difficult to see that for any partial
ordering of a finite set X, there exists a linear extension; that is, an extension
which is a linear order. Given a finite poset (X,�), then there exists a finite
set {�1, . . . ,�n} of linear extensions of � which realizes �. That means that
for any pair of elements a and b with a‖b, there is some �i with (a, b) ∈ �i,
and furthermore, there is some j with (b, a) ∈ �j. Another way to describe
this is to say that the original partial order � is the intersection �1 ∩ · · · ∩ �n

of all the linear orders in the realizer. Finally, the dimension of the poset
(X,�) is the smallest number n such that there exists a realizer with only n

elements. Let us call this the standard definition of dimension.
But the usual idea of dimension is something which is based on geometry,

not combinatorics. Let R
n be Euclidean n-dimensional space. A typical

point in R
n can be represented by an n-tuple of real numbers (x1, . . . , xn).

A method of ordering the points of R
n is to say that if (x1, . . . , xn) and

(y1, . . . , yn) are two points of Rn, then (x1, . . . , xn) ≤ (y1, . . . , yn) if, and only
if, xi ≤ yi, for all i = 1, . . . , n. Let us call this the standard ordering of Rn.

A finite poset (X,�) has dimension n if it can be embedded in R
n in such

a way that the ordering is preserved. And there is no such embedding in R
n

for any m < n.
To see this, let us number the elements of X in some arbitrary way

{x1, . . . , xp}, where we assume that X contains p elements. For simplicity
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we could simply identify them with the first p positive integers {1, . . . , p}.
Then each linear order �i in a realizer {�1, . . . ,�n} can be represented by
a permutation (σi(1), . . . , σi(p)) of the set {1, . . . , p}. Given this, then the
embedding X → R

n such that xj → (σ1(j), . . . , σn(j)), for each xj ∈ X, is
order-preserving. On the other hand, if there is an order preserving mapping
X → R

m, then there must be a realizer for �, containing m linear orders.

So given a finite poset (X,�) whose dimension, according to the standard
definition, is n, then we see that it can be realized by an order-preserving
embedding f : X → R

n in R
n, such that all elements of X are mapped to

points of Rn, all of whose coordinates are positive. By perhaps adjusting the
coordinates slightly, we can assume that the embedding is such that no two
elements of X have any coordinates which are equal.

Concentrating on the Euclidean space R
n, let (q1, . . . , qn) ∈ R

n be a
typical point. Let H ⊂ R

n be the n − 1 dimensional hyperplane given by
the equation q1 + · · · + qn = 0. For each element xj ∈ X in its embedding
in R

n, let ∆j ⊂ H be the set of points of H which are less than f(xj),
in the standard ordering of Rn. Thus ∆j has the natural structure of an
(n − 1)-simplex, and furthermore, given any two such (n − 1)-simplexes ∆j

and ∆k, we see that their corresponding faces must be parallel. Also, by
perhaps adjusting slightly the coordinates assigned to the elements of X, we
may assume that all of these simplexes are in general position with respect to
one another. Identifying H with R

n−1, we have a representation of the poset
(X,�) in terms of a set of (n − 1)-simplexes in R

n−1, with corresponding
faces parallel, such that xj ≤ xk if, and only if, ∆j ⊆ ∆k.

Definition 1. A representation of a finite poset X in terms of a set of
n-simplexes in general position in some Euclidean space R

n, such that corre-
sponding faces are always parallel, and such that the ordering of X is given
by the inclusion ordering of the simplexes, will be called a simplicial ordering
on X.

Therefore we see that a finite poset (X,�) has dimension n, according to
the standard definition, if and only if it has an (n−1)-dimensional simplicial
ordering, and no simplicial ordering of smaller dimension.

Definition 2. A poset (X,�) which has dimension n according to the stan-
dard definition of dimension, will also be said to have simplicial dimension
n. That is, there exists a representation of X in terms of parallel simplexes
in R

n−1, but there is no such representation in R
n−2.
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2 Sphere orderings

A sphere in R
n with center x ∈ R

n and radius r ≥ 0 is the boundary of the
spherical ball B(x, r) = {y ∈ R

n : ‖y−x‖ ≤ r}. Given a set of such spherical
balls B1, . . . , Bp in R

n, then we can assign a partial ordering to the set by
the rule Bi ≤ Bj if and only if Bi ⊆ Bj. That is, the inclusion ordering.
Given a partially ordered set (X,�), then we will say that it has a sphere
order of dimension n if there is an isomorphism (that is, an order-preserving
bijection) onto a set of spherical balls B1, . . . , Bp in R

n−1.
Rather than concentrating on the interiors of the Bi, it is more convenient

to concentrate on the boundaries ∂Bi. Such a boundary is an (n−1)-sphere,
which we denote by Si. There is no loss of generality if we assume that if
Si∩Sj 6= ∅, then Si∩Sj is an (n−2)-sphere in R

n. And more generally, we may
assume that the intersection of any m of the (n−1)-spheres, Si(1)∩· · ·∩Si(m),
for m < n − 1, is either empty, or else it is an (n −m − 1)-sphere. That is,
the set of spheres S1, . . . , Sp is in general position in R

n.

Definition 3. The finite poset (X,�) will be said to have the sphere dimen-
sion n if it has a sphere order in terms of spherical balls in R

n−1, but there
is no such representation in R

n−2.

3 Relationships between simplicial dimension

and sphere dimension

What is the relationship between the simplicial dimension and the sphere
dimension? Surprisingly little!

Let Qn be the “standard n-dimensional poset”. That is, Qn consists of
2n elements, Qn = {a1, . . . , an, b1, . . . , bn} such that for each i, we have ai‖bi,
and ai < bj for i 6= j. Apart from that we have ai‖aj and bi‖bj, for all i 6= j.

Then, as the name implies, Qn has dimension n, according to the standard
definition of dimension.1 Hence the simplicial dimension of Qn is also n.
However, as is well known, the sphere dimension of Qn is 3, for all n ≥
3. Thus there are posets with large simplicial dimension, yet small sphere
dimension.

On the other hand, Felsner, Fishburn, and Trotter2 have proven the re-
markable result that there exists a finite poset with simplicial dimension 3,

1For example, see the book “Combinatorics and Partially ordered Sets”, by William
T. Trotter.

2Finite Three Dimensional Partial Orders which are not Sphere Orders, 1998.
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yet no sphere order of any dimension. So one could say that in some sense,
this finite poset has infinite sphere dimension!

Somehow though, one feels that these results simply reflect the limita-
tions which arise when we insist on retaining the rigidity of spheres at all
costs. After all, if we are allowed to “bend” the spheres, then one kind
of bending allows us to transform spheres into simplexes, then back again.
Wouldn’t a more sensible “topological” definition be possible, encompassing
both possibilities?

4 How spheres intersect

Theorem 1. Let S be an (n+1)-dimensional sphere (or simply Rn+1), n > 1,
and let S1, S2, and S3 be three n-dimensional spheres embedded in S in
general position. Assume that both S1∩S3 and S2∩S3 are (n−1)-dimensional
spheres on S3, and (S1∩S3)∩ (S2∩S3) = ∅. For each i, let Bi be the closure
of one of the components of S \ Si (i = 1, 2, 3). If we take R

n+1 rather then
the (n + 1)-sphere S, then choose Bi to be the component which does not
include the point at infinity. There are then 23 = 8 possibilities for whether
points of S are, or are not, in the various sets B1, B2, and B3. However, at
least one of these possibilities is empty.

Proof. The two (n−1)-spheres S1∩S3 and S2∩S3 are disjoint on S3. Therefore
they separate S3 into three components. If S1 and S2 intersect within B3

then they separate B3 into four components. However in this case, S1 and
S2 cannot intersect within S \B3. Therefore S1 and S2 separate S \B3 into
only three components.

Therefore we conclude that if we have such a situation as described in
theorem 1: an (n+ 1)-dimensional sphere S, containing three n-dimensional
spheres in general position, then if all 8 possible combinations of being on one
side or the other of the various n-spheres are realized by non-empty subsets
of S, it must follow that the intersection of the three n-dimensional spheres
is, in fact, an (n− 2)-dimensional sphere.

5 Spheres on the surface of a simplex

Theorem 2. Let ∆ be an n-simplex, and let C1, . . . , Cm (with m ≤ n) be
a collection of (n − 1)-dimensional cells in ∆. That is to say, each Cj is a
union of some subset of the (n − 1)-dimensional sub-simplexes (or faces) of
∆. Furthermore, we assume that Ci ∩ Cj is at most an (n− 2)-dimensional
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complex for each pair i 6= j. i.e. the Cj have no “overlap”. Finally, we
assume that the (n − 1)-cells cover ∂∆, the boundary of ∆. That is, every
(n− 1)-sub-simplex of ∆ is contained in one, and only one, of the Cj. Then
C1 ∩ · · · ∩ Cm is a combinatorial (n−m− 1)-sphere.

Proof. If m = n then one single (n − 1)-cell, say C1, consists of two of the
(n− 1)-simplexes (faces) of ∆. All the rest of the Cj only consist of a single
face. Therefore in this case C1 ∩ · · · ∩Cm consists of just two of the vertexes
of ∆. Thus it is a combinatorial 0-simplex, as required.

If m < n we use induction on the number n−m. But to begin, note that
since each face of ∆ contains n vertexes, while ∆ itself contains n+1 vertexes,
it follows that the intersection of any two different faces is an (n−2)-simplex
containing n− 1 vertexes. Similarly, if α is an (n− 2)-simplex in ∆, and δ is
an (n− 1)-simplex (that is to say, a face of ∆), such that α is not contained
in δ, then α ∩ δ must be an (n− 3)-simplex on the boundary of α.

The next thing to do is to prove that C1∩ · · ·∩Cm 6= ∅. In particular, we
prove that there is some vertex v of ∆ in C1 ∩ · · · ∩Cm. Take some vertex w

which is not in all the Cj. (Obviously, if no such w exists then we are trivially
finished.) Say, w 6∈ C1. Then C1 must be the single face of ∆ which doesn’t
contain w. Therefore, all other faces of ∆ must meet C1 in (n− 2)-simplexes
on the boundary of C1. These faces belong to the Cj, for j > 1. They give
us m − 1 collections of (n − 2)-simplexes on the single (n − 1)-simplex C1.
An induction proves that C1 ∩ · · · ∩ Cm 6= ∅.

So let v be a vertex in C1∩· · ·∩Cm. Let δ be the face of ∆ which doesn’t
contain v. We must have δ being contained in one of the Cj; say δ is in C1.
Let us say that C∗

1 is the set of faces of ∆ in C1, but not including δ.
The boundary, ∂δ consists of n simplexes, each of dimension (n−2). The

intersections Cj∩∂δ, for j > 1, together with C∗

1∩∂δ, give us m collections of
faces, call them c1, . . . , cn, of the (n− 1)-simplex δ. Therefore, an induction
proves that c1 ∩ · · · ∩ cm is an ((n − 1) −m − 1)-dimensional combinatorial
sphere Sv on ∂δ. Connecting each of the ((n− 1)−m− 1)-simplexes of Sv to
the vertex v gives us a combinatorial (n−m− 1)-dimensional disc D which
is contained in C1 ∩ · · · ∩ Cm.

Therefore we know that C1∩· · ·∩Cm contains more than one vertex. Let
v1 6= v be another vertex in C1 ∩ · · · ∩ Cm. Let δ1 be the face of ∆ which
does not contain v1. Since v1 ∈ C1 ∩ · · · ∩ Cm, it cannot be the case that δ1
is by itself one of the Cj. Therefore, arguing as before, we obtain another
combinatorial sphere Sv1 on the boundary of δ1, such that Sv1 is contained in
C1∩ · · · ∩Cm. However, the sphere Sv1 must be contained within D. Thus it
bounds a combinatorial disc D1 in D. As before, we connect the simplexes
of Sv1 to v1, giving us a further combinatorial disc D2. The union of D1 and
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D2 is then the sought-after (n−m− 1)-sphere which is C1 ∩ · · · ∩ Cm.

6 Complete posets and the set P∗(Qn)

Given a finite poset (X,�), we can consider the set of positions which are
contained within the poset. A position is a pair of non-empty subsets of X,
namely (U, V ), such that u ≤ v for all u ∈ U and v ∈ V . The pair is assumed
to be maximal, in the sense that if a ∈ X with a ≤ v for all v ∈ V , then
a ∈ U ; also if b ∈ X with b ≥ u for all u ∈ U , then b ∈ V . We can say that
U is the lower set of the position, and V is the upper set of the position.

Let P (X) be the set of positions of (X,�). Then P (X) is itself a poset
in a natural way, and it contains X as a sub-poset. It is complete in the
sense that P (P (X)) is simply isomorphic to P (X). All of this is related to
the well-known MacNeille completion of posets.

It is interesting to consider P (Qn). This has (nearly) the combinatorial
structure of an (n − 1)-simplex. The vertexes of this simplex are the posi-
tions whose lower sets contain just one of the elements {ai}. Thus there are
n different vertexes. The edges are the positions whose lower sets consist of
precisely two of the elements {ai, aj}, where i 6= j. The 2-dimensional faces
are the positions whose lower sets consist of three distinct elements from the
set {a1, . . . , an}, and so forth. But note that there is no position correspond-
ing with the whole (n − 1)-simplex itself, since the whole set {a1, . . . , an}
cannot be the lower set of a position in P (Qn). (For otherwise, the corre-
sponding upper set would be empty.) Therefore, P (Qn) has the structure of
the boundary of a combinatorial (n− 1)-simplex. Put another way, P (Qn) is
a combinatorial (n − 2)-sphere. The MacNeille completion involves adding
in a single element below all other elements in P (Qn), and also an element
above all other elements in P (Qn). Let us call the resulting poset P∗(Qn). It
is a lattice; the smallest lattice containing Qn.

Given any finite poset (X,�) with simplicial dimension n, then the sim-
plicial dimension of P (X) is also n. Thus the simplicial dimension of P (Qn)
is n. On the other hand we have seen above that the sphere dimension of Qn

is only 3, for n ≥ 3. But then we have the following theorem3:

Theorem 3. The sphere dimension of P∗(Qn) is at least n.

Proof. To see this, let us assume that P∗(Qn) has a sphere order which is less
than n, and we then look for a contradiction. Therefore we begin by assuming
that there is a collection of spherical balls in the Euclidean space Rn−2 which,

3These results were proven in: Posets und Positionen, by Joerg Zender (Diplomarbeit,
Universität Bielefeld, 2008
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when considered to be partially ordered by set inclusion, is isomorphic with
P∗(Qn). The boundaries of the balls are (n−3)-spheres, and we assume that
they are in general position.

In particular, if we disregard the greatest element of P∗(Qn), we see that
there are n maximal elements of Qn, call them x1, . . . , xn, which are also
maximal elements of P (Qn). These n maximal elements correspond with
n spherical balls B1, . . . , Bn in R

n−2, representing the (n − 1)-dimensional
sphere order for P∗(Qn). The spheres which are the boundaries of the spher-
ical balls will be called S1, . . . , Sn. They are all spheres of dimension n− 3,
embedded in general position in R

n−2.
Since the x1, . . . , xn are all unrelated to one another, we have Bi 6⊂ Bj,

for all i 6= j. But also, given any m ≤ n of the xi, say xi(1), . . . , xi(m), then
there is an element of P∗(Qn) which is beneath just these elements, but not
beneath any of the other xj. Thus in R

n−2, there is a spherical ball in the
sphere order for P∗(Qn) which is contained in Bi(1) ∩ · · · ∩ Bi(m), yet not
contained in any of the other Bj.

Let us now consider the sphere Sn, and we examine the intersections
Bi∩Sn, for i = 1, . . . , n−1. These are (n−3)-dimensional cells on Sn, each of
whose boundaries is an (n−4)-sphere. (Since we must have B1∩· · ·∩Bn 6= ∅,
it follows that each of the setsBi∩Sn is non-empty.) Let us write Ci = Bi∩Sn,
for each i.

Can it be that Ci ⊂ Cj, for some i 6= j? That would mean that the
boundary of Ci would have no intersection with the boundary of Cj. But that
would contradict theorem 1, since in R

n−2, all combinations of possibilities
for points being either within, or not within Bi, Bj or Bn, must represent
non-empty subsets of Rn−2.

In addition to the Ci, we can also consider the intersections of the other
spherical balls with Sn in the sphere order for P∗(Qn). Obviously, for the balls
contained within Bn, representing the elements of P∗(Qn) beneath xn, the
intersection with Sn is empty. The balls representing the elements of P∗(Qn)
not beneath xn must all intersect Sn (since they all contain the lowest element
of P∗(Qn)). So we have a system of (n − 3)-cells on Sn in general position.
For these cells, theorem 1 shows that given two cells on Sn, one is contained
within the other if and only if the corresponding spherical ball in R

n−2 is
contained within the other.

As before, we can take any m ≤ n − 1, and choose any combination
Ci(1), . . . , Ci(m) of the n− 1 cells C1, . . . , Cn−1 on Sn. Then there is a cell on
Sn which is contained in Ci(1) ∩ · · · ∩ Ci(m), yet not contained within any of
the other Cj.

Repeating this procedure, reducing the number of cells and the dimension
at each step, we finally arrive at the situation that we have four 2-cells in
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general position in the two-sphere. In addition to these, we must have further
2-cells, representing elements of P∗(Qn) such that for any combination of the
four 2-cells, a cell is contained within their intersection, but not contained in
any of the other of the four 2-cells. This is impossible.

7 The same proof with simplexes

Of course we already know that the simplicial dimension of P∗(Qn) is n.
However we would like to see if the proof in the previous section is also valid
when sets of (n − 1)-simplexes with parallel faces in R

n−1 are used instead
of the spherical balls in that proof. So what were the properties of those
spherical balls which were needed?

• To begin with, it was assumed that the spheres, S1, . . . , Sp, which were
the boundaries of the balls, B1, . . . , Bp, representing all of the elements
in P∗(Qn), were in general position.

Similarly, if ∆1, . . . ,∆p are the simplexes in R
n−1 in a given simpli-

cial ordering of P∗(Qn), then we may assume that the boundaries
∂∆1, . . . , ∂∆p are in general position.

• Any non-empty intersection of m of the spheres Si(1) ∩ · · · ∩ Si(m) in
R

n−1 is a single (n−m− 1)-sphere.

Similarly, if ∆i(1) ∩ · · · ∩ ∆i(m) is not empty, then it is itself a single
(n−1)-simplex, ∆, in R

n−1. The set ∂∆i(1)∩· · ·∩∂∆i(m) is contained in
∂∆. More specifically, each of the sets ∂∆i(j) is a combinatorial (n−2)-
cell on ∂∆. Therefore, according to theorem 2, ∂∆i(1) ∩ · · · ∩ ∂∆i(m)

must be a combinatorial (n−m− 1)-sphere on ∂∆.

• The proof of theorem 3 only uses the topological relationships involved
in the embeddings of the various spheres. Therefore it applies equally
well to the boundaries of the simplexes in a simplicial ordering.

8 Cell orderings

Given a simplicial ordering of a finite poset (X,�), then each of the elements
of X is represented by a simplex in R

n−1. But of course each such simplex
is just the simplest kind of combinatorial (n − 1)-cell. On the other hand,
if we have a sphere ordering of the poset, then the elements are represented
by spherical balls in R

n−1 whose boundaries are (n − 2)-spheres. Yet it
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is a simple matter to replace these spherical balls with simplicial (n − 1)-
cells, say G1, . . . , Gp, each of which is a simplicial complex, whose boundaries
∂G1, . . . , ∂Gp are simplicial (n− 2)-spheres. This can be done in such a way
that any non-empty intersection of m of the boundaries ∂Gi(1) ∩ · · · ∩ ∂Gi(m)

is a single combinatorial (n−m− 1)-sphere.
Let us call any such representation of a finite poset in terms of (n−1)-cells

in R
n−1 a cell ordering of dimension n.

Definition 4. The finite poset (X,�) will be said to have cell dimension
n if there exists a cell ordering of dimension n, and n is the smallest such
number.

Therefore we see that the cell dimension is always no greater than either
the simplicial (or standard) dimension, or the sphere dimension. Further-
more, the proof of theorem 3 can be equally applied to cell orders to show
that the cell dimension of P∗(Qn) is at least n. However, it cannot be more
than n, since the simplicial dimension is n. This leads to the theorem:

Theorem 4. The cell dimension of P∗(Qn) is n.

And more generally, we can say that if a poset (X,�) contains P∗(Qn)
as a subset, then its cell dimension is at least n. On the other hand, Qn

alone only has cell dimension 3, so it may be that a poset of high dimension,
according to the standard definition, only has a low cell dimension. Yet we
can certainly say that any finite poset does have a finite cell dimension.

In a given poset (X,�), a totally ordered subset C ⊂ X is called a chain.
A subset A ⊂ X which is such that for all x, y ∈ A we have x‖y, is called an
antichain. A chain, or an antichain is maximal if it is not properly contained
within a further chain, or antichain, respectively. If we are interested in
describing the phenomena of the physical world in terms of posets, then
it is natural to associate maximal chains with “time lines”, and maximal
antichains would be space-like hyperplanes. That is to say, we have the
association: chains ←→ time; antichains ←→ space.

Time is only one dimensional, and thus it is presumably devoid of ge-
ometry. It is in space that we expect to experience geometric phenomena,
and therefore it is natural to concentrate on maximal antichains. Given such
an antichain A, then the elements x of X above A can be represented (not
necessarily uniquely) by the set A(x) = {a ∈ A : a < x}. In Minkowski
space, if A is a hyperplane then the sets of the form A(x) are spherical balls,
and this was the motivation for defining the sphere dimension of an arbitrary
finite poset. But according to the theory of relativity, physical space is not
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flat, and thus the sets A(x) are no longer spherical balls. Hence the idea of
the cell dimension would seem to be the more appropriate definition for use
in physics.4

4Note in this connection that we have shown in
“ www.math.uni-bielefeld.de/∼hemion/local probabilities.pdf ”
that local 4-dimensionality is a natural characteristic of finite partially ordered sets.
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