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1 Introduction

We use the definitions of the preceding paper (A class of partially ordered
sets: III). Thus for our purposes, a typical poset X will be considered to
be an element of the class W, which was defined there. That is to say, X
is discrete, upwardly separating, confluent below, extensional, such that all
elements are interior.

Since such posets must be infinite, it is not possible to deal with the
question of probabilities in these posets by simply counting all the elements
in a given poset. Instead, it is necessary to find a sensible method of defining
finite regions which can be compared with one another. The question then
reduces to the problem of identifying which structures, or configurations, are
most probable in such a finite region.

To a large extent, the assumptions we make will be guided by intuition.
The goal is to find a discrete mathematics which could be used as a model
for physics.

2 Localized positions

In the previous paper, the idea of a position in a poset was defined. A position
is a pair (U, V ) of non-empty subsets of the given poset X, such that U ≤ V
(that is, u ≤ v for all u ∈ U and v ∈ V ), and which is maximal, in the sense
that U is the largest possible subset which is beneath V , and V is the largest
possible subset which is above U . Any element x ∈ X provides us with an
elementary position, namely (x⇓, x⇑), where x⇓ = {y ∈ X : y ≤ x}, and
x⇑ = {z ∈ X : z ≥ x}.
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Obviously, an elementary position is “localized” in the sense that it can
be identified with a specific element of X. But what is the situation with
respect to non-elementary positions?

To see what can happen, let us take Euclidean 3-space, R3, and we can
imagine it being made discrete by replacing the given Euclidean structure
with some uniformly dense, but discrete, network of points.
R3 can also be thought of as a partially ordered set. Given x = (x1, x2, x3)

and y = (y1, y2, y3) then the ordering is given by saying that x ≤ y if and
only if both x1 ≤ y1 and (y2 − x2)

2 + (y3 − x3)
2 ≤ (y1 − x1)

2. With this
ordering, the elementary position (x⇓, x⇑) is a double cone, with the upper
cone meeting the lower cone in the point at the apex, which is the point
x ∈ R3. Thus — given the causality ordering of physical space — it would
seem to be a natural idea to associate positions with points of space.

Unfortunately though, most positions in R3 are not elementary positions.
For example, let l = {(0, s, 0) ∈ R3 : |s| ≤ 1}. Then take

U = {y ∈ R3 : ∃x ∈ l, y ≤ x} and V = {z ∈ R3 : z ≥ u,∀u ∈ U}.
The pair (U, V ) is a position in R3, yet it cannot be identified sensibly with
any single point of R3. The problem illustrated in this example is that such
generalized positions jump over a region of empty space between the upper
and lower sets so that they can no longer be localized at the point where
those two sets meet.

One way of describing this situation is to think of chains of related el-
ements. A chain is a totally ordered subset of a given poset. A chain is
maximal if it is not properly contained within another chain. In R3, the
maximal chains are continuous lines (world-lines), passing upwards through
the poset. Given an element x ∈ R3, then every maximal chain which con-
tains x is completely contained within the elementary position (x⇓, x⇑). This
leads to the following definition, which is also applicable to discrete posets.

Definition 1. Let (U, V ) be a position in the poset X. The position will be
called localized if there exists a maximal chain C ⊂ X which is contained
within the position. That is C ⊂ U ∪ V .

In case the position (U, V ) is not elementary, then it is localized if there
exist two elements u ∈ U and v ∈ V , such that u↑ ∩ v↓ = ∅.

(Here u↑ = {y ∈ X : y > u} and v↓ = {z ∈ X : z < x}.)
Returning to the class W of discrete posets and taking any pair of related

elements a < b in X ∈ W, we have that the subset b↓ \ a↓ must be finite,
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while a↑ \ b↑ must be infinite. As was shown in the previous paper, this
implies that there can be at most finitely many positions between a and b.
Therefore, within the class W, let us say that the volume of “space” between
a and b is the number of localized positions between them.

From now on, only localized positions will be considered, and thus the
word ‘position’ will always refer to a localized position. Furthermore, only
posets X ∈ W in our particular class of posets will be considered.

3 Why the elements form chains

Let a < b be two related elements in the poset X. We assume that they
are sufficiently separated that the volume of space between them is large;
that is, there are N (localized) positions between a and b, where N is some
large, yet fixed, number. It was shown in the previous paper that all of these
positions are uniquely associated with elements of b⇓ \ a↓. Therefore the fact
that there are precisely N positions between a and b is related to the number
and configuration of the elements of X in b⇓ \ a↓.

We are concerned with identifying probable patterns, or configurations,
within X (or indeed, within any arbitrarily chosen element of W). For this,
and to allow a sensible comparison between similar things, the obvious proce-
dure would be to examine the various possible configurations of finitely many
elements which might be placed into b⇓ \ a↓, such that we always have again
N positions between a and b. Thus we are considering a kind of variational
analysis, where the original poset X is varied to produce possible new posets
X ′ which only differ from X at most in the subset b↓ \ a⇓ (in particular, the
elements a and b are not varied).

Now take two distinct elements x and y in b↓ \ a⇓. The question is, with
how many positions in a⇑ ∩ b⇓ are they associated? There are two different
cases to consider, namely

1. they are related to one another — that is, either x < y or y < x,
written x ⊥ y, or else

2. they are unrelated, written x‖y.

But if x ⊥ y, then any position in a⇑ ∩ b⇓ (that is, a position between
a and b, where a is an element of the lower set of the position and b is in
the upper set) can be at most associated with one of the elements, x or y.
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On the other hand, if x‖y then a position in a⇑ ∩ b⇓ can be associated with
either the element x or the element y singly, or it can also be associated with
both x and y. Therefore, in the first case, there are only two different ways
a position can be associated with x and/or y, while in the second case there
are three different ways.

Given this, then it seems reasonable to say that a configuration of ele-
ments in b↓\a⇓ having many pairs of unrelated elements would produce more
positions in the space a⇑ ∩ b⇓ than a configuration with the same number of
elements, yet where most of them form chains of related elements. Or put
another way, if a variation is only allowed with a fixed number of positions
between a and b, then a variation containing chains of elements in b↓ \ a⇓
will have more elements than a variation which has few chains. But if we
have more elements, then there are more possible ways to place them into
b↓ \ a⇓ in comparison with configurations with only few elements. The con-
clusion is that configurations with as few unrelated pairs as possible — that
is, configurations where the elements form chains — are most probable.

Of course, taking this idea to an extreme, we arrive at a totally ordered
set which has no pairs of unrelated elements at all. Yet a totally ordered set
cannot be an element of our class of sets W. Therefore, given some poset
X ∈ W, the question arises as to which configurations of pairs of unrelated
elements are more, or less probable.

So let x and y be two elements of X ∈ W, with x‖y. Our argument
that unrelated pairs are not probable is concerned with the possibility that
both elements of a pair such as x and y may be associated with a single
localized position (U, V ). For this, let us take two elements u < v in U , with
u↑ ∩ v↓ = ∅. Our argument is concerned with the set of all possible localized
positions between such a pair of elements as u and v.

We consider two alternative situations. Namely, the two elements x and
y of the unrelated pair are “close together”, or else they are “far apart”. But
how should we define the “distance” between two unrelated elements? One
possibility is to define it to be the number of elements in the set (x↓ \ y↓) ∪
(y↓ \ x↓).

Can it be that there are many localized positions between u and v which
are associated with both of the elements x and y together? Since u and v
are adjacent (that is, u↑ ∩ v↓ = ∅), we expect that there are few elements
in v↓ \ u↓. However, if both x and y are together associated with a single
position between u and v, then they must both be elements of v↓ \ u↓.

Let us say that we know that the element x is contained in v↓ \u↓. What
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is the probability that also y is contained in v↓ \u↓? If the set y↓ \x↓ is large
— thus x and y are far apart — then there are many pairs like u, v which
contain not only x, but also various elements of y↓ \ x↓ in the set v↓ \ u↓.
Yet remember that v↓ \ u↓ is itself small. Therefore the probability that one
particular element of the large set y↓ \ x↓, or indeed of y itself, also being
contained in v↓ \ u↓ is relatively small. On the other hand, if y↓ \ x↓ is small,
then there are fewer elements of y↓ \ x↓ available to fill up the space v↓ \ u↓.
Thus it is more probable that y ∈ v↓ \ u↓.

To summarize: Given a poset X ∈ W, and a pair of unrelated elements
x‖y in X, such that x and y are far apart — that is, if the set (x↓\y↓)∪(y↓\x↓)
is large — then a variation of X which introduces a new ordering relation
between x and y would not be expected to reduce the number of localized
positions to the extent that would be the case if x and y are close together.
Or in other words, if x and y are close together, then it is probable that they
are related to one another. On the other hand, if they are far apart, then it
is more probable that they are unrelated. A collection of elements which are
close together tends to form chains; a widely spaced collection does not have
such a strong tendency — unrelated elements tend to remain unrelated.

4 How the positions of elements are deter-

mined by other elements

Let x ∈ X be some element in a poset X ∈ W. Then, of course, the pair
(x⇓, x⇑) is an elementary position in X. But now let us consider the pair
(x↓, x↑) in X \ {x}. If x is an essential element of X, then (x↓, x↑) is not a
position in the poset X \ {x}.1 Still, x↓ is the lower set of a position in X,
namely (x↓, V ), where x⇑ ⊂ V and V \ x⇑ 6= ∅. Let us call this the position
directly beneath the element x.

Thus, given the position (x↓, V ) directly beneath x, we see that all ele-
ments v ∈ V \ x⇑ are such that x‖v. On the other hand, since v > x↓, if v
is a lowest element of V \ x⇑, a variation of X could be performed, adding
in the single new relation x < v. According to our previous considerations,
this will be probable if v is near to x. Therefore, given that the configuration
around x is a probable one, we must conclude that all the elements of V \x⇑

1That is, the element x is associated with itself. On the other hand if (x↓, x↑) is a
position in X \ {x}, then we say that x is an inessential element.
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are far away from x. This means that locally — near to x — the pair (x↓, x↑)
does correspond with the position (x↓, V ) in X \ {x}.

Concentrating on the situation near to x, let us say that the element
a ∈ x↓ is associated with the position directly beneath x. That means that
there must be some element b 6> a, yet with b > x↓ \ {a}. If b is nearer
to x than a, then we can perform a variation, removing the relation x > a
(so that in the varied poset, we have x‖a), and adding in the new relation
x < b. The net result is to have exchanged the close unrelated pair x‖b for
the more distant unrelated pair a‖x. Thus this variation leads to a more
probable poset, and so such a configuration near to x is probable.

In a similar way, it might be the case that there is an element c‖x which
is such that all elements of x↑ \ c↑ are further from x than is c. In this case,
a variation adding in the new relation c < x and removing the relations of x
to all elements of x↑ \ c↑, would also result in a more probable poset. In both
cases we see that it is probable that (as far as is possible without changing
their mutual relationships) the elements near to x are related to x.

We can also consider positions above the essential element x. Let (U, V )
be a position which is greater than x (so that x⇓ is a proper subset of U),
such that there is no other position between (U, V ) and x. That is, (U, V ) is
a position directly above x. In contrast to the single position which is directly
beneath x, there may be more than one position directly above x (assuming
of course that they are non-elementary).

What possibilities are there for a non-elementary position (U, V ) directly
above x? Remembering that all positions are only associated with elements
beneath the position, we see that we must have U = x⇓ ∪ {a1, . . . , an}, for
some finite number of elements ai, i = 1, . . . , n, with ai‖x, and then V = U⇑.

The simplest idea would be to simply choose some single element a ∈ X
with a‖x and a↓ ⊂ x↓. This would give us U = x⇓ ∪ {a} and V ⊂ x↑. In
general we can expect to have many such elements as a, and so we would
have many different positions directly above x.

But is it probable that there are, in fact, many different positions directly
above x? Let us examine a position (U, V ) whose lower set is of the form
x⇓ ∪ {a}. Thus U = x⇓ ∪ {a} and all elements of V are above both x and
a. However, for all further elements b‖x with b 6= a, there must be some
element z ∈ V with z 6> b.

Given such a b near to x in the sense that b↓ ⊂ x↓, let us take a lowest
z ∈ V with z 6> b. If z is not far away from x, our argument shows that a
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variation which introduces the new relation z > b is probable. This would
bring with it also the new relations y > b, for all the elements y ∈ z↑. The
same could be said for other elements z′ ∈ V with z′‖z and z′ 6> b. Thus we
would have to add in the element b to the lower set of our position directly
above x.

So the conclusion we draw is that it is most probable that there are
relatively few different positions directly above x, and given such a position
(U, V ), then the set U \ x⇓ contains a relatively large (but of course only
finite) number of elements.

5 Chains

If it is more probable that nearby elements are related, rather than being un-
related, then it follows that in a typical poset X ∈ W, the elements will tend
to form discrete chains, the adjacent elements of which are close together.
Let C be typical chain. Perhaps it is infinitely long, or perhaps it is only
finite. Let x1 < x2 < · · · < xn be some finite segment of adjacent elements
along C. Now take some other chain C ′, disjoint from C, which is sufficiently
long that it contains elements less than x1 and also elements greater than
xn. Given some particular element xi of C, then if C and C ′ are far apart,
we expect to have many elements of C ′ being unrelated to the element xi.
On the other hand, if C and C ′ are close together, then there will be fewer
elements of C ′ which are unrelated to xi. Does this mean that it is more
probable that C is close to C ′?

In fact, our previous argument cannot be applied to chains. Recall that if
(U, V ) is some position, then if two given elements a and b are related to one
another, we can only have the position being associated with at most one of
the elements, a or b. On the other hand, if a and b are unrelated, then the
position could — in addition — be associated with both a and b together. So
the conclusion was that a configuration with a being related to b would be
more probable.

But now take the two chains C and C ′, and again consider some position
(U, V ) in X. Assuming that the chains are long enough to contain both
elements in U , and also elements not in U , then the position can be associated
with at most a single element from each chain — either one element from
one of the chains, or two elements, namely one element from the chain C and
another element from the chain C ′. This is true regardless of whether or not
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the two chains are close together; in either case, just a single element of each
chain is available to be associated with the position.

On the other hand, an argument can be made that a kind of “generalized”
chain might be probable. That is to say, given two distinct chains C and
C ′, they might be so close together that each element of each chain is only
unrelated to a single element of the other chain. Thus, if x1 < · · · < xn is
a segment of C and x′1 < · · · < x′n the corresponding segment of C ′, then we
have xi‖x′i for each i, yet xi < x′j and x′i < xj if i < j. Let us now imagine
that C is near to C ′, in the sense that both xi↓ \ x′i↓ and x′i+1↓ \ xi↓ have
few elements, for each i. In this case it is unlikely that a randomly chosen
position (U, V ) in X will be associated with both an element of C and also
an element of C ′. Instead, just a single element from the union of the two
chains C ∪ C ′ would be more likely.

More generally, this argument shows that generalized chains of the form
{. . . , x−1, x0, x1, x2, . . . }, with the relations generated by xi < xi+m, for all i
and for some fixed m > 1, might also be probable.

If a poset X consists mainly of chains whose adjacent elements are close
together then there will be only few localized non-elementary positions, and
each will be closely linked to a single (perhaps generalized) chain. The num-
ber of these non-elementary positions between adjacent elements of the chain
gives the measure of a kind of “length” of the chain, thus providing a geom-
etry for X. In a previous paper we have discussed the way the number of
positions is related to the “density” of elements near to the chain. But going
beyond this, there is an additional effect which might be considered. The
non-elementary positions between elements of a chain might — to some small
extent — be “spread-out”, as in the example which was discussed in section
2. If, however, there are many elements of X near to, but not contained in,
a given chain, then their presence (in comparison with the situation where
they are not present) will prevent some of these spread-out positions from
occurring.
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