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VORSICHT FUNKTOR!

Vorsicht

Funktor

2m Abstand halten.

“der Funktor” versus “das Funktor”



STRICT POLYNOMIAL FUNCTORS

m Strict polynomial functors were introduced by Friedlander and
Suslin [1997] in their work on the cohomology of finite group
schemes.

m We use an equivalent description in terms of representations of
divided powers, following expositions of Bousfield [1967], Kuhn
[1998], and Pirashvili [2003].

m Divided powers were introduced by Eilenberg—MacLane [1954]
and Cartan [1954/55] in their study of the (co)homology of
spaces.



KOSzZUL DUALITY: WORK OF CHALUPNIK AND TOUZE

m Classical Koszul duality relates the module categories of
symmetric and exterior algebras.
m Koszul duality for strict polynomial functors is due to
m Marcin Chatupnik [Advances in Math., 2008], and
m Antoine Touzé [arXiv:1103.4580].
Their work is motivated by calculations of functor cohomology.

m There is some earlier work in that direction (more than 20 years
ago) by Akin, Buchsbaum, Donkin, Ringel ...



KOSzZUL DUALITY: VARIOUS CONNECTIONS

The plan for this talk is ...

m to explain strict polynomial functors via representations of
divided powers,
m to explain the Koszul duality a la Chatupnik and Touzé, using

m a new monoidal structure for strict polynomial functors, and
m the classical Koszul duality (for symmetric/exterior algebras),

m to explain the connection with Ringel duality for Schur algebras,

m to explain the connection with Serre duality.



POLYNOMIAL REPRESENTATIONS OF I = GL,(k)

Fix an infinite field k and a positive integer n.

m A polynomial representation of I is a group homomorphism
p: T — GLn(k)

such that for each g € I all entries of p(g) are polynomials in
the entries of g.

m A representation is homogeneous of degree d if all polynomials
are homogeneous of degree d.

THEOREM (SCHUR 1901, GREEN 1980)

m Each polynomial representation decomposes into a direct sum
of homogeneous representations.

m The degree d homogeneous polynomial representations of I' are
equivalent to modules over the Schur algebra Sy(n, d).



THE SETUP

Here is the setup:
m k = a commutative ring (e.g. a field or Z)
m P, = the category of finitely generated projective k-modules
m Sy = the symmetric group permuting d elements (d > 0)

Some operations on objects V, W € Py:
m V ® W = the tensor product over k
m Hom(V, W) = the group of k-linear maps V — W
m V* = Hom(V, k) = the k-dual
mSyactson VI =V ...V
d



THE CATEGORY OF DIVIDED POWERS

For V € Py and d > 0 define divided and symmetric powers:
m MV = (V8% = {x ¢ V¥ | gx = x for all o € G4}
m STV =V®/(ox — x| xec V¥ 5 c&9)

Note:
m M9V, S9V € Py and (MT9V)* = S9(v*).
m The original definition of the divided powers IV is different;
but the symmetric tensors used here are isomorphic.

The category of divided powers [IP:
m objects of [YP, = objects of P, (= f.g. projective k-modules)
= Hompap, (V, W) =T Hom(V, W) = Hom(V®?, W®7)Sd



STRICT POLYNOMIAL FUNCTORS = Rep ¢

DEFINITION

A strict polynomial functor of degree d is a k-linear functor
X: TP, — My = category of k-modules.

Rep I'j(/ = category of degree d strict polynomial functors

m X € Rep I'z consists of a pair of functions
V= X(V) and (V,W)— Xyw (V, W € Py)

Xv.w: T Hom(V, W) — Hom(X(V), X(W))

m Each k-linear map Xy v corresponds to a homogeneous
polynomial map (or homogeneous polynomial law) of degree d

Hom(V, W) — Hom(X(V), X(W)).



SCHUR ALGEBRAS

Let V = k". Then
Endrap, (V) = M End(V) 2 Si(n, d)

where Si(n, d) denotes the Schur algebra [Green 1980].

THEOREM (FRIEDLANDER—SUSLIN 1997)

Let n > d. The category Rep Fz is equivalent to the category of
modules over Si(n, d) (via evaluation at k" ).

COROLLARY
Let k be an infinite field. Then

rep Ff(’ = category of k-linear functors T9P, — Py

is equivalent to the category of degree d homogeneous polynomial
representations of GL,(k).



EXAMPLES OF STRICT POLYNOMIAL FUNCTORS

m The divided powers: rd: visrdv
m The symmetric powers:  S9: V = SV
m The exterior powers: AV AV
m The dual of X € Repl'd: X°: V s X(V*)*

The representable functors

rY =Hompap (V,—)  (V €Py)

form a set of projective generators, by Yoneda's lemma.
m Note: S92 (I'%)° and (A9)° = A9,



THE EXTERNAL TENSOR PRODUCT

PROPOSITION

For integers d, e > 0 there is a bifunctor

— ® —: Repl{ x Repl¢ — Rep Fz+e.

One defines X @ Y: T9tep, — M,

m on objects via
(X Y)V)=X(V)2 Y(V)
m on morphisms via
r4+¢ Hom(V, W) C I Hom(V, W) @ I'* Hom(V, W)
which is induced by the inclusion

6d X Ge C 6dJre-



DECOMPOSING DIVIDED POWERS

For a sequence A = (A1, A2, ..., A,) of non-negative integers set

r/\:r)\1®_“®r/\n and 5)\:5)\1®...®S)\n_

PROPOSITION

For integers d, n > 0 there is a canonical decomposition

rd«" =~ 4

>\:(>\17---7>\n)
Z,‘ Ai=d

COROLLARY

m Each I is a projective object in Rep I'Z, where d =), \;.

m Each T%*" js a projective generator of Rep FZ, when n > d.



THE PROOF: HOW PARTITIONS COME INTO PLAY

m Consider the graded algebras of symmetric and divided powers

V=SV and TV=EHr'v (vVePry)

i>0 i>0
m The functor V — SV preserves coproducts. Thus
SVeSW=S(VeW) and TVRIW=T(Vae W).

m For each n > 1, this yields in Rep F‘,’;’ a decomposition

d
rd,k" — @(rdfi,k"_l ® rl)
i=0

Now use induction on n.



THE INTERNAL TENSOR PRODUCT

PROPOSITION

For each d > 0 there are bifunctors

— Qg Repld x Repld — Repl¢
iHomrz(—, —): (RepT§)°P x Repl{ — Repl¢
It suffices to define these bifunctors on finitely generated projectives:
d,v d,W _ rd,Vow

g.(:omri(rd,V’ rd,W) — rd,Hom(V,W)

REMARK

m The construction proceeds in two steps: Py ~» F?P) ~» Rep I'g.

m The tensor product induces (via transport of structure) a tensor
product for modules over the Schur algebras Si(n, d).



KOSzUL DUALITY

THEOREM

Let d > 0. Then

N @pg A7 22 59,

m There is also a derived version of this formula.
m The proof uses the classical Koszul duality.

. . d
m A consequence is the Koszul duality for Rep .



KOSzUL DUALITY: DERIVED VERSION

D(Rep Fz) = the derived category of Rep Fi’

THEOREM
Let d > 0. Then

N @y N = 59
k

COROLLARY (CHALUPNIK, ToUzZE, K)

The functors N9 ®Ifd — and Rﬂ{omrz(/\d, —) provide mutually
k

quasi-inverse equivalences

D(ReplY) = D(RepT9).



KOSzZUL DUALITY: FINITE VERSION

Db(rep FZ) = the bounded derived category of
rep Fz — category of k-linear functors TP, — Py

Note: The natural functor D?(rep ) — D(RepT'¢) is fully faithful.

COROLLARY

The functor Rﬂ-Comrz(—, A?) induces an equivalence
D: DP(repTd)°P =5 Db(repT?)

satisfying D? = Id.



THE PROOF: RESOLUTIONS OF A9 AND S¢

The strategy for the proof of

N ®Fy N = 59
k

m Construct a projective resolution of A? in Rep rg.
= Apply A9 ®ra — to this resolution and get a resolution of S9.

m These resolutions are obtained from normalised bar resolutions,
using classical Koszul duality [Totaro 1997].

THEOREM (CLASSICAL KOSZUL DUALITY)

For each V € Py, there are isomorphisms of graded algebras:

Exts(v+)(k, k) 2 AV and  Extpy(k, k) = SV



THE PROOF: THE PROJECTIVE RESOLUTION OF A?

The normalised bar resolution of k over S(V*):
o= S(VHRSTOVH)F2 — S(VF)@S7(VF) = S(VF) = k — 0
Apply Homg(y«(—, k):

0— k — S7O(V*)* = (S7O(Vv)*)®2 — ...

The cohomology of this complex is AV. Taking the degree d part
(with S"(V*)* replaced by I'"V) yields an exact sequence:

RESOLUTION OF A

0TV P rMverzv—...
i1+ir=d
- P rve--ereav o ved a7V S0
i+ tig_1=d




THE PROOF: THE RESOLUTION OF S¢

Analogously, the normalised bar resolution of k over A(V*) yields:

RESOLUTION OF S9

0= AV — @ ANV @ N2V = ...
i+ih=d
- P AVe- - @NaV Vv 5Ty 0
i+ tig_1=d

A ®rg — maps the resolution of A9 to the resolution of S¢. We use:

PROPOSITION

For a sequence A = (A1,...,\p) with ) ; \i=d,

A ®pa T 2 AN,
k



EXAMPLE: SCHUR AND WEYL FUNCTORS

Akin, Buchsbaum and Weyman [1982] introduced Schur and Weyl
functors, motivated by resolutions of determinantal ideals.

m A= (A1,...,\,) a partition of weight d =), \;
m )\ = the conjugate partition of \
=T ®...®M e ReplY, analogously S*, A*
Define the Schur functor
S\ = image of AN ADEA | ged N qed VOOV, o)
and the Weyl functor

W, = image of [ 2E28, |q®d 2, |g@d VOOV, AN

THEOREM (CHALUPNIK 2008)

A @y Wh = Sy



RINGEL DUALITY

Recall: For n > d, evaluation at k" induces an equivalence
Evin: Repld =5 Mod Sy (n, d).

Note: The Schur algebra Si(n, d) is quasi-hereditary in the sense of
Cline—Parshall-Scott.

THEOREM (RINGEL 1991)

A quasi-hereditary algebra A admits a characteristic tilting module T.
The Ringel dual A" = Enda(T) is again quasi-hereditary and A" is
Morita equivalent to A.

THEOREM (DONKIN 1993)

5/((”7 d)/ = Sk(na d)




Ko0SzUL DUALITY = RINGEL DUALITY

The characteristic tilting module for S(n, d) is
T = Evgn(A? Org k™
and Koszul duality composed with evaluation at k" gives

¢: Sk(n,d) = Endri(rd’k") — Endsg, (n.a)(T)-

THEOREM

The following diagram commutes up to a natural isomorphism.

RHom(A9,—)

~

D(RepT9) D(Repl¢)

Evkn ? l Evkn

RHom(T,—)

~

D(Mod Si(n, d)) D(Mod End(T)) -2~ D(Mod S¢(n, d))




(KOSZUL DUALITY)? = SERRE DUALITY

Let k be a field. The category D?(rep FZ) is Hom-finite.

A Serre functor is an equivalence F: D = D with a nat. isomorphism
HomD(X, —)* 1} HomD(—, FX)
for each X € D. This formalises the notion of Serre duality.

THEOREM
Let k be a field. The functor

(Ad ®[I:d _)2 ~ Sd ®L

k

induces a Serre functor

DP(reprd) =5 Db(repl9).



SUMMARY OPEN PROBLEMS

m The category Rep Ff(’ of degree d strict polynomial functors
admits a monoidal structure:

— ®rd — and fHomrz(—,—)

m Combining this monoidal structure with the classical Koszul
duality yields the Koszul duality a la Chatupnik and Touzé:

A ®F2’ —: D(Repl¢) =+ D(Repl¢).

m What is the relation between these Koszul dualities?

m How can we compute the tensor product, say,
FA ®rz M or S, ®ri Su

for partitions A, u of weigth d?



