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Vorsicht Funktor!

“der Funktor” versus “das Funktor”



Strict polynomial functors

Strict polynomial functors were introduced by Friedlander and
Suslin [1997] in their work on the cohomology of finite group
schemes.
We use an equivalent description in terms of representations of
divided powers, following expositions of Bousfield [1967], Kuhn
[1998], and Pirashvili [2003].
Divided powers were introduced by Eilenberg–MacLane [1954]
and Cartan [1954/55] in their study of the (co)homology of
spaces.



Koszul duality: work of Chałupnik and Touzé

Classical Koszul duality relates the module categories of
symmetric and exterior algebras.
Koszul duality for strict polynomial functors is due to

Marcin Chałupnik [Advances in Math., 2008], and
Antoine Touzé [arXiv:1103.4580].

Their work is motivated by calculations of functor cohomology.
There is some earlier work in that direction (more than 20 years
ago) by Akin, Buchsbaum, Donkin, Ringel ...



Koszul duality: various connections

The plan for this talk is ...

to explain strict polynomial functors via representations of
divided powers,
to explain the Koszul duality à la Chałupnik and Touzé, using

a new monoidal structure for strict polynomial functors, and
the classical Koszul duality (for symmetric/exterior algebras),

to explain the connection with Ringel duality for Schur algebras,
to explain the connection with Serre duality.



Polynomial representations of Γ = GLn(k)

Fix an infinite field k and a positive integer n.

A polynomial representation of Γ is a group homomorphism

ρ : Γ −→ GLN(k)

such that for each g ∈ Γ all entries of ρ(g) are polynomials in
the entries of g .
A representation is homogeneous of degree d if all polynomials
are homogeneous of degree d .

Theorem (Schur 1901, Green 1980)

Each polynomial representation decomposes into a direct sum
of homogeneous representations.
The degree d homogeneous polynomial representations of Γ are
equivalent to modules over the Schur algebra Sk(n, d).



The setup

Here is the setup:
k = a commutative ring (e.g. a field or Z)
Pk = the category of finitely generated projective k-modules
Sd = the symmetric group permuting d elements (d ≥ 0)

Some operations on objects V ,W ∈ Pk :
V ⊗W = the tensor product over k
Hom(V ,W ) = the group of k-linear maps V →W
V ∗ = Hom(V , k) = the k-dual
Sd acts on V⊗d = V ⊗ · · · ⊗ V︸ ︷︷ ︸

d



The category of divided powers

For V ∈ Pk and d ≥ 0 define divided and symmetric powers:
ΓdV = (V⊗d )Sd = {x ∈ V⊗d | σx = x for all σ ∈ Sd}
SdV = V⊗d/〈σx − x | x ∈ V⊗d , σ ∈ Sd 〉

Note:
ΓdV , SdV ∈ Pk and (ΓdV )∗ ∼= Sd (V ∗).
The original definition of the divided powers ΓdV is different;
but the symmetric tensors used here are isomorphic.

The category of divided powers ΓdPk :
objects of ΓdPk = objects of Pk (= f.g. projective k-modules)
HomΓdPk

(V ,W ) = Γd Hom(V ,W ) ∼= Hom(V⊗d ,W⊗d )Sd



Strict polynomial functors = Rep Γd
k

Definition

A strict polynomial functor of degree d is a k-linear functor

X : ΓdPk −→ Mk = category of k-modules.

Rep Γd
k = category of degree d strict polynomial functors

X ∈ Rep Γd
k consists of a pair of functions

V 7→ X (V ) and (V ,W ) 7→ XV ,W (V ,W ∈ Pk)

XV ,W : Γd Hom(V ,W ) −→ Hom(X (V ),X (W ))

Each k-linear map XV ,W corresponds to a homogeneous
polynomial map (or homogeneous polynomial law) of degree d

Hom(V ,W ) −→ Hom(X (V ),X (W )).



Schur algebras

Let V = kn. Then

EndΓdPk
(V ) = Γd End(V ) ∼= Sk(n, d)

where Sk(n, d) denotes the Schur algebra [Green 1980].

Theorem (Friedlander–Suslin 1997)

Let n ≥ d. The category Rep Γd
k is equivalent to the category of

modules over Sk(n, d) (via evaluation at kn).

Corollary

Let k be an infinite field. Then

rep Γd
k = category of k-linear functors ΓdPk → Pk

is equivalent to the category of degree d homogeneous polynomial
representations of GLn(k).



Examples of strict polynomial functors

The divided powers: Γd : V 7→ ΓdV
The symmetric powers: Sd : V 7→ SdV
The exterior powers: Λd : V 7→ ΛdV
The dual of X ∈ Rep Γd

k : X ◦ : V 7→ X (V ∗)∗

The representable functors

Γd ,V = HomΓdPk
(V ,−) (V ∈ Pk)

form a set of projective generators, by Yoneda’s lemma.
Note: Sd ∼= (Γd )◦ and (Λd )◦ ∼= Λd .



The external tensor product

Proposition

For integers d , e ≥ 0 there is a bifunctor

−⊗− : Rep Γd
k × Rep Γe

k −→ Rep Γd+e
k .

One defines X ⊗ Y : Γd+ePk → Mk

on objects via

(X ⊗ Y )(V ) = X (V )⊗ Y (V )

on morphisms via

Γd+e Hom(V ,W ) ⊆ Γd Hom(V ,W )⊗ Γe Hom(V ,W )

which is induced by the inclusion

Sd ×Se ⊆ Sd+e .



Decomposing divided powers

For a sequence λ = (λ1, λ2, . . . , λn) of non-negative integers set

Γλ = Γλ1 ⊗ · · · ⊗ Γλn and Sλ = Sλ1 ⊗ · · · ⊗ Sλn .

Proposition

For integers d , n ≥ 0 there is a canonical decomposition

Γd ,kn ∼=
⊕

λ=(λ1,...,λn)∑
i λi =d

Γλ.

Corollary

Each Γλ is a projective object in Rep Γd
k , where d =

∑
i λi .

Each Γd ,kn
is a projective generator of Rep Γd

k , when n ≥ d.



The proof: how partitions come into play

Consider the graded algebras of symmetric and divided powers

SV =
⊕
i≥0

S iV and ΓV =
⊕
i≥0

ΓiV (V ∈ Pk).

The functor V 7→ SV preserves coproducts. Thus

SV ⊗ SW ∼= S(V ⊕W ) and ΓV ⊗ ΓW ∼= Γ(V ⊕W ).

For each n ≥ 1, this yields in Rep Γd
k a decomposition

Γd ,kn
=

d⊕
i=0

(Γd−i ,kn−1 ⊗ Γi ).

Now use induction on n.



The internal tensor product

Proposition

For each d ≥ 0 there are bifunctors

−⊗Γd
k
− : Rep Γd

k × Rep Γd
k −→ Rep Γd

k

HomΓd
k

(−,−) : (Rep Γd
k )op × Rep Γd

k −→ Rep Γd
k

It suffices to define these bifunctors on finitely generated projectives:

Γd ,V ⊗Γd
k

Γd ,W = Γd ,V⊗W

HomΓd
k

(Γd ,V , Γd ,W ) = Γd ,Hom(V ,W )

Remark

The construction proceeds in two steps: Pk  ΓdPk  Rep Γd
k .

The tensor product induces (via transport of structure) a tensor
product for modules over the Schur algebras Sk(n, d).



Koszul duality

Theorem

Let d ≥ 0. Then
Λd ⊗Γd

k
Λd ∼= Sd .

There is also a derived version of this formula.
The proof uses the classical Koszul duality.
A consequence is the Koszul duality for Rep Γd

k .



Koszul duality: derived version

D(Rep Γd
k ) = the derived category of Rep Γd

k

Theorem

Let d ≥ 0. Then
Λd ⊗L

Γd
k

Λd ∼= Sd .

Corollary (Chałupnik, Touzé, K)

The functors Λd ⊗L
Γd
k
− and RHomΓd

k
(Λd ,−) provide mutually

quasi-inverse equivalences

D(Rep Γd
k )

∼−→ D(Rep Γd
k ).



Koszul duality: finite version

Db(rep Γd
k ) = the bounded derived category of

rep Γd
k = category of k-linear functors ΓdPk → Pk

Note: The natural functor Db(rep Γd
k )→ D(Rep Γd

k ) is fully faithful.

Corollary

The functor RHomΓd
k

(−,Λd ) induces an equivalence

D : Db(rep Γd
k )op ∼−→ Db(rep Γd

k )

satisfying D2 ∼= Id.



The proof: resolutions of Λd and Sd

The strategy for the proof of

Λd ⊗L
Γd
k

Λd ∼= Sd :

Construct a projective resolution of Λd in Rep Γd
k .

Apply Λd ⊗Γd
k
− to this resolution and get a resolution of Sd .

These resolutions are obtained from normalised bar resolutions,
using classical Koszul duality [Totaro 1997].

Theorem (Classical Koszul duality)

For each V ∈ Pk , there are isomorphisms of graded algebras:

ExtS(V ∗)(k , k) ∼= ΛV and ExtΛ(V ∗)(k , k) ∼= SV



The proof: the projective resolution of Λd

The normalised bar resolution of k over S(V ∗):

· · · → S(V ∗)⊗S>0(V ∗)⊗2 → S(V ∗)⊗S>0(V ∗)→ S(V ∗)→ k → 0

Apply HomS(V ∗)(−, k):

0→ k −→ S>0(V ∗)∗ → (S>0(V ∗)∗)⊗2 → · · ·

The cohomology of this complex is ΛV . Taking the degree d part
(with S i (V ∗)∗ replaced by ΓiV ) yields an exact sequence:

Resolution of Λd

0→ ΓdV →
⊕

i1+i2=d

Γi1V ⊗ Γi2V → · · ·

→
⊕

i1+···+id−1=d

Γi1V ⊗ · · · ⊗ Γid−1V → V⊗d → ΛdV → 0



The proof: the resolution of Sd

Analogously, the normalised bar resolution of k over Λ(V ∗) yields:

Resolution of Sd

0→ ΛdV →
⊕

i1+i2=d

Λi1V ⊗ Λi2V → · · ·

→
⊕

i1+···+id−1=d

Λi1V ⊗ · · · ⊗ Λid−1V → V⊗d → SdV → 0

Λd ⊗Γd
k
− maps the resolution of Λd to the resolution of Sd . We use:

Proposition

For a sequence λ = (λ1, . . . , λn) with
∑

i λi = d,

Λd ⊗Γd
k

Γλ ∼= Λλ.



Example: Schur and Weyl functors

Akin, Buchsbaum and Weyman [1982] introduced Schur and Weyl
functors, motivated by resolutions of determinantal ideals.

λ = (λ1, . . . , λn) a partition of weight d =
∑

i λi

λ′ = the conjugate partition of λ
Γλ = Γλ1 ⊗ · · · ⊗ Γλn ∈ Rep Γd

k , analogously Sλ, Λλ

Define the Schur functor

Sλ = image of Λλ
′ ∆⊗···⊗∆−−−−−→ Id⊗d sλ′−−→ Id⊗d ∇⊗···⊗∇−−−−−→ Sλ

and the Weyl functor

Wλ = image of Γλ
∆⊗···⊗∆−−−−−→ Id⊗d sλ−→ Id⊗d ∇⊗···⊗∇−−−−−→ Λλ

′
.

Theorem (Chałupnik 2008)

Λd ⊗L
Γd
k
Wλ
∼= Sλ′



Ringel duality

Recall: For n ≥ d , evaluation at kn induces an equivalence

Evkn : Rep Γd
k
∼−→ Mod Sk(n, d).

Note: The Schur algebra Sk(n, d) is quasi-hereditary in the sense of
Cline–Parshall–Scott.

Theorem (Ringel 1991)

A quasi-hereditary algebra A admits a characteristic tilting module T .
The Ringel dual A′ = EndA(T ) is again quasi-hereditary and A′′ is
Morita equivalent to A.

Theorem (Donkin 1993)

Sk(n, d)′ ∼= Sk(n, d)



Koszul duality = Ringel duality

The characteristic tilting module for Sk(n, d) is

T = Evkn(Λd ⊗Γd
k

Γd ,kn
)

and Koszul duality composed with evaluation at kn gives

φ : Sk(n, d) = EndΓd
k

(Γd ,kn
)
∼−→ EndSk(n,d)(T ).

Theorem

The following diagram commutes up to a natural isomorphism.

D(Rep Γd
k )

oEvkn

��

∼
RHom(Λd ,−) // D(Rep Γd

k )

o Evkn

��
D(Mod Sk(n, d)) ∼

RHom(T ,−)// D(ModEnd(T )) ∼
φ∗ // D(Mod Sk(n, d))



(Koszul duality)2 = Serre duality

Let k be a field. The category Db(rep Γd
k ) is Hom-finite.

A Serre functor is an equivalence F : D ∼−→ D with a nat. isomorphism

HomD(X ,−)∗
∼−→ HomD(−,FX )

for each X ∈ D. This formalises the notion of Serre duality.

Theorem

Let k be a field. The functor

(Λd ⊗L
Γd
k
−)2 ∼= Sd ⊗L

Γd
k
−

induces a Serre functor

Db(rep Γd
k )

∼−→ Db(rep Γd
k ).



Summary / open problems

The category Rep Γd
k of degree d strict polynomial functors

admits a monoidal structure:

−⊗Γd
k
− and HomΓd

k
(−,−)

Combining this monoidal structure with the classical Koszul
duality yields the Koszul duality à la Chałupnik and Touzé:

Λd ⊗L
Γd
k
− : D(Rep Γd

k )
∼−→ D(Rep Γd

k ).

What is the relation between these Koszul dualities?
How can we compute the tensor product, say,

Γλ ⊗Γd
k

Γµ or Sλ ⊗Γd
k
Sµ

for partitions λ, µ of weigth d?


