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1 Day 1: Support and cosupport of complexes

This lecture used slides, hence the notes are only some random facts mentioned during
the presentation but not present on the actual slideshow. The slideshow can be found
on the summer school’s website.

Remark 1. In Neeman’s book the notation for orthogonals is orthogonal to the
notation used elsewhere.

Remark 2. Foxby’s support is the “small support”: it is not specialisation-closed.
Hence it is not the same as support of a module.

Remark 3. The formalism of (co)support using local (co)homology is a good way
of avoiding the use of field objects.

Remark 4. The equivalence StMod kG ∼= Kac(Inj/kG) is obtained from the Tate
resolution: as the injectives and projectives in kG coincide, one glues together an
injective and a projective resolution for an object in the stable module category.

2 Day 2: Infinite methods

2.1 Compact objects

Let T be a triangulated category, denote Σ its shift or suspension, and assume that T
has set-indexed coproducts.

Definition 5. An object X of T is compact if HomT(X ,−): T→ Ab preserves coprod-
ucts.

Lemma 6. An object X is compact if and only if for all X →
∐

i∈I Yi there exists a
factorisation through

∐

i∈I Yi , where I0 ⊆ I is a finite subset.

Remark 7. These compact objects serve as building blocks for the category T and
they constitute a thick subcategory Tc.

Definition 8. The category T is compactly generated if T = Loc(C), for some set of
compact objects C.

Proposition 9. For a set of compact objects C⊆ Tc the following are equivalent:

1. Loc(C) = T;

2. for all objects X in T such that HomT(ΣnC , X ) = 0 for all objects C ∈ C

and n ∈ Z we have X = 0.

Proof. From (1) to (2) is easy: let X be an object of T and consider

(1) ⊥X :=
�

V ∈ T | HomT(Σ
nV, X ) = 0,∀n ∈ Z

	

which is a localising subcategory of T. If C⊆ ⊥X then X = 0.

From (2) to (1) we have to use Brown representability (see later), which depends
on the compactness of the objects. The inclusion Loc(C) ,→ T has a right adjoint Γ.
Let X be an object of T, by the adjunction we have a morphism Γ(X )→ X that we
can complete to a triangle

(2) Γ(X )→ X → X ′→
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and the long exact sequence that we can obtain by applying HomT(V,−) tells us
that HomT(V, X ′) = 0 for all X ∈ Loc(C). So if (2) holds then we have X ′ = 0 and
therefore X ∈ Loc(C).

Proposition 10. Let X and Y be compact objects of T. If Y ∈ Loc(X ) then we already
have Y ∈ Thick(X ).

Hence if a compact object Y can be obtained from a compact object X in infinitely
many steps it can also be done in finitely many.

Example 11. Let A be any ring and take X ∈ D(Mod/A). Then the following are
equivalent:

1. X ∈ Thick(A);

2. X is isomorphic to a perfect complex;

3. X is compact.

2.2 Brown representability

Theorem 12. Let T be a compactly generated triangulated category. For a func-
tor H : Top→ Ab the following are equivalent:

1. H is cohomological, i.e. it sends exact triangles in T to exact sequences and it
sends coproducts in T to products;

2. H is representable, i.e. there exists an object X ∈ T such that H ∼= HomT(−, X ).
Corollary 13. Let T be a compactly generated triangulated category. Then T has all
coproducts.

Proof. Consider {X i}i∈I a family of objects in T. Then
∏

i∈I HomT(−, X i) satisfies
condition (1) in the Brown representability theorem, hence it must be representable
by an object that satisfies the universal property for a product.

Corollary 14. Let T be a compactly generated triangulated category and U be
any triangulated category. Then for all exact functors F : T→ U the following are
equivalent:

1. F preserves coproducts;

2. F admits a right adjoint G.

Proof. From (1) to (2) we consider any object X in U, then the functor

(3) HomU(F(−), X ): Top→ Ab

satisfies condition (1) in the Brown representability theorem, hence it can be
represented as HomT(−, Y ), and set G(X ) := Y .

From (2) to (1) is trivial as left adjoints preserve coproducts.

We will often take U a Verdier quotient in applications.
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2.3 Bousfield localisation

Let T be a triangulated category and S a thick subcategory. Its Verdier quotient

(4) T/S := T[{σ ∈Mor(T) | cone(σ) ∈ S}−1]

is again a triangulated category, the quotient functor Q : T → S is exact and its
kernel ker(Q) = S, where the kernel and essential image

(5)
ker(F) := {X ∈ T | F(X ) = 0}
im(F) := {Y ∈ U | ∃X ∈ T : Y ∼= F(X )}

are full triangulated subcategories.

Example 15. Let A be an abelian category. Then D(A) := K(A)/Kac(A) is a triangu-
lated category.

Remark 16. A priori it is unclear whether a Verdier quotient T/S is locally small.

Definition 17. A localisation functor is an exact endofunctor L : T→ T if there is a
natural transformation η: idT ⇒ L such that

1. L ◦η: L⇒ L2 is invertible, i.e. for all X the morphism L(ηX ): L(X )→ L2(X )
is an isomorphism;

2. L ◦η= η ◦ L, i.e. L(ηX ) = ηL(X ).

Definition 18. A colocalisation functor is an exact endofunctor Γ: T→ T for which
the opposite functor Γop is a localisation functor.

Remark 19. The notation Γ is a reference both to Grothendieck’s local cohomology
functor and the symmetry between L and Γ.

Proposition 20. For a thick subcategory S of T the following are equivalent:

1. S ,→ T admits a right adjoint;

2. Q : T→ T/S admits a right adjoint;

3. there exists a localisation functor L such that ker(L) = S;

4. there exists a colocalisation functor Γ such that im(Γ) = S.

In this case, the following holds:

1. for all objects X in T there exists a functorial triangle

(6) Γ(X )→ X → L(X )→

2. S⊥ = im(L) = ker(Γ) and ⊥(S⊥) = S (where a priori the left-hand side could
be bigger);

3. Γ induces a right adjoint for the inclusion S ,→ T;

4. L induces a left adjoint for the inclusion S⊥ ,→ T;

Remark 21. This is related to the notion of semi-orthogonal decompositions: we
obtain T = 〈S⊥,S〉 = 〈S,⊥S〉. A useful mnemonic (suggested by Sasha Kuznetsov) is
that ⊥ is always in the middle.
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Example 22. Let T be a compactly generated triangulated category. Let S= Loc(C)
be a localising subcategory generated by a set of compact objects C. We obtain a
diagram

(7)

Sc Tc Tc/Sc

S T T/S

where Sc = Thick(C) and the induced functor Tc/Sc→ (T/S)c is an equivalence up
to direct summands.

2.4 Describing localising subcategories

The problem that we would like to solve is the description of all localising subcate-
gories of a compactly generated triangulated category. Some obvious questions that
arise are:

1. do they form a set or a proper class?

2. how can we explicitly describe them?

Definition 23. Let T be a triangulated category that has coproducts. Then T is well-
generated if T = Loc(C), where C is a set of α-compact objects, and α is a regular
cardinal.

The case α= ℵ0 yields the usual definition of a compactly generated category.

Theorem 24. Brown representability holds for well-generated categories.

Corollary 25. Let T be a compactly generated triangulated category. Let C be any set
of objects of T (we no longer assume the objects to be compact). Then Loc(C) ,→ T

admits a right adjoint.

Exercise 26. The corollary is due to Neeman; find this important result in his book
on triangulated categories (it’s well hidden, unfortunately).

Theorem 27. Let T be a compactly generated triangulated category. Then

(8) card {Loc(C)⊆ T | C a set} ≤ 22#Tc

where #Tc := card(Mor(Tc)).

3 Day 3: Stratification of big triangulated categories

3.1 Rings acting on triangulated categories

Recall that for a commutative noetherian ring A we have the associated (big)
derived category D(A) := D(Mod/A), and to an object X in D(A) we have associated
a support supp X and cosupport cosupp X which are subsets of Spec A. This way
we parametrise localising and colocalising subcategories. More precisely, the main
results from the first lecture are:
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Theorem 28. Let X and Y be objects of D(A). Then supp X ⊆ supp Y if and only
if Loc(X )⊆ Loc(Y ).
Theorem 29. Let X and Y be objects of D(A). Then cosupp X ⊆ cosupp Y if and only
if Coloc(X )⊆ Coloc(Y ).
Corollary 30. Let X and Y be objects of D(A). Then Ext•A(X , Y ) = 0 if and only
if supp X ∩ cosupp Y = ;.

Now more generally, let T be a triangulated category.

Problem How can we determine that for X and Y objects in T we have

(9) Hom•
T
(X , Y ) :=

⊕

n∈Z

HomT(X ,ΣnY ) = 0?

Fix a Z-graded commutative ring R =
⊕

n∈Z Rn, i.e. we have rs = (−1)|r||s|sr for r
and s homogeneous elements. This graded-commutativity enters the picture because
we will often take R to be a cohomology ring.

Definition 31. Let T be a triangulated category and R a graded commutative ring.
We say that T is R-linear, or that R acts on T if there is a homomorphism of rings

(10) ϕ : R→ Z•(T)

where Z•(T) is the graded centre of T, which is the graded commutative ring whose
degree n piece is given by

(11) Zn(T) :=
�

η: idT ⇒ Σn | η ◦Σ = (−1)nΣ ◦η
	

.

So for an object X of T we get a ring homomorphism

(12) ϕX : R→ End•
T
(X )

and Hom•
T
(X , Y ) is a graded R-module via ϕX acting on the right and ϕY acting on

the left, whose actions coincide up to a sign.

Standing assumptions From now on we take R a graded commutative noetherian
ring, T a compactly generated triangulated category and Spec R the set of graded
prime ideals of R (which might be confusing at first for algebraic geometers).

To a graded ideal a we assign

(13) V(a) :=
�

p ∈ Spec R | a⊆ p
	

and an R-module M is a-torsion if Mp = 0 for all p ∈ Spec R\V(a), which is equivalent
to the usual definition of torsion.

A subset V is specialisation-closed if for all p⊆ q such that p ∈ V we have q ∈ V .

Definition 32. An object X of T is V-torsion if Hom•
T
(C , X )p = 0 for all p ∈ Spec R\V

and all C ∈ Tc.

We then set

(14) TV := {X ∈ T | X is V -torsion}

which is a localising subcategory as the vanishing condition uses compact objects.
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Proposition 33. For a specialisation-closed subset V there are

1. a localisation functor LV : T→ T such that ker LV = TV ,

2. a colocalisation functor ΓV : T→ T such that imΓV = TV ,

such that we obtain a localisation triangle

(15) ΓV (X )→ X → LV (X )→

for all objects X in T.

For p ∈ Spec R we set the localisation of an object X of T at p to be

(16) Xp := LZ(p)(X )

where Z(p) := {q | q * p} = Spec R \ Spec Rp. The natural map X → Xp obtained
from the adjunction induces an isomorphism

(17) Hom•
T
(C , X )p ∼= Hom•

T
(C , Xp)

for all compact objects C in T.

Definition 34. We say that an object X of T is p-local if X ∼= Xp.

So now we have the notion of p-local objects and p-torsion objects.

Definition 35. For p ∈ Spec R we set the local cohomology of an object X to be

(18) Γp(X ) := ΓV(p ◦ LZ(p)(X ) = ΓV(p)(Xp).

This is an idempotent functor, and X ∈ Γp(T) if and only if X is both p-local
and p-torsion.

Remark 36. The notation is not a coincidence: it coincides with Grothendieck’s local
cohomology functor in the appropriate setting.

Lemma 37. Let V and W be specialisation-closed subsets of Spec R such that we
have V \W = {p}. Then

(19) ΓV ◦ LW
∼= Γp ∼= LW ◦ΓV .

This can for instance be applied to V = V(p) and W = Z(p).

3.2 Stratification of big triangulated categories

We now have the necessary tools to introduce stratification.

Definition 38. Let X be an object of T, with R acting on T. Then

(20) suppR X :=
¦

p ∈ Spec R | Γp(X ) 6= 0
©

is the support of X .

Remark 39. If X → Y → Z → is an exact triangle, then

(21) suppR Y ⊆ suppR X ∪ suppR Y

and

(22) suppR

 

∐

i∈I

X i

!

=
⋃

i∈I

suppR X i .
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Theorem 40. For an object X of T we have

(23) suppR X =
⋃

C∈Tc

min{SuppR Hom•
T
(C , X )}

where for an R-module M

(24) SuppR M :=
¦

p ∈ Spec R | Mp 6= 0
©

and a subset U⊆ Spec R

(25) minU := {p ∈ U | q ∈ U,q⊆ p⇒ q= p} .

Hence the minimal elements determine the support: as we are working with
specialisation-closed subsets, the support suppR only considers the minimal primes.

As we have assumed T to be compactly generated we get the following corollary.

Corollary 41. For all objects X in T we have suppR X = ; if and only if X = 0.

We now come to the main definition of the lecture series.

Definition 42. The category T is stratified by (the action of) R if

1. we have that

(26) Loc(X ) = Loc({Γp(X ) | p ∈ Spec R})

for all objects X in T, i.e. we have the local-to-global principle which says that
objects are built up from p-local and p-torsion information;

2. Γp(T) has no proper localising subcategories, for all p ∈ Spec R.

Proposition 43. Let T be as above.

1. The local-to-global principle holds whenever the Krull dimension of R is finite
or when T “has a model.”

2. Suppose that the local-to-global-principle holds. Then we have bijections

(27)
�

localising subcategories of T
	

S⊆ T

§

collections of localising subcategories of Tp

for all p ∈ Spec R

ª

(S∩Γp(T))p∈Spec R.

1:1

Example 44.

1. Neeman: D(A) is stratified by R = A, where A is a commutative noetherian
ring.

2. Benson–Iyengar–Krause: StMod(kG) is stratified by H•(G, k) (where G is a
finite p-group).
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3.3 Consequences of stratification

Theorem 45. Suppose that T is stratified by R. Then we have a bijection

(28)

�

localising subcategories of T
	

S⊆ T

�

subsets of suppR(T)
	

suppR(S) :=
⋃

X∈S suppR X .

1:1

We say T is noetherian if Hom•
T
(X , Y ) is finitely generated over R for all compact

objects X and Y of T.

Lemma 46. Let X be an object of T. If End•
T
(X ) is finitely generated over R

then suppR X = V(a), for a := ker(R→ End•
T
(X )).

This allows us to classify thick subcategories of Tc!

Theorem 47. Let T be as above, and assume moreover that T is noetherian. Then
we have a bijection

(29)

�

thick subcategories of Tc	 S⊆ Tc

�

specialisation-closed subsets of suppR(T)
	

suppR(S).

1:1

Corollary 48. Let T be as above, and assume moreover that T is noetherian. Then
for all compact objects X and Y of T we have

(30) SuppR Hom•
T
(X , Y ) = suppR X ∩ suppR Y.

Example 49. 1. If (T,⊗,1) is a tensor triangulated category then T is End•
T
(1)-

linear, and we obtain a classification of tensor ideal localising subcategories.
This generalises the classification of localising subcategories to any finite
group G, without the assumption on the order of G.

2. Let A be a finite-dimensional k-algebra. If we wish to stratify D(A) we may
run into the following problems:

(a) The category of compacts is too small. Take A= kG for G a finite group,
then D(A)c ∼= Db(proj/A), but we’d rather study stmod(A);

(b) The graded center is too small. Take A = kQ for Q an acyclic quiver,
then Z•(D(A)) = k if Q is Dynkin, which is of no use to us.

3. On the other hand, Z•(T) can also be too big for meaningful calculations, in
which case we will often take HH•(A/k) as the ring acting on T, instead of the
entire graded centre.
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4 Day 4: K(Inj/X ) and Grothendieck duality

4.1 Db(X ) and compact objects

Let X be a separated noetherian scheme. We have a chain of inclusions

(31) Dperf(X ) Db(coh/X ) D(Qcoh/X )

of triangulated categories. We can relate the outer two by the following proposition:

Proposition 50. The derived category D(Qcoh/X ) is compactly generated, with
D(Qcoh/X )c ∼= Dperf(X ).

But for Grothendieck duality (amongst other reasons) we are mostly interested
in Db(coh/X ), which contains noncompact objects if X is not regular. Hence the
category D(Qcoh/X ) is “too small” to have Db(coh/X ) as its category of compacts.

To remedy this, observe that Qcoh/X is a Grothendieck category, hence it has
enough injective objects, so we have Inj/X ,→ Qcoh/X , where Inj/X is closed
under coproducts. Writing down the definitions for the derived category we get the
following situation:

(32)

Kac(Inj/X ) K(Inj/X ) K(Inj/X )/Kac(Inj/X )

Kac(Qcoh/X ) K(Qcoh/X ) D(Qcoh/X ).

Q ∼=

The following proposition shows that K(Inj/X ) is the “bigger category” that we need,
with the desired compact objects.

Proposition 51. The category K(Inj/X ) is compactly generated, and Q induces an
equivalence K(Inj/X )c ∼= Db(coh/X ).

Proof. The set of compact generators corresponds to injective resolutions of co-
herent sheaves. Checking that these are compact boils down to studying coh/X
inside Qcoh/X , and that they are generating is proved using Baer’s injectivity crite-
rion.

Theorem 52. The functor Q admits a left and right adjoint. This yields a recollement

(33) S(Qcoh/X ) K(Inj/X ) D(Qcoh/X )

where S(Qcoh/X ) := Kac(Inj/X ) is also known as the singularity category of X .

Proof. Brown representability gives us the right adjoint for Q, because Inj/X is
closed under coproducts.

The proof for the left adjoint went a bit haywire and is not reproduced here.
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There is a remarkable consequence, given that taking products in Qcoh/X in general
might not be exact.

Corollary 53. A product of acyclic complexes of injectives is again acyclic.

Remark 54. Denoting the left and right adjoint by Qλ and Qρ respectively, we get
that

(34)
imQλ =

⊥S(Qcoh/X ),

imQρ = S(Qcoh/X )⊥ = K-injective complexes.

Exercise 55. Based on a question by Lunts–Schnürer: the right adjoint Qρ identi-
fies D(Qcoh/X ) with the full subcategory of K-injective complexes. Are they closed
under taking coproducts? (Hint: if and only if X is regular)

The following lemma is useful for both the exercise and the subsequent corollary.

Lemma 56. Given an adjoint pair of exact functors between compactly generated
triangulated categories, the left adjoint preserves compactness if and only if the
right adjoint preserves coproducts.

Corollary 57. The upper row of the recollement yields (as left adjoints preserve
compacts)

(35)

Db(coh/X )/Dperf(X ) Db(coh/X ) Dperf(X )

S(Qcoh/X )c K(Inj/X )c D(Qcoh/X )c

∼= ∼=

where the first vertical functor is an equivalence up to direct summands: S(Qcoh/X )c

is karoubian but the domain is not in general.

The category Db(coh/X )/Dperf(X ) occurs in two contexts:

1. singularity categories, by Orlov,

2. stable derived categories, by Buchweitz,

which explains the notation.

Remark 58. This works for any locally noetherian Grothendieck category, provided
that D(A) is compactly generated.

Example 59. Take k a field of characteristic p and G a finite p-group (in the more
general context of an arbitrary finite group one has to restrict to ⊗-ideals). Then we
have a recollement

(36)

StMod kG K(Inj/kG) D(kG)

Proj H•(G, k) H•(G, k) ∗

The spectra of the graded commutative rings in the bottom row describe the lo-
calising subcategories. We see that in this case D(kG) is a minimal (co)localising
subcategory, hence corresponds to the unique maximal prime ideal. The category
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on the left is the one we are the most interested in, as it tells us the most about the
representation theory of G.

Example 60. The category S(Qcoh/X ) has been stratified (via tensor action) when X
is locally a complete intersection, this is a result by Greg Stevenson.

4.2 Grothendieck duality

Let A be a commutative noetherian ring. Associated to A we have

(37)

Inj/A injective A-modules

Proj/A projective A-modules

Flat/A flat A-modules

Dfin(A)

(

X ∈ D(Mod/A) |
⊕

n∈Z

Hn(X ) finitely generated over A

)

and we will be considering the situation

(38)

mod/A Mod/A

Db(mod/A) Dfin(A) D(Mod/A).
∼=

We wish to find the “infinite completion” of Grothendieck duality. I.e. suppose that A
admits a dualising complex DA, which is a complex of injective objects such that

(39) Dfin(A) Dfin(A)
RHomA(−,DA)

is an equivalence. Can this be lifted to unbounded complexes?

One can show that there is a diagram

(40) K(Proj/A) K(Flat/A) K(Inj/A)

−⊗ADA

HomA(DA,−)

where the right adjoint to the inclusion K(Proj/A) ,→ K(Flat/A) is obtained using
Brown representability.

Proposition 61. The category K(Proj/A) is compactly generated, and we obtain the
diagram

(41)

K(Proj/A) K(Mod/A) D(Mod/A)

K(Proj/A)c Dfin(A)

HomA(−,A)

∼=

where the compact objects are not quite the projective resolutions of finitely gener-
ated modules, but rather their duals.
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This will yield the “infinite completion” of Grothendieck duality (in the affine case):

Theorem 62 (Iyengar–Krause). The functor −⊗A DA : K(Proj/A)→ K(Inj/A) is an
equivalence.

The passage to the compacts gives the relationship to the usual duality

(42)

K(Proj/A)c K(Inj/A)c

Dfin(A) Dfin(A)

−⊗ADA

HomA(−,A) ∼=

RHomA(−,DA)

with the bottom line being Grothendieck duality in the classical sense.

Remark 63. The results of the PhD thesis by Murfet generalise this to noetherian
schemes.

5 Day 5: Stratifying small triangulated categories

Whereas on day 3 we discussed the stratification of big triangulated categories we
now focus on the story in the small setting, i.e. the isomorphism classes of the
objects in the category actually form a set.

5.1 Example: stratifying the bounded derived category of the
Kronecker algebra

Theorem 64 (Beilinson). The object T := OPn
k
⊕OPn

k
(1)⊕ . . .⊕OPn

k
(n) in coh/Pn

k is
tilting, i.e. it induces an equivalence

(43) RHom(T,−): Db(coh/Pn
k)→ Db(mod/Λn)

where Λn is the Beilinson algebra End(T ), which is a finite-dimensional algebra.

The Beilinson algebra is described by the Beilinson quiver with relations, which is
given by

(44)

. . .0 1 2 n− 1 n
x0

xn

. . .
x0

xn

. . .
x0

xn

. . .

and relations x i x j = x j x i , for all i, j = 0, . . . , n.

In the special case that n= 1 we get the Kronecker algebra

(45)
�

k k2

0 k

�

which is moreover hereditary.
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Problem We wish to describe the lattice of thick subcategories of Db(P1
k).

This problem boils down to describing the indecomposables. The category is heredi-
tary and the indecomposables are the so called “stalk complexes”, i.e. up to shift we
have that they are

(46)
n

OP1
k
(i) | i ∈ Z

o

∪
n

OP1
k ,pr | p closed in P1

k, r ∈ N
o

.

We can now set up the lattice of thick subcategories:

1. Denote the set of closed points by P1
k(k) and let U⊆ P1

k(k). We associate the
thick subcategory

(47) U 7→ CU := Thick
�n

OP1
k ,p | p ∈ U

o�

of Db(P1
k) to it.

2. Let i ∈ Z. We associate the thick subcategory

(48) i 7→ Ci := Thick
�n

OP1
k
(i)
o�

of Db(P1
k) to it.

These thick subcategories are ordered by inclusion, which gives us the desired lattice
structure. For the thick subcategories of the first kind we moreover have that U⊆ V

if and only if CU ⊆ CV. The Ci on the other hand are incomparable to eachother.

This gives us the following picture:

(49)

Db(P1
k) discrete continuous

Ci CU
∼= Z t 2P

1
k(k)

{0}

i.e. we take the coproduct of lattices. The exceptional objects OP1
k
(i) give rise to

“discrete” information in the lattice, we have one thick subcategory for each i ∈ Z
and these are all incomparable (i.e. the usual order of Z is not important here),
whereas the subsets of closed points correspond to “continuous” information.

5.2 Stratification of bounded derived categories of hereditary
algebras

This behaviour can be generalised to all path algebras, and in the Dynkin case
(i.e. the underlying graph of Q is of Dynkin type ∆ = An, Dn or E6,7,8) we get the
following theorem (recall that Z•(Db(kQ))∼= k so we cannot use stratification by a
ring action to describe the localising subcategories).
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Theorem 65. There are bijections

(50)

�

localising subcategories of D(Mod/A)
	

C

¦

thick subcategories of Db(mod/A)
©

C∩Db(mod/A)

�

non-crossing partitions of type ∆
	

1:1

1:1

where non-crossing partitions are a subset of the Weyl group W(∆).

In order to describe the second bijection in this diagram we use the fact that
thick subcategories of Db(mod/A) are all generated by exceptional objects, i.e. are
described by Thick({E1, . . . , Er}). Associated to Ei is a reflection sEi

in the Weyl
group, and the second bijection sends D to the composition of reflections sE1

· · · sEr
.

This is a result of Ingalls–Thomas.

Remark 66. The theorem generalises to arbitrary quivers, if one considers the
set of all thick subcategories generated by exceptional objects instead of all thick
subcategories.

In general we get the following correspondence for A a hereditary finite-dimensional
k-algebra.

C⊆ Db(mod/A) C∩mod/A

thick thick
admissible having a projective generator

where C∩mod/A denotes those objects of C concentrated in degree 0, and the left
adjoint to the inclusion C∩mod/A ,→mod/A furnishes a projective generator, for
which we have an exceptional collection of the module category. Hence admissible
subcategories correspond to subcategories generated by exceptional sequences.

5.3 Stratification of small triangulated categories

We now focus on the local-to-global principle for small triangulated categories T.
This is based on an arXiv preprint by Benson–Iyengar–Krause.

Assume that a graded commutative ring R acts on T.

Proposition 67. For all p ∈ Spec R there exists an exact quotient functor

(51) T→ Tp : X 7→ Xp

such that

(52) Hom•
T
(X , Y )p ∼= HomTp

(Xp, Yp).

This yields the notion of p-local objects.
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Fix a = (r1, . . . , rn) a homogeneous ideal of R. For any homogeneous r ∈ R,
with d = |r| and X an object of T we define

(53) X // r := cone(X
r→ Σd X )

which is a Koszul object. For a= (r1, . . . , rn) we then define

(54) X // a := Xn

where X0 := X and X i := X i−1 // ri , for i = 1, . . . , n.

Of course, this definition depends on the choice of generators, and moreover cones
are not functorial in general. But one can obtain the following independence result.

Lemma 68. Thick(X // a) is independent of the choice of generators, as

(55) Thick(X // a) =
¦

Y ∈ Thick(X ) | End•
T
(Y )p = 0∀p+ a

©

.

This yields the notion of a-torsion objects.

Definition 69. For a homogeneous prime ideal p we set

(56) X (p) := (X // p)p ∼= Xp // p

(i.e. the quotient functor and the formation of Koszul objects commute).

This yields the following local-to-global principle for thick subcategories, which is a
criterion for an object to belong to a thick subcategory.

Theorem 70. For a thick subcategory S in T and X ∈ T the following are equivalent:

1. X ∈ S;

2. Xp ∈ Sp for all p ∈ Spec R;

3. X (p) ∈ Sp for all p ∈ Spec R.

We can now define support in this situation.

Definition 71. Let X be an object of a triangulated category T. Then the support
of X with respect to the action of R is

(57) suppR(X ) :=
�

p ∈ Spec R | X (p) 6= 0
	

.

Remark 72. We can also compute the support in terms of cohomology and get the
following inclusion

(58) suppR X ⊆
¦

p ∈ Spec R | End•
T
(X )p 6= 0

©

= SuppR End•
T
(X ).

The equality holds if End•
T
(X ) is finitely generated over R.

For a homogeneous prime ideal p of R we set

(59) Γp(T) :=
¦

X ∈ Tp | End•
T
(X )q = 0∀q+ p

©

,

i.e. we take the p-local and p-torsion objects, which forms a thick subcategory of Tp.

Definition 73. The triangulated category T is stratified by the action of R if each of
the Γp(T) has no proper thick subcategories.

On day 3 we had a similar result for the unbounded case. The result for small
categories generalises a result from Hopkins:

Example 74. For a commutative noetherian ring A we have that Dperf(A) is stratified
by R= A.
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5.4 Consequences of stratification

Theorem 75. Suppose that T is stratified by R. Then for all objects X and Y of T we
have that

1. X ∈ Thick(Y ) if and only if suppR X ⊆ suppR Y ;

2. Hom•
T
(X , Y ) = 0 if and only if suppR X ∩ suppR Y = ;.

Remark that (2) in the theorem relates an asymmetric condition to a symmetric one,
which is an important obstruction to having a stratification.

We can also prove a converse to this theorem:

Proposition 76. Assume that End•
T
(X ) is finitely generated over R for all objects X

of T. If T is not stratified then there exists a pair of objects X and Y in T such
that suppR X = suppR Y but Thick(X ) 6= Thick(Y ).

As a final remark: the results of day 3 depend on localisation techniques which
are based on the so-called infinite methods, such as homotopy colimits and Brown
representability, whereas today’s results use categories of cohomological functors to
make things work.
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