Universität Bielefeld Sommer 2018

ALGEBRA II 4. ÜBUNGSBLATT

HENNING KRAUSE JAN GEUENICH

Aufgabe 1. (4 Punkte)

Sei k ein Körper. Zeige: Im Ring $M_n(k)$ ist ein Element a genau dann ein Linksnullteiler (d.h. ax = 0 für ein $0 \neq x \in M_n(k)$), wenn a keine Einheit ist.

Aufgabe 2. (4 Punkte)

Sei k ein Körper. Beschreibe für den Ring $M_n(k)$ die Menge der Linksideale.

Hinweis: Es gibt eine Bijektion in die Menge der Unterräume des k^n .

Aufgabe 3. (2+2 Punkte)

Sei R ein Ring und $e \in R$ ein Idempotent (d.h. es gilt $e^2 = e$). Zeige:

- (1) Die Menge $eRe = \{eae \mid a \in R\}$ ist versehen mit den Einschränkungen der Addition und Multiplikation ein Ring.
- (2) Für jeden R-Modul M wird $eM = \{ex \mid x \in M\}$ zu einem eRe-Modul.

Aufgabe 4. (4 Punkte)

Sei k ein Körper und R der Ring der oberen 2×2 -Matrizen. Betrachte die Idempotente $E_{11}, E_{22} \in R$ und die Zuordnung zwischen R-Moduln und linearen Abbildung $\phi \colon V_1 \to V_2$ von k-Vektorräumen, die einen R-Modul M auf die Abbildung $\phi_M \colon E_{22}M \to E_{11}M$ schickt, welche durch Linksmultiplikation mit E_{12} gegeben ist. Konstruiere eine natürliche Zuordnung $\phi \mapsto M_\phi$ in die umgekehrte Richtung. In welchem Sinne sind beide Zuordnungen invers zueinander?

Hinweis: Konstruiere einen Isomorphismus $M \to M_{\phi_M}$. Wie verhalten sich ϕ und $\phi_{M\phi}$ zueiander?

Abgabe: Freitag, 11. Mai 2018, bis 14 Uhr in das Postfach von Jan Geuenich im Raum V3-126.