Morphisms determined by objects and flat covers

Henning Krause

Universität Bielefeld

Algebraic Structures and Their Applications (ASTA 2014) Spineto June 18, 2014

www.math.uni-bielefeld/~hkrause

Problem

- Fix an additive category, for example a module category.
- Is there a procedure for constructing morphisms ending at a fixed object?

More precisely, we are looking for:

- Invariants of morphisms ending at some fixed object.
- Constructions for universal morphisms with respect to these invariants.

We combine two concepts:

- Functors/morphisms determined by objects [Auslander, 1978]
- The existence of flat covers [Bican–El Bashir–Enochs, 2001]

We fix:

- A = an additive category, for example a module category.
- C = a set of objects of A, viewed as full subcategory.

DEFINITION

- A C-module is an additive functor $C^{\mathrm{op}} \to Ab$.
- The category of C-modules is denoted by (C^{op}, Ab).

EXAMPLE

$$C = \{C\}$$
 with $\Gamma := End_A(C)$. Then $(C^{op}, Ab) = Mod \Gamma$.

The pair of categories A and C gives a functor

$$A \longrightarrow (C^{\mathrm{op}}, Ab), \quad X \mapsto \mathsf{Hom}_A(C, X)$$

by setting

$$\operatorname{Hom}_{A}(C,X) := \operatorname{Hom}_{A}(-,X)|_{C}.$$

For a morphisms $\alpha \colon X \to Y$ in A consider the image

 $\mathsf{Im}\,\mathsf{Hom}_{\mathsf{A}}(\mathsf{C},\alpha)\subseteq\mathsf{Hom}_{\mathsf{A}}(\mathsf{C},Y)$

of the induced morphism

$$\operatorname{Hom}_{A}(C, X) \longrightarrow \operatorname{Hom}_{A}(C, Y)$$
 in $(C^{\operatorname{op}}, Ab)$.

THEOREM

Suppose we have:

- A = a locally finitely presented additive category.
- C = a set of finitely presented objects.
- $Y \in A$ an object and $H \subseteq Hom_A(C, Y)$ a submodule.

There exists an (essentially unique) morphism $\alpha \colon X \to Y$ in A such that:

- Im Hom_A(C, α) = H and any morphism α' : X' → Y with Im Hom_A(C, α') ⊆ H factors through α .
- α is right minimal (i.e. any $\phi \in \text{End}_A(X)$ with $\alpha \phi = \alpha$ is invertible).

DEFINITION (AUSLANDER)

A morphisms $\alpha \colon X \to Y$ in A is right C-determined if for every morphisms $\alpha' \colon X' \to Y$

 $\mathsf{Im}\,\mathsf{Hom}_{\mathsf{A}}(\mathsf{C},\alpha')\subseteq\mathsf{Im}\,\mathsf{Hom}_{\mathsf{A}}(\mathsf{C},\alpha)\implies\alpha'\text{ factors through }\alpha$

For $A = Mod \Lambda$ and $C = \{C\}$, the theorem is due to Auslander.

DEFINITION (AUSLANDER-REITEN)

A morphism $\alpha \colon X \to Y$ is right almost split if

- $\blacksquare \alpha$ is not a retraction, and
- $\alpha' \colon X' \to Y$ not a retraction implies α' factors through α .

PROPOSITION (AUSLANDER)

A morphism $\alpha \colon X \to Y$ in an additive category is right almost split if and only if

- End(Y) is a local ring,
- α is right determined by Y,
- Im Hom (Y, α) = rad End(Y).

COROLLARY

Let Y be a finitely presented object in a locally finitely presented additive category such that End(Y) is local. Then there exists a (right minimal) right almost split morphism $X \rightarrow Y$.

For module categories, this is due to Auslander.

In a module category, a right minimal and right almost split morphism $\alpha \colon X \to Y$ induces an almost split sequence

$$0 \longrightarrow \mathsf{Ker}(\alpha) \longrightarrow X \longrightarrow Y \longrightarrow 0$$

provided Y is not projective.

EXAMPLE

In $\mathsf{Mod}\,\mathbb{Z}$ there is no almost split sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow \mathbb{Q} \longrightarrow 0.$$

DEFINITION (CRAWLEY-BOEVEY)

An addtive category A is locally finitely presented if

- A has direct limits (= filtered colimits),
- the isoclasses of finitely presented objects in A form a set,
- every object is a direct limit of finitely presented objects.

 $X \in A$ is finitely presented if Hom_A(X, -) preserves direct limits.

EXAMPLE

Let Λ be a ring.

- $\blacksquare \ Mod \Lambda = the \ category \ of \ \Lambda modules$
- Flat Λ = the category of flat Λ -modules

PROPOSITION

For a morphism $\alpha \colon X \to Y$ are equivalent:

- α is determined by a set of finitely presented objects.
- There is a decomposition X = X' ⊕ X" such that Ker(α|_{X'}) is pure injective and α|_{X"} = 0.

- Functors and morphisms determined by objects were introduced in 1978 by Maurice Auslander in his celebrated Philadelphia notes.
- The review begins: This extremely long paper (244 pages) is devoted to the investigation of functors and morphisms determined by objects.
- The review ends: The paper is clearly and concisely written. However, in view of the length of the paper, a table of contents would have been very useful.
- Auslander himself was very passionate about this work, but ...

PROBLEM (AUSLANDER)

Describe the right C-determined morphism $\alpha \colon X \to Y$ with $\operatorname{Im} \operatorname{Hom}_{A}(C, \alpha) = 0$.

Note: $\alpha = 0$ when C contains a generator of A.

For a category A, the morphisms ending at $Y \in A$ are pre-ordered:

 $\alpha' \leq \alpha \quad : \Longleftrightarrow \quad \alpha' \text{ factors through } \alpha$

Write [A/Y] for this poset (after identifying $\alpha' = \alpha$ when $\alpha' \leq \alpha$ and $\alpha \leq \alpha'$).

THEOREM (RINGEL)

Let Λ be an Artin algebra. For $Y\in\mathsf{mod}\,\Lambda$ there is an isomorphism

$$\operatorname{colim}_{C\in\mathsf{mod}\,\Lambda}\mathsf{sub}(\mathsf{Hom}_\Lambda(C,Y))\overset{\sim}{\longrightarrow}[\mathsf{mod}\,\Lambda/Y]$$

given by the assignment

$$\operatorname{Hom}_{\Lambda}(C,Y)\supseteq H\longmapsto \alpha_{C,H}.$$

The proof of the existence result (for C-determined morphisms) is based on:

THEOREM (BICAN-EL BASHIR-ENOCHS, 2001)

Every additive functor admits a flat cover.

A flat cover is the analogue of a projective cover (replacing the term 'projective' by 'flat').

Next we explain:

Theorem

Flat covers are projective covers.

For an additive category A we write

 $Fp(A^{op}, Ab)$

for the category of functors ${\it F}\colon A^{\rm op}\to Ab$ having a presentation

$$\operatorname{Hom}_{\mathsf{A}}(-,X) \longrightarrow \operatorname{Hom}_{\mathsf{A}}(-,Y) \longrightarrow F \longrightarrow 0.$$

PROPOSITION

Let A be locally finitely presented. Then $\mathsf{Fp}(\mathsf{A}^{\operatorname{op}},\mathsf{Ab})$ is an abelian category and

$$A \longrightarrow Fp(A^{op}, Ab), X \mapsto Hom_A(-, X)$$

identifies A with the full subcategory of projective objects.

Theorem

Let A be a locally finitely presented category.

- For an additive functor F: (fp A)^{op} → Ab, the unique functor *F*: A^{op} → Ab extending F and preserving filtered colimits in A is finitely presented and admits a minimal projective presentation in Fp(A^{op}, Ab).
- The assignment $F \mapsto \tilde{F}$ provides a fully faithful right adjoint to the functor

 $\mathsf{Fp}(\mathsf{A}^{\mathrm{op}},\mathsf{Ab}) \longrightarrow ((\mathsf{fp}\,\mathsf{A})^{\mathrm{op}},\mathsf{Ab}), \quad F \mapsto F|_{\mathsf{fp}\,\mathsf{A}}.$

Let Λ be a ring and $A = Flat \Lambda$. Then

$$\mathsf{fp} \mathsf{A} = \mathsf{proj} \mathsf{A} \quad \mathsf{and} \quad ((\mathsf{fp} \mathsf{A})^{\mathrm{op}}, \mathsf{Ab}) \overset{\sim}{\longrightarrow} \mathsf{Mod} \mathsf{Ab}$$

For $Y \in Mod \Lambda$ the theorem yields a projective cover

$$\operatorname{Hom}_{\mathsf{A}}(-,X)\longrightarrow \widetilde{Y}$$
 in $\operatorname{Fp}(\mathsf{A}^{\operatorname{op}},\operatorname{\mathsf{Ab}}).$

Evaluation at Λ then gives a flat cover

$$X = \operatorname{Hom}_{\mathsf{A}}(\Lambda, X) \longrightarrow \widetilde{Y}(\Lambda) = Y.$$

Photo: Gordana Todorov