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1.6. Non-crossing partitions arising in representation theory

In this section we explain how non-crossing partitions arise naturally in rep-
resentation theory. For any finite dimensional algebra A over a field k we consider
the category mod A of finite dimensional (right) A-modules and denote byK0pAq

its Grothendieck group. This group is free abelian of finite rank, and a represen-
tative set of simple A-modules S1, . . . , Sn provides a basis e1, . . . , en if one sets
ei “ rSis for all i. As usual, we denote for any A-module X by rXs the corre-
sponding class in K0pAq. The Grothendieck group comes equipped with the Euler
form K0pAq ˆ K0pAq Ñ Z given by

xrXs, rY sy “

ÿ

n>0

p´1q
n dimk Ext

n

A
pX,Y q

which is bilinear and non-degenerate (assuming that A is of finite global dimen-
sion). The corresponding symmetrised form is given by px, yq “ xx, yy ` xy, xy.
For a class x “ rXs given by a module X, one defines the reflection

(1.6.1) sx : K0pAq ›Ñ K0pAq, a fiÑ a ´ 2
pa, xq

px, xq
x,

assuming that px, xq ‰ 0 divides pei, xq for all i. Let us denote by W pAq the
group of automorphisms of K0pAq that is generated by the set of simple reflections
SpAq “ tse1 , . . . , senu; it is called the Weyl group of A.

From now on assume that A is hereditary, that is, of global dimension at most
one. Then one can show that the Weyl group W pAq is actually a Coxeter group.
For example, the path algebra kQ of any quiver Q is hereditary and in that case
kQ-modules identify with k-linear representations of Q.

Proposition 1.6.1 ([36, Theorem B.2]). A Coxeter system pW,Sq is of the form
pW pAq, SpAqq for some finite dimensional hereditary algebra A if and only if it is
crystallographic in the following sense:

(1) mst P t2, 3, 4, 6,8u for all s ‰ t in S, and
(2) in each circuit of the Coxeter graph not containing the edge label 8, the

number of edges labelled 4 (resp. 6) is even. ⇤
We may assume that the simple A-modules are numbered in such a way that

xei, ejy “ 0 for i ° j, and we set c “ se1 ¨ ¨ ¨ sen . Note that c “ cpAq is a Coxeter
element which is determined by the formula

xx, yy “ ´xy, cpxqy for x, y P K0pAq.

We are now in a position to formulate a theorem which provides an explicit
bijection between certain subcategories of mod A and the non-crossing partitions
in NCpW pAq, cq. Call a full subcategory C Ñ mod A thick if it is closed under
direct summands and satisfies the following two-out-of-three property: any exact
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sequence 0 Ñ X Ñ Y Ñ Z Ñ 0 of A-modules lies in C if two of tX,Y, Zu are in
C. A subcategory is coreflective if the inclusion functor admits a right adjoint.

Theorem 1.6.2. Let A be a hereditary finite dimensional algebra. Then there is
an order preserving bijection between the set of thick and coreflective subcategories
of mod A (ordered by inclusion) and the partially ordered set of non-crossing par-
titions NCpW pAq, cq. The map sends a subcategory which is generated by an excep-
tional sequence E “ pE1, . . . , Erq to the product of reflections sE “ sE1 ¨ ¨ ¨ sEr . ⇤

The rest of this article is devoted to explaining this result. In particular, the
crucial notion of an exceptional sequence will be discussed.

This result goes back to beautiful work of Ingalls and Thomas [38]. It was then
established for arbitary path algebras by Igusa, Schi✏er, and Thomas [37], and we
refer to [36] for the general case. Observe that path algebras of quivers cover only
the Coxeter groups of simply laced type (via the correspondence A fiÑ W pAq); so
there are further hereditary algebras.

We may think of Theorem 1.6.2 as a categorification of the poset of non-
crossing partitions. There is an immediate (and easy) consequence which is not
obvious at all from the original definition of non-crossing partitions; the first (com-
binatorial) proof required a case by case analysis.

Corollary 1.6.3. For a finite crystallographic Coxeter group the corresponding
poset of non-crossing partitions is a lattice.

Proof. Any finite Coxeter group can be realised as the the Weyl group W pAq

of a hereditary algebra of finite representation type. In that case any thick sub-
category is coreflective. On the other hand, it is clear from the definition that the
intersection of any collection of thick subcategories is again thick. This yields the
join, but also the meet operation; so the poset of thick and coreflective subcate-
gories is actually a lattice; see Remark 1.1.1 ⇤

This categorification provides some further insight into the collection of all
posets of non-crossing partitions. This is based on the simple observation that any
thick and coreflective subcategory C Ñ mod A (given by an exceptional sequence
E “ pE1, . . . , Erq) is again the module category of a finite dimensional hereditary
algebra, say C “ mod B. Then the inclusion mod B Ñ mod A induces not
only an inclusion K0pBq Ñ K0pAq, but also an inclusion W pBq Ñ W pAq for the
corresponding Weyl groups, which identifies W pBq with the subgroup of W pAq

generated by sE1 , . . . , sEr , and identifies the Coxeter element cpBq with the non-
crossing partition sE in W pAq. Moreover, the inclusion W pBq Ñ W pAq induces
an isomorphism

NCpW pBq, cpBqq
„
Ñ tx P NCpW pAq, cpAqq | x 6 sEu.
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The following result summarises this discussion; it reflects the fact that there
is a category of non-crossing partitions. This means that we consider a poset of
non-crossing partitions not as a single object but look instead at the relation with
other posets of non-crossing partitions.

Corollary 1.6.4 ([36, Corollary 5.8]). Let NCpW, cq be the poset of non-crossing
partitions given by a crystallographic Coxeter group W . Then any element x P

NCpW, cq is the Coxeter element of a subgroup W
1 6 W that is again a crystallo-

graphic Coxeter group. Moreover

NCpW
1
, xq “ ty P NCpW, cq | y 6 xu. ⇤

1.7. Generalised Cartan lattices

Coxeter groups and non-crossing partitions are closely related to root systems.
The approach via representation theory provides a natural setting, because the
Grothendieck group equipped with the Euler form determines a root system; we
call this a generalised Cartan lattice and refer to [36] for a detailed study.

The following definition formalises the properties of the Grothendieck group
K0pAq. A generalised Cartan lattice is a free abelian group � – Zn with an
ordered standard basis e1, . . . , en and a bilinear form x´,´y : �ˆ� Ñ Z satisfying
the following:

(1) xei, eiy ° 0 and xei, eiy divides xei, ejy for all i, j.
(2) xei, ejy “ 0 for all i ° j.
(3) xei, ejy 6 0 for all i † j.

The corresponding symmetrised form is

px, yq “ xx, yy ` xy, xy for x, y P �.

The ordering of the basis yields the Coxeter element

coxp�q :“ se1 ¨ ¨ ¨ sen .

We can define reflections sx as in (1.6.1) and denote by W “ W p�q the corre-
sponding Weyl group, which is the subgroup of Autp�q generated by the simple
reflections se1 , . . . , sen . We write NCp�q “ NCpW, cq with c “ coxp�q for the poset
of non-crossing partitions, and the set of real roots is

�p�q :“ twpeiq | w P W p�q, 1 6 i 6 nu Ñ �.

A real exceptional sequence of � is a sequence px1, . . . , xrq of elements that can be
extended to a basis x1, . . . , xn of � consisting of real roots and satisfying xxi, xjy “

0 for all i ° j. A morphisms �1
Ñ � of generalised Cartan lattices is given by an

isometry (morphism of abelian groups preserving the bilinear form x´,´y) that
maps the standard basis of �1 to a real exceptional sequence of �. This yields a
category of generalised Cartan lattices.
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What is this category good for? One of the basic principles of category theory
is Yoneda’s lemma which tells us that we understand an object � by looking at the
representable functor Homp´,�q which records all morphisms that are received by
�. In our category all morphisms are monomorphisms, so Homp´,�q amounts to
the poset of subobjects (equivalence classes of monomorphisms �1

Ñ �).

Theorem 1.7.1 ([36, Theorem 5.6]). The poset of subobjects of a generalised
Cartan lattice � is isomorphic to the poset of non-crossing partitions NCp�q. The
isomorphism sends a monomorphism � : �1

Ñ � to s�pe1q ¨ ¨ ¨ s�perq where coxp�1
q “

se1 ¨ ¨ ¨ ser . Moreover, the assignment w fiÑ w|�1 induces an isomorphism

W p�q Ö xs�pe1q, . . . , s�perqy
„

›Ñ W p�1
q. ⇤

1.8. Braid group actions on exceptional sequences

The link between representation theory and non-crossing partitions is based
on the notion of an exceptional sequence and the action of the braid group on
the collection of complete exceptional sequences. This will be explained in the
following section.

There are two sorts of abelian categories that we need to consider. This follows
from a theorem of Happel [33, 34] which we now explain. Fix a field k and consider
a connected hereditary abelian category A that is k-linear with finite dimensional
Hom and Ext spaces. Suppose in addition that A admits a tilting object. This is by
definition an object T in A with Ext1ApT, T q “ 0 such that HomApT,Aq “ 0 and
Ext1ApT,Aq “ 0 imply A “ 0. Thus the functor HomApT,´q : A Ñ mod ⇤ into
the category of modules over the endomorphism algebra ⇤ “ EndApT q induces an
equivalence

Db
pAq

„
›Ñ Db

p mod ⇤q

of derived categories [3]. There are two important classes of such hereditary abelian
categories admitting a tilting object: module categories over hereditary algebras,
and categories of coherent sheaves on weighted projective lines in the sense of
Geigle and Lenzing [29]. Happel’s theorem then states that there are no further
classes.

Theorem 1.8.1 (Happel). A hereditary abelian category with a tilting object is,
up to a derived equivalence, either of the form mod A for some finite dimensional
hereditary algebra A or of the form cohX for some weighted projective line X. ⇤

It is interesting to observe that these abelian categories form a category: Any
thick and coreflective subcategory is again an abelian category of that type; so the
morphisms are given by such inclusion functors.

Now fix an abelian category A which is either of the form A “ mod A or
A “ cohX, as above. Note that in both cases the Grothendieck group K0pAq
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is free of finite rank and equipped with an Euler form, as explained before. An
object X in A is called exceptional if it is indecomposable and Ext1ApX,Xq “ 0. A
sequence pX1, . . . , Xrq of objects is called exceptional if each Xi is exceptional and
HomApXi, Xjq “ 0 “ Ext1ApXi, Xjq for all i ° j. Such a sequence is complete if r
equals the rank of the Grothendieck group K0pAq. Let n denote rank of K0pAq.
Then the braid group Bn on n strands is acting on the collection of isomorphism
classes of complete exceptional sequences inA via mutations, and it is an important
theorem that this action is transitive (due to Crawley-Boevey [24] and Ringel [46]
for module categories, and Kussin–Meltzer [42] for coherent sheaves).

Any tilting object T admits a decomposition T “
À

n

i“1 Ti such that pT1, . . . , Tnq

is a complete exceptional sequence. We denote by W pAq the group of automor-
phisms of K0pAq that is generated by the corresponding reflections sT1 , . . . , sTn ;
it is the Weyl group with Coxeter element c “ sT1 ¨ ¨ ¨ sTn and does not depend on
the choice of T . Thus we can consider the poset of non-crossing partitions and
we have the Hurwitz action on factorisations of the Coxeter element as product
of reflections. But it is important to note that W pAq is not always a Coxeter
group when A “ cohX, and it is an open question whether the Hurwitz action is
transitive.

The key observation is now the following.

Proposition 1.8.2. The map

pE1, . . . , Erq fi›Ñ sE1 ¨ ¨ ¨ sEr

which assigns to an exceptional sequence in A the product of reflections in W pAq

is equivariant for the action of the braid group Br. ⇤
The proof is straightforward. But a priori it is not clear that the product

sE1 ¨ ¨ ¨ sEr is a non-crossing partition. In fact, the proof of Theorem 1.6.2 hinges
on the transitivity of the Hurwitz action on factorisations of the Coxeter element.
So the analogue of Theorem 1.6.2 for categories of type A “ cohX remains open.
A proof would provide an interesting extension of the theory of crystallograpic
Coxeter groups and non-crossing partitions, which seems very natural in view of
Happel’s theorem since the Grothendieck group K0pAq is a derived invariant.

Partial results were obtained recently by Wegener in his thesis [51]. In fact,
when a weighted projective line X is of tubular type (that is, the weight sequence
is up to permutation of the form p2, 2, 2, 2q, p3, 3, 3q, p2, 4, 4q or p2, 3, 6q), then the
Grothendieck group gives rise to a tubular elliptic root system [47, 48]. Wegener
showed the transitivity of the Hurwitz action in this case. Thus, one has in par-
ticular the analogue of Theorem 1.6.2 for cohX in the tubular case.

References

[1] H.Abels and S.Holz, Higher Generation by Subgroups. J. Algebra 160 (1993), 310–341.



38 1. NON-CROSSING PARTITIONS

[2] N. Alexeev, F. Götze and A. Tikhomirov, Asymptotic distribution of singular values of

powers of random matrices. Lith. Math. J. 50 (2010), 121–132.
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[6] A. Blass and B.E. Sagan, Möbius Functions of Lattices. Adv. Math. 127 (1997), 94–123.

[7] T. Banica, S. Belinschi, M. Capitaine and B. Collins, Free Bessel laws. Canad. J. Math. 63

(2011), 3–37.

[8] B. Baumeister, M. Dyer, C. Stump, P. Wegener, A note on the transitive Hurwitz action

on decompositions of parabolic Coxeter elements, Proc. Amer. Math. Soc. Ser. B 1 (2014),

149–154.

[9] B. Baumeister, T. Gobet, K. Roberts, P. Wegener, On the Hurwitz action in finite Coxeter

groups, J. Group Theory 20 (2016), 103–131.

[10] B. Baumeister, T. Gobet, Simple dual braids, noncrossing partitions and Mikado braids of

type Dn, Bull of LMS, in-press; arXiv:1703.09599.

[11] B. Baumeister, P. Wegener, A note on Weyl groups and crystallographic root lattices,

arXiv:1709.00603.

[12] D. Bessis, The dual braid monoid, Ann. Sci. École Normale Supérieure 36 (2003), 647–683.
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