Functors and Morphisms Determined by Objects Revisited

Henning Krause

Universität Bielefeld

Shanghai Conference on Representation Theory of Algebras Shanghai Jiao Tong University October 6, 2011

www.math.uni-bielefeld/~hkrause

- Functors and morphisms determined by objects were introduced in 1978 by Maurice Auslander in his celebrated Philadelphia notes.
- The review begins: This extremely long paper (244 pages) is devoted to the investigation of functors and morphisms determined by objects.
- The review ends: The paper is clearly and concisely written. However, in view of the length of the paper, a table of contents would have been very useful.

- Fix a category, for example a module category.
- Can we classify all morphisms ending in a fixed object?
- Two morphisms α_i: X_i → Y (i = 1, 2) are isomorphic if there exists an isomorphism φ: X₁ → X₂ such that α₁ = α₂φ.

$$\begin{array}{c} X_1 \xrightarrow{\alpha_1} Y \\ \downarrow & & \\ \varphi \downarrow & & \\ \gamma & \alpha_2 \\ X \xrightarrow{\alpha_2} Y \end{array}$$

DEFINITION (AUSLANDER)

Fix a category C. A morphism $\alpha: X \to Y$ in C is right determined by a an object C if for every morphism $\alpha': X' \to Y$ the following are equivalent:

- α' factors through α ;
- for every $\phi \colon C \to X'$ the composite $\alpha' \phi$ factors through α .

Im Hom (C, α) := image of Hom (C, α) : Hom $(C, X) \rightarrow$ Hom(C, Y)The second condition means

$$\mathsf{Im}\,\mathsf{Hom}(\mathcal{C},\alpha')\subseteq\mathsf{Im}\,\mathsf{Hom}(\mathcal{C},\alpha).$$

DEFINITION (AUSLANDER-REITEN)

A morphism $\alpha \colon X \to Y$ is right almost split if α is not a retraction and every morphism $X' \to Y$ that is not a retraction factors through α .

PROPOSITION (AUSLANDER)

A morphism $\alpha\colon X\to Y$ in an additive category is right almost split if and only if

- End(Y) is a local ring,
- α is right determined by Y,
- Im Hom (Y, α) = rad End(Y).

A morphism $\alpha \colon X \to Y$ often decomposes as follows: There is a decomposition

$$X = X' \oplus X''$$

such that $\alpha|_{X'}$ is right minimal and $\alpha|_{X''} = 0$.

OBSERVATION

Let $\alpha_i \colon X_i \to Y$ (i = 1, 2) be morphisms that are right minimal and right *C*-determined. Then

$$\alpha_1 \cong \alpha_2 \quad \iff \quad \mathsf{Im} \operatorname{Hom}(\mathcal{C}, \alpha_1) = \mathsf{Im} \operatorname{Hom}(\mathcal{C}, \alpha_2).$$

AUSLANDER'S WORK

Fix a ring Λ and consider the category Mod Λ of Λ -modules.

THEOREM (AUSLANDER)

Let C and Y be Λ -modules with C finitely presented. Given an End_{Λ}(C)-submodule $H \subseteq \text{Hom}_{\Lambda}(C, Y)$, there exists a right C-determined morphism $\alpha \colon X \to Y$ in Mod Λ satisfying

 $\mathsf{Im}\,\mathsf{Hom}_{\Lambda}(\mathcal{C},\alpha)=H.$

THEOREM (AUSLANDER)

Let Λ be an Artin algebra. A morphism $\alpha \colon X \to Y$ in mod Λ is right determined as a morphism in Mod Λ by

Tr $D(\text{Ker } \alpha) \oplus P(\text{Coker } \alpha)$.

- Auslander's formulation of the first result includes a uniqueness statement: α can be chosen to be right minimal.
- The proofs are based on the Auslander-Reiten formula

D<u>Hom</u> $(X, Y) \cong$ Ext¹(Y, D Tr X).

- The first result is a vast generalisation of the existence result for almost split sequences:
- Take for Y a finitely presented module with local endomorphism ring, C = Y, and H = rad End(Y). Then α: X → Y is right almost split.
- The results are not restricted to the category of finitely presented modules; their proofs involve pure-injective modules.

Motivated by Auslander's results, we divide the classification problem into two parts:

QUESTION

Fix a category C and an object $Y \in C$.

- Morphisms: Given an object C ∈ C and a subset H ⊆ Hom(C, Y) which is End(C)-invariant. Is there a right C-determined morphism α: X → Y with Im Hom(C, α) = H?
- Objects: Is every morphism ending in Y right determined by an object?

EXAMPLE

Let C be a partially ordered set, viewed as a category.

- Fix a morphism $\alpha \colon x \to y$, which means that $x \leq y$.
- If x = y, then α is right determined by every object of C.
- If $x \neq y$, then α is right determined by an object $c \in C$ iff

$$\mathsf{C}_{\alpha} = \{ c \in \mathsf{C} \mid c \not\leq x, c \leq y \}$$

has a unique minimal element. In that case $c = \inf C_{\alpha}$.

- In (\mathbb{Z}, \leq) , all morphisms are determined by objects.
- In (\mathbb{Q}, \leq) , only identity morphisms are determined by objects.

DEFINITION (REITEN-VAN DEN BERGH)

Let k be a field and C a k-linear additive category with finite dimensional Hom-spaces. A right Serre functor is an additive functor $S: C \rightarrow C$ together with a natural isomorphism

$$D \operatorname{Hom}(X, -) \xrightarrow{\sim} \operatorname{Hom}(-, SX)$$

for all $X \in C$, where $D = \text{Hom}_k(-, k)$. A right Serre functor is called Serre functor if it is an equivalence.

Theorem

For a Hom-finite triangulated category C are equivalent:

- There is a right Serre functor $C \rightarrow C$.
- Given objects C, Y in C and an End(C)-submodule $H \subseteq Hom(C, Y)$, there exists a morphism $\alpha \colon X \to Y$ which is right C-determined and satisfies Im $Hom(C, \alpha) = H$.

Note: A right Serre functor is unique up to isomorphism.

Theorem

For a right Serre functor $S: C \rightarrow C$ are equivalent:

- The functor S is a Serre functor.
- Every morphism in C is right determined by an object in C.

In this case a morphism with cone C is right determined by $S^{-1}C$.

