ALGEBRA II 7. ÜBUNGSBLATT

HENNING KRAUSE JAN GEUENICH

Aufgabe 1. (2+2 Punkte)

(a) Sei $p\in\mathbb{Z}$ eine Primzahl. Zeigen Sie, dass für jede natürliche Zahl n>0eine kurze exakte Sequenz von $\mathbb{Z}\text{-Moduln}$

$$0 \to \mathbb{Z}/p^n \mathbb{Z} \to (\mathbb{Z}/p^{n-1} \mathbb{Z}) \oplus (\mathbb{Z}/p^{n+1} \mathbb{Z}) \to \mathbb{Z}/p^n \mathbb{Z} \to 0$$

existiert.

(b) Konstruieren Sie eine nicht spaltende exakte Sequenz von endlichen abelschen Gruppen, die nicht von der in (a) betrachteten Form ist.

Aufgabe 2. (3 + 1 Punkte) Sei R ein Ring und M ein R-Modul.

(a) Zeigen Sie, dass die Untermoduln von M einen modularen Verband bilden. Das heißt, dass für Untermoduln A, B, C von M, so dass $A \subseteq C$ ein Untermodul ist

$$A + (B \cap C) = (A + B) \cap C \tag{1}$$

gilt.

(b) Zeigen Sie, dass umgekehrt $A\subseteq C$ für alle Untermoduln A,B,C von M gilt, die (1) erfüllen.

Aufgabe 3. (2+2 Punkte)

Beschreiben Sie die Hasse-Diagramme¹ der Untermodulverbände folgender R-Moduln M:

- (a) Sei $p \in \mathbb{Z}$ eine Primzahl, $R = \mathbb{F}_p$ und $M = \mathbb{F}_p \oplus \mathbb{F}_p$.
- (b) Seien $p, q, r \in \mathbb{Z}$ Primzahlen, $R = \mathbb{Z}$ und $M = \mathbb{Z}/(pqr)\mathbb{Z}$.

Aufgabe 4. (2+2 Punkte)

Beschreiben Sie die Hasse-Diagramme der Untermodulverbände folgender R-Moduln M:

- (a) Sei K ein Körper, R = K[X] und $M = K[X]/(X^n)$ für eine ganze Zahl n > 0.
- (b) Sei $K = R = \mathbb{F}_2$ und $M = K[X]/(X^3)$.

Abgabe: Freitag, 1. Juni 2018, bis 14 Uhr in das Postfach von Jan Geuenich im Raum V3-126.

¹Siehe zum Beispiel http://de.wikipedia.org/wiki/Hasse-Diagramm.