THE TAMARI LATTICE IN REPRESENTATION THEORY

HENNING KRAUSE

The Tamari lattice. Fix an integer $n \ge 1$. The *Tamari lattice* of order n is a partially ordered set and denoted by T_n . The elements consist of the meaningful bracketings of a string of n + 1 letters. The partial order is given by applying the rule $(xy)z \to x(yz)$ from left to right. For example, when n = 3, we have

 $((ab)c)d \ge (a(bc))d \ge a((bc)d) \ge a(b(cd)).$

Here is the Hasse diagram of the lattice T_3 :

And here is the Hasse diagram of the lattice T_4 :

The cardinality of the Tamari lattice T_n equals the Catalan number

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

Let $\mathfrak{I}(n)$ denote the set of intervals $[i, j] = \{i, i+1, \ldots, j\}$ in \mathbb{Z} with $0 \le i < j \le n$. Two intervals I, J are said to be *compatible* if $I \subseteq J$ or $J \subseteq I$ or $I \cap J = \emptyset$. We

HENNING KRAUSE

write $\mathcal{C}(n)$ for the set of all subsets $X \subseteq \mathcal{I}(n)$ of cardinality n such that all intervals in X are pairwise compatible.

Lemma 1. Sending an interval [i, j] to the bracketing $x_0 \dots (x_i \dots x_j) \dots x_n$ of the string $x_0 \dots x_n$ induces a bijection $\mathfrak{C}(n) \xrightarrow{\sim} T_n$.

Representations. Fix an integer $n \ge 1$ and a field k. We consider the quiver of type A_n with linear orientation

 $1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots \longrightarrow n$

and denote by Λ_n its path algebra over k. For each $j \in \{1, \ldots, n\}$ let P_j denote the indecomposable projective Λ_n -module having as a k-basis all paths ending in the vertex j, and for each interval [i, j] in \mathbb{Z} with $0 \leq i < j \leq n$ we set $M_{[i,j]} := P_j/\operatorname{rad}^{j-i} P_j$.

Lemma 2. (1) The set $\{M_I \mid I \in \mathfrak{I}(n)\}$ is a complete set of isomorphism classes of indecomposable Λ_n -modules.

- (2) $\operatorname{Ext}^{1}(M_{I}, M_{J}) = 0 = \operatorname{Ext}^{1}(M_{J}, M_{I})$ if and only if the intervals I and J are compatible.
- (3) There is an epimorphism $M_I \to M_J$ if and only if $\sup I = \sup J$ and $\operatorname{card} I \ge \operatorname{card} J$.

A Λ_n -module T is a *basic tilting module* if T has precisely n pairwise nonisomorphic indecomposable direct summands and $\operatorname{Ext}^1(T,T) = 0$. We write $T \ge T'$ if there is an epimorphism $T^r \to T'$ for some positive integer r. This induces a partial order on the isomorphism classes of basic tilting modules.

Proposition 3. The assignment $X \mapsto \bigoplus_{I \in X} M_I$ induces a bijection between $\mathcal{C}(n)$ and the set of isomorphism classes of basic tilting modules over Λ_n . Composition with the bijection $T_n \xrightarrow{\sim} \mathcal{C}(n)$ yields a lattice isomorphism.

Historical comments. Eugène Charles Catalan noticed that the Catalan number C_n counts the bracketings of a string of n + 1 letters [2, 5]. The partial order on the set of bracketings was introduced by Dov Tamari [7]. This is part of a higher structure: the Hasse diagram of the Tamari lattice T_n is precisely the 1-skeleton of the (n - 1)-dimensional *Stasheff associahedron* [6, 4]. In the context of representations of quivers, Gabriel noticed that the Catalan number C_n counts the tilting modules of the equioriented quiver of type A_n [3]. The connection with the Tamari lattice (Proposition 3) was pointed out by Buan and Krause [1, 8].

References

- A. B. Buan and H. Krause, *Tilting and cotilting for quivers and type An*, J. Pure Appl. Algebra **190** (2004), 1–21.
- [2] E. C. Catalan, Note sur une équation aux différences finies, J. Math. pure et appliquées 3 (1838), 508-516.
- [3] P. Gabriel, Un jeu? Les nombres de Catalan, Uni Zürich, Mitteilungsblatt des Rektorats 6 (1981), 4–5.
- [4] F. Müller-Hoissen, J. M. Pallo, and J. Stasheff (eds.), Associahedra, Tamari lattices and related structures. Tamari memorial Festschrift, Prog. Math. Phys., 299, Birkhäuser/Springer, Basel, 2012, xx+433 pp.
- [5] R. P. Stanley, Catalan Numbers, Cambridge University Press, 2015, viii+215 pp.
- [6] J. Stasheff, Homotopy associativity of H-spaces I, Trans. Amer. Math. Soc. 138 (1963), 275– 292.
- [7] D. Tamari, The algebra of bracketings and their enumeration, Nieuw Arch. Wisk. 10 (1962), 131–146.
- [8] H. Thomas, The Tamari lattice as it arises in quiver representations, in: Associahedra, Tamari lattices and related structures, 281–291, Prog. Math. Phys., 299, Birkhäuser/Springer, Basel, 2012.

 $\mathbf{2}$