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Maurice Auslander: Coherent functors



Auslander’s formula

Fix an abelian category C. A functor F : Cop → Ab is coherent if it
fits into an exact sequence

HomC(−,X ) −→ HomC(−,Y ) −→ F −→ 0.

Let mod C denote the (abelian) category of coherent functors.

Theorem (Auslander, 1965)

The Yoneda functor C→ mod C admits an exact left adjoint which
induces an equivalence

mod C

eff C
∼−→ C

(where eff C denotes the full subcategory of effaceable functors).



A motivating problem: vanishing of Hom

Fix a triangulated category T with suspension Σ: T
∼−→ T.

Problem

Given two objects X ,Y , find invariants to decide when

Hom∗T(X ,Y ) =
⊕
n∈Z

HomT(X ,ΣnY ) = 0.

This talk provides:

a survey on what is known (based on examples)

some recent results (joint with D. Benson and S. Iyengar)

open questions



Vanishing of Hom: a broader perspective

Given objects X ,Y in a triangulated category T, the full
subcategories

X⊥ := {Y ′ ∈ T | Hom∗T(X ,Y ′) = 0}

⊥Y := {X ′ ∈ T | Hom∗T(X ′,Y ) = 0}

are thick, i.e. closed under suspensions, cones, direct summands.

Note: The thick subcategories of T form a complete lattice.

Problem

Describe the lattice of thick subcategories of T.



Classifying thick subcategories: the pioneers

Thick subcategories have been classified in the following cases:

The stable homotopy category of finite spectra
[Devinatz–Hopkins–Smith, 1988]

The category of perfect complexes over a commutative
noetherian ring [Hopkins, 1987] and [Neeman, 1992]

The category of perfect complexes over a quasi-compact and
quasi-separated scheme [Thomason, 1997]

The stable module category of a finite group
[Benson–Carlson–Rickard, 1997]

All these cases have in common:

The triangulated category is essentially small.

A monoidal structure plays a central role (thus providing a
classification of all thick tensor ideals).



Compactly generated triangulated categories

Definition (Neeman, 1996)

A triangulated category T with set-indexed coproducts is
compactly generated if there is a set of compact objects that
generate T, where an object X is compact if HomT(X ,−)
preserves coproducts.

Examples:

The derived category D(ModA) for any ring A. The compact
objects are (up to isomorphism) the perfect complexes.

The stable module category StMod kG for any finite group G
and field k . The compact objects are (up to isomorphism) the
finite dimensional modules.



Localising and colocalising subcategories

Fix a compactly generated triangulated category T.

Note: T has set-indexed products (by Brown representability).

Definition

A triangulated subcategory C ⊆ T is called

localising if C is closed under taking all coproducts,

colocalising if C is closed under taking all products.

Problem

Classify the localising and colocalising subcategories of T. Do they
form a set (or a proper class)?



Vanishing of Hom: support and cosupport

Let R be a graded commutative noetherian ring and T an R-linear
compactly generated triangulated category.

We assign to X in T

the support suppR X ⊆ SpecR, and

the cosupport cosuppR X ⊆ SpecR,

where SpecR = set of homogeneous prime ideals.

Theorem (Benson–Iyengar–K, 2012)

The following conditions on T are equivalent.

T is stratified by R.

For all objects X ,Y in T one has

Hom∗T(X ,Y ) = 0 ⇐⇒ suppR X ∩ cosuppR Y = ∅.



Stratified triangulated categories

Definition

An R-linear compactly generated triangulated category T is
stratified by R if for each p ∈ SpecR the essential image of the
local cohomoloy functor Γp : T→ T is a minimal localising
subcategory of T.

Examples:

The derived category D(ModA) of a commutative noetherian
ring A is stratified by A [Neeman, 1992].

The stable module category StMod kG of a finite group is
stratified by its cohomology ring H∗(G , k)
[Benson–Iyengar–K, 2011].



Support and cosupport

Fix an R-linear compactly generated triangulated category T. For
an object X define

suppR X := {p ∈ SpecR | Γp(X ) 6= 0}
cosuppR X := {p ∈ SpecR | Λp(X ) 6= 0}

where Λp is the right adjoint of the local cohomology functor Γp.

Theorem (Benson–Iyengar–K, 2011)

Suppose that T is stratified by R. Then the assignment

T ⊇ C 7−→ suppR C :=
⋃
X∈C

suppR X ⊆ SpecR

induces a bijection between

the collection of localising subcategories of T, and

the collection of subsets of suppR T.



Costratification

There is an analogous theory of costratification for an R-linear
compactly generated triangulated category T:

Costratification implies the classification of colocalising
subcategories.

Costratification by R implies stratification by R (the converse
is not known).

When T is costratified, then the map C 7→ C⊥ gives a bijection
between the localising and colocalising subcategories of T.

The derived category D(ModA) of a commutative noetherian
ring A is costratified by A [Neeman, 2009].

The stable module category StMod kG of a finite group is
costratified by its cohomology ring H∗(G , k)
[Benson–Iyengar–K, 2012].



Tensor triangular geometry

For an essentially small tensor triangulated category (T,⊗, 1)
Balmer introduces a space Spc T and a map

T 3 X 7−→ suppX ⊆ Spc T

providing a classification of all radical thick tensor ideals of T.

This amounts to a reformulation of Thomason’s classification when
T = Dperf(X ) (category of perfect complexes) for a quasi-compact
and quasi-separated scheme X , because Spc T identifies with the
Hochster dual of the underlying topological space of X .

Kock and Pitsch offer an elegant point-free approach.



Example: quiver representations

Fix a finite quiver Q = (Q0,Q1) and a field k . Set

mod kQ = category of finite dimensional representations of Q

W (Q) ⊆ Aut(ZQ0) Weyl group corresponding to Q

NC(Q) = {x ∈W (Q) | x ≤ c} set of non-crossing partitions
(c the Coxeter element, ≤ the absolute order)

Theorem (K, 2012)

The map

Db(mod kQ) ⊇ C 7−→ cox(C) ∈ NC(Q)

induces a bijection between

the admissible thick subcategories of Db(mod kQ), and

the non-crossing partitions of type Q.



Quiver representations: vanishing of Hom

A thick subcategory is admissible if the inclusion admits a left
and a right adjoint.

The proof uses that the admissible subcategories are precisely
the ones generated by exceptional sequences.

If Q is of Dynkin type (i.e. of type An, Dn, E6, E7, E8), then
all thick subcategories are admissible.

Corollary

Let Q be of Dynkin type and X ,Y in Db(mod kQ). Then

Hom∗(X ,Y ) = 0 ⇐⇒ cox(X ) ≤ cox(Y )−1c .



Example: coherent sheaves on P1
k

Fix a field k and let P1
k denote the projective line over k . We

consider the derived category T = Db(cohP1
k).

Proposition (Bĕılinson, 1978)

There is a triangle equivalence

Db(cohP1
k)

∼−→ Db(mod kQ)

where Q denotes the Kronecker quiver ◦
//// ◦ .

The thick tensor ideals of T are parameterised by subsets of
the set of closed points P1(k) [Thomason, 1997].

The admissible thick subcategories of T are parameterised by
non-crossing partitions.

A non-trivial thick subcategory of T is either tensor ideal or
admissible, but not both.



Concluding remarks

We have seen some classification results for thick and
localising subcategories of triangulated categories.

There is a well developed theory for tensor triangulated
categories or catgeories with an R-linear action.

Is there unifying approach (support theory) to capture
classifications via cohomology (tensor ideals) and exceptional
sequences (admissible subcategories)?

Do localising subcategories form a set? This is not even
known for D(QcohP1

k).

A compactly generated triangulated category T admits a
canonical filtration

T =
⋃

κ regular

Tκ.

Can we classify κ-localising subcategories for κ > ω?



With my coauthors at Oberwolfach in 2010


