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1 Definitions

Let X be a partially ordered set, or poset. For elements x, y ∈ X we distin-
guish the two cases that x and y are either related to one another or they are
unrelated. We use the notation x ⊥ y to mean that either x ≤ y or y ≤ x,
and x‖y means that both x 6≤ y and y 6≤ x. Given x < y then the set of
elements between x and y is

x G y = {u ∈ X : x < u < y}.

The set of elements beneath x is

x↓ = {u ∈ X : u < x}

and if the element x is to be included in this set then we have

x⇓ = {u ∈ X : u ≤ x}.

The sets x↑ and x⇑ are defined analogously for elements above x.
As a first idea of what we mean by local probabilities, consider the fol-

lowing. Let n and N be two numbers with n < N . We then take all possible
partially ordered sets X consisting of N elements, and for each such X we
consider all possible pairs a < b of elements in X such that a G b consists of
precisely n elements. These different sets of the form a G b fall into equiv-
alence classes, where two such sets are equivalent if they are isomorphic as
partially ordered sets. Then we can say that the relative probabilities of
the different equivalence classes of these “between sets” is proportional to
the number of sets in each class. Given n, the relative probabilities will de-
pend upon the choice of N . Perhaps in the limit as N becomes larger, these
relative probabilities might converge to some limiting values.

But there is a problem with this method. To illustrate the problem,
consider the situation with n = 2. That is, we have two elements a < b and
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two further elements u and v with a < u < b and a < v < b. There are two
cases: either u‖v or u ⊥ v. In the case u ⊥ v, we either have u < v or else
v < u. But both are isomorphic as partially ordered sets, so to be definite
we choose u < v. Let U and U ′ each be posets consisting of the elements
{a, b, u, v}, with U having u‖v and U ′ having u < v.

For some larger N , let X be a poset containing as a subposet U , and we
assume that also in X we have a G b = {u, v}. Now take some arbitrary
x ∈ X, not in U . For each of the elements u and v we might have x either
being related to them, or not. There are seven possibilities: either x is
unrelated to both u and v, or x is either above or below one of them, or x is
either above or below both.

On the other hand, analogously, if X ′ contains U ′ then there are only five
possibilities for the relationships an element x′ ∈ X ′ which is not in U ′ can
have with {u, v}. Either x′ is unrelated to both u and v, or x′ > v (and thus
automatically x′ > u), or x′ > u while x′ 6> v, or x′ < u (thus x′ < v), or
x′ < v while x′ 6< u.

This shows that we will generally expect to have more copies of U in a
typical X than there are copies of U ′ in a typical X ′. That is, the idea of
simply counting the number of elements in U and comparing it to the number
of elements in U ′ does not produce a fair comparison.1 Instead we should take
the sets u⇓, v⇓, and u⇑, v⇑, since they determine possible ordering relations
with other elements of larger posets. For U we have the possibilities ∅, u⇓,
v⇓ and u⇓ ∪ v⇓ for an element x to be either unrelated, or above either one
or both of u or v. That is, we are interested in the power set of {u⇓, v⇓},
call it P(u⇓, v⇓). It has four elements. As for U ′, the power set P(u⇓, v⇓)
will only contain three elements, namely ∅, u⇓ and v⇓. We must similarly
examine the power sets P(u⇑, v⇑). It is these power sets which are relevant
when comparing local variations within a given, large poset to one another.
And thus we see that on this basis, the sets U and U ′ are incomparable.

Therefore, in our example, U ′ can only be compared with itself. On the
other hand, U can be compared with the poset U ′′ which contains the three
elements u, v and w with u < v < w, since in this case the power sets
P(u⇓, v⇓, w⇓) and P(u⇑, v⇑, w⇑) each contain four sets. Let us call these the
lower and upper power sets of U .

More generally, given two numbers n1 and n2, we consider all possible
posets U having some number m of elements {u1, . . . , um} such that the
lower power set P(u1⇓, . . . , um⇓) consists of n1 sets and the upper power set

1An example of an unfair comparison would be to take the set of all posets with either
2 or 3 elements. The majority contain 3 elements. Is it then reasonable to conclude that
3 is more probable than 2? Surely not, since each of the posets with 3 elements contains
various instances of subposets with 2 elements.
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P(u1⇑, . . . , um⇑) consists of n2 sets. Then all such U will be taken to be
equally probable. The set of all possible local variations in a given region
will then fall into different equivalence classes characterized by the differ-
ent numbers n1 and n2. Relative probabilities only make sense within the
different equivalence classes.

This definition involves a number of assumptions. It is assumed that any
larger poset X containing such subposets as U contains no elements “within”
U . That is, there are no x ∈ X, not in U , such that both x⇓ ∩ U 6= ∅ and
x⇑ ∩ U 6= ∅. Or put another way, U is a local region of variation within X.
And then, of course, we assume that the details of any containing poset X
play no further role in the calculation of these probabilities.

The examples we will consider will be symmetrical with respect to chang-
ing “less than” to “greater than”. And so for simplicity we only consider the
lower power sets. This leads to the definition:

Definition. Let n be a given number. Considered as variations of a region
of a poset X, all subposets U whose lower power sets consist of n sets will be
taken to be equally probable.

In what follows we will generally consider a region a G b of some generic X
and we will call the lower power set of the set of elements of a configuration
between a and b simply the power set of that configuration.

2 Generalized chains

Let some region a G b be given and let us consider the case that a G b consists
of n unrelated elements. That is

a G b = U = {u1, . . . , un}

such that for any i 6= j we have ui‖uj. Then the power set consists of 2n

subsets.
Another possible configuration for a G b might be a chain of length 2n−1.

That is
a G b = V = {v1, . . . , v2n−1}

with vi < vi+1 for all 1 ≤ i ≤ 2n − 2. Again, the power set consists of 2n

subsets in this configuration, so that it has the same probability as does U .
A third possibility for a G b consists of 2n − 2 elements which form a

simple generalized chain, namely

a G b = W1 = {w1, . . . , w2n−2}
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with w1‖w2, w1 < w3, w2 < w3, and then wi < wi+1 for all 3 ≤ i ≤ 2n − 3.
Once again the size of the power set is 2n so that W1 has the same probability
as the other two configurations which we have considered so far.

But then we also have

a G b = W2 = {w1, . . . , w2n−2}

with w2‖w3, w1 < w2, w1 < w3, w2 < w4, w3 < w4, and then wi < wi+1 for
all 4 ≤ i ≤ 2n − 3. Again, the size of the power set is 2n.

In fact, following this pattern one sees that we have 2n−3 such generalized
chainsW1, . . . ,W2n−3, all of whose power sets have 2n subsets, and thus they
are all equally probable.

Many further configurations fit into this pattern. For example we have
generalized chains with two pairs of unrelated elements: wi‖wi+1 and wj‖wj+1

for |i−j| ≥ 2 and the rest of the elements forming a simple chain. If i = j−2
we might also consider wi < wj, while wi+1 6< wj, and so on. There are
nearly n2 such configurations. And then we can have generalized chains with
three pairs of unrelated elements. There are nearly n3 such configurations,
although we do notice that the number of elements in the configuration is
reduced by one for each such addition.

Once we have exhausted all these possibilities we can then consider gen-
eralized chains having various numbers of unrelated triples, quadruples, and
so forth. Eventually we come back to our single original set V consisting of
n unrelated elements. All of these configurations are equally probable.

If we just restrict ourselves to the types of configurations which have been
described here, it is obvious that if the number n is reasonably large and a
configuration U for the set a G b is chosen at random, then we expect the
height of U to be much greater than its width. Here the height is taken to be
the length of the largest possible simple chain, and the width is the number
of elements in the largest possible subset consisting of mutually unrelated
elements. Therefore U probably resembles a chain; a fuzzy, or generalized
chain.

3 Other structures

The generalized chains considered in the last section are characterized by
having a limited width such that for each element u in the chain, the number
of elements unrelated to u is limited. If the number of elements we are
considering is much greater than these limits then other structures than a
single generalized chain might be probable.
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As an example let us consider two simple chains, of height k and l:

U = {u1, . . . , uk : ui < ui+1,∀1 ≤ i < k},

V = {v1, . . . , vl : vi < vi+1,∀1 ≤ i < l}.

If ui‖vj for all i and j then the number of subsets in the power set is (k +
1) × (l + 1). Thus if we are to compare this with a single chain, that chain
would have to have height (k+ 1)× (l+ 1)− 1. But in general there may be
some relations of the form ui < vj or vi < uj. How many possible different
relations and how many subsets can there be?

To begin to estimate how many different possible relations there are, let
us consider the possibilities for relations of the form ui < vj. The thing to
note is that if ui < vj then we must also have ui−1 < vj and also ui < vj+1.
Let is write F (k, l) to represent the number of possible relations here. Then
we see that if uk < vl, it is clear that the number of possible relations for the
further l − 1 elements of V is given by F (k, l − 1). If uk 6< vl, but uk−1 < vl
then the number of possible relations for the further l − 1 elements of V is
F (k−1, l−1). Proceeding down through U , we obtain the recursive formula:

F (k, l) =
k∑

t1=1

F (t1, l − 1)

=
k∑

t1=1

t1∑
t2=1

F (t2, l − 2)

...

=
k∑

t1=1

t1∑
t2=1

· · ·
tl−2∑

tl−1=1

F (tl−1, 1)

=
k∑

t1=1

t1∑
t2=1

· · ·
tl−2∑

tl−1=1

tl−1

since F (tl−1, 1) = tl−1.
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We can bound this sum from below by taking integrals.

k∑
t1=1

t1∑
t2=1

· · ·
tl−2∑

tl−1=1

tl−1 >

∫ k

0

∫ t1

0

· · ·
∫ tl−2

0

stl−1
dstl−1

. . . ds2ds1

=

∫ k

0

∫ t1

0

· · ·
∫ tl−3

0

stl−2

2

2
dstl−2

. . . ds2ds1

=

∫ k

0

∫ t1

0

· · ·
∫ tl−4

0

stl−3

3

3 ∗ 2
dstl−3

. . . ds2ds1

...

=
kl−1

(l − 1)!

Stirling’s formula is

(l − 1)! ≈
√

2π(l − 1)

(
l − 1

e

)l−1

,

giving

F (k, l) '
1√

2π(l − 1)

(
ke

l − 1

)l−1

.

Assuming that we have chosen the chain U to be not shorter than V , then we
have k ≥ l and so F (k, l) grows very rapidly as the height of the chains grows.
(Note that even if l > k, the number F (k, l) will still be large despite the fact
that our integral approximation will now underestimate things drastically.)

In addition to the possible relations of the form ui < vj, we also have
the relations of the form vi < uj to take into account. For each possible
configuration considered in the calculation of F (k, l) we have many such
further relations, the number of which should be multiplied by F (k, l) to
obtain the total number of different configurations. But note however that
we can never have a pair with both ui < vj and at the same time vj < ui.

These different configurations generally have different numbers of subsets
in their power sets so that they cannot be compared with one another. How-
ever if we consider configurations with relatively large numbers n of elements
then the equivalence classes of the configurations which are comparable will
generally be large. This follows since, as we have seen, there are less than n2

possible such equivalence classes, yet many more possible configurations.
The conclusion is that if n is reasonably large, and if we restrict our-

selves to configurations having either one or two simple chains, then it is
overwhelmingly probable that we will have a configuration with two simple
chains.
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But it is also obvious that there are many more possibilities besides these.
For example we might consider generalized chains whose width is limited by
some fixed value w. For n large in comparison to w, any element of the
generalized chain is not related to only a small number of further elements in
the chain. Thus we can think of the generalized chain as consisting of a large
number of segments which act somewhat as if they were elements of a simple
chain. We can then compare the probability of having a single generalized
chain with two interacting, but separate shorter generalized chains. We can
apply our argument in this case as well to show that for large n, it is probable
that we will have two separate generalized chains. Extending the argument to
larger numbers of generalized chains, we see that as n increases, it is probable
that we will have proportionally more of these interacting generalized chains.

Are there other structures besides generalized chains, or at least configu-
rations constructed from pieces of generalized chains, which are probable as
local structures in finite partially ordered sets? Perhaps not.

4 Dimension

As in the last section, let us assume that we have two distinct, simple chains
of height p and q:

U = {u1, . . . , up : ui < ui+1,∀1 ≤ i < p},

V = {v1, . . . , vq : vi < vi+1,∀1 ≤ i < q}.

We would like to examine a region which can be “indexed” by the elements
along U and V in the following manner.

Let x be some element in this region. Then there are four unique elements,
{ui, uj, vk, vl}, two along U and two along V , which index the element x. The
two elements ui and uj on U indexing x are such that x < ui but x 6< ui−1
and uj < x but uj+1 6< x. The elements along V are similarly such that
x < vk but x 6< vk−1 and vl < x but vl+1 6< x. We assume that the elements
in the region are uniquely represented by this indexing. That is, if x′ is some
other element in the region indexed by the four elements {ui′ , uj′ , vk′ , vl′},
then at least one of those elements is different from the indexing of x.

We are interested in the question of whether or not x and x′ are related
to one another. Given the way we have chosen the index elements, we see
that if x < x′ then we must have ui ≤ ui′ , uj ≤ uj′ , vk ≤ vk′ , and vl ≤ vl′ .
For all other relationships of the indexing elements, we must have x 6< x′.
A similar condition holds for x′ 6< x. If both conditions hold, then we must
have x‖x′.

7



Therefore we must have x‖x′ in all cases except when the indexing ele-
ments of x are all less than (or they are all greater than) or equal to the
respective indexing elements of x′. But if, say, the indexing elements of x
are all less than or equal to the respective indexing elements of x′ then the
situation is unclear. We might have either x < x′ or x‖x′.

So let us consider the case that all the respective indexing elements of
x are less then or equal to those of x′. We then have two different possible
configurations: W< where x < x′, and W‖ where x‖x′. Then the power set
of W< contains fewer subsets in comparison with W‖.

To see this, begin by observing that most of these subsets are the same,
both for W< and for W‖. Only those which contain x and/or x′ might be
different. So let us assume that there are m elements along U between uj′ and
ui, and furthermore we assume that there are n elements along V between vl′
and vk. (If either m or n were to be zero then we must have x < x′, and so
the case x‖x′ would not occur.) Each of the subsets of W< corresponds with
a subset of W‖. In particular for each subset in W< of the form us⇓∪vt⇓∪x⇓,
for j′ < s < i and l′ < t < k, we have the corresponding subset us⇓∪ vt⇓∪x⇓
in W‖. Similarly, for each subset in W< of the form us⇓ ∪ vt⇓ ∪ x′⇓, we have
the corresponding subset us⇓ ∪ vt⇓ ∪ x⇓ ∪ x′⇓ in W‖. But then in addition to
these, we have the m × n subsets of the form us⇓ ∪ vt⇓ ∪ x′⇓ in W‖ (each of
which do not contain the element x), and there are no corresponding subsets
to these in W<.

Therefore, since W< and W‖ contain different numbers of subsets, they
cannot be compared with one another. But, as before, it is possible to add in
some extra elements to W< in various ways, producing an expanded version
W ∗

< of W< which does have the same number of subsets as does W‖. For
example, we could lengthen the chain U in W< by attaching m × n new
elements {up+1, . . . , up+m×n} with up < up+1, and then ui < ui+1, for all i
between 1 and p + m × n. To complete the picture, we assume that also
vq < up+1.

There are many other possibilities for adding new elements into W<. For
example we could add elements to the other chain V , to both, or midway
along the chains at various positions, adjusting the number of new elements
in each case so that the total number of subsets remains constant. Therefore
we conclude that it is very probable that x < x′ if the index elements of x
are all less than or equal to the corresponding index elements of x′, becoming
overwhelmingly probable when the indexing chains are long.

So let us assume that we have two distinct chains, U and V , and also many
elements in a region which are indexed by these chains such that for any two
of these elements, the indexing is not identical, and furthermore, given two
such elements a and b, we have a < b if and only if the indexing elements
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for a are all less than or equal to the corresponding indexing elements for b.
Then we conclude that the set of these elements, considered as a partially
ordered set, is 4-dimensional.

Recall the definition of dimension within the theory of partially ordered
sets. Each partial order for a given set can be expanded by adding in further
ordering relations to obtain a totally ordered set which contains the original
partial order. A realizer of the partial ordering is a collection of total orders,
each of which contains the original partial order, such that the original partial
order is the intersection of all the ordering relations in the realizer. A partially
ordered set has the dimension n if there is a realizer consisting of n totally
ordered sets, where n is the smallest such number.

Applying this to our situation with the two chains U and V , we can find a
realizer consisting of just 4 totally ordered sets. They are obtained by using
the ordering of each of the four indexing elements. For example, given that
a‖b, the first total ordering involves adding in the relation a < b if the upper
indexing element along U of a is less than or equal to the upper indexing
element of b along U . In this way we obtain the first of our total orderings.
The other three are obtained similarly.

When thinking about this argument, it might be objected that the same
ideas could be applied to the situation with just one single indexing chain,
thus seemingly leading to the conclusion that we would have 2 dimensions
rather than 4. That is to say, let the single chain

U = {u1, . . . , up : ui < ui+1,∀1 ≤ i < p}

be given, together with two elements x and x′ not in the chain, but such
that the chain has elements which are greater than both x and x′ and also
elements less than both x and x′. As before, we take the indexing elements
for x to be ui and uj, and for x′ to be ui′ and uj′ . Let W‖ be the configuration
with x‖x′ and W< with x < x′.

Assuming there are m elements along the chain U between ui′ and uj,
then there are m more subsets in W‖ than there are in W<. Following the
argument as before, we must add in further elements to W< in order to be
able to compare the two configurations with one another. There are a number
of different ways to add in new elements, always preserving the total number
of subsets, and these different ways give different pairs of indexing elements
for x and x′, all of which are equally probable. But since we have x < x′, all
of these sets must preserve the condition that the indexing elements for x are
less than (or equal to) the indexing elements for x′. On the other hand, for
W‖ we now have fewer elements than W< in the chain U , but more freedom
to choose the indexing elements. All possibilities are open except the case
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where both indexing elements for x are less than both indexing elements for
x′ (for that would imply that we must have x < x′), or conversely, if both
indexing elements for x′ are less than both indexing elements for x. Taken
together, the number of possible configurations with x < x′ is not greater
than the number with x‖x′, and so the argument fails.

We see then that the presence of the second indexing chain, adding in so
many further possible configurations in the case x < x′, is essential for our
argument. Having three or more indexing chains adds nothing, since they
will only confirm the correlation between the ordering of the elements and
that of their indexing elements. After all, the dimension is given by the least
possible number of total orderings in a realizer.

5 Conclusion

From the few considerations dealt with here, it is obvious that our very nat-
ural way of defining probabilities in finite partially ordered sets will lead
to structures which depart strongly from what might at first be expected.
Rather than having a chaos of unordered sets, we see that chain-like struc-
tures which might interact with one another in orderly ways are probable.
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