Universität Bielefeld Sommer 2018

ALGEBRA II 8. ÜBUNGSBLATT

HENNING KRAUSE JAN GEUENICH

Aufgabe 1. (4 Punkte)

Sei n eine positive ganze Zahl und $A \in M_n(\mathbb{Z})$ eine $n \times n$ Matrix. Seien w_1, \ldots, w_n die Spaltenvektoren von A und $N = \mathbb{Z} w_1 + \ldots + \mathbb{Z} w_n$ der von diesen erzeugte Untermodul in \mathbb{Z}^n . Zeigen Sie, dass \mathbb{Z}^n / N genau dann eine endliche Gruppe ist, wenn $\det(A) \neq 0$ gilt. Zeigen Sie ferner, dass in diesem Fall $|\mathbb{Z}^n / N| = |\det(A)|$ gilt.

Aufgabe 2. (4 Punkte)

Sei k ein Körper. Der durch die Matrix

gegebene k[X]-Modul M lässt sich auf eindeutige Weise als eine direkte Summe von unzerlegbaren k[X]-Moduln ausdrücken. Berechnen Sie diese unzerlegbaren Moduln. Geben Sie ferner die Elementarteiler des Moduls M an (s. auch Aufgabe 3).

Aufgabe 3. (4 Punkte)

Sei R ein Hauptidealring und M ein endlich erzeugter R-Modul. Der Klassifikationssatz für endlich erzeugte Moduln über Hauptidealringen zeigt, dass es einen Isomorphismus

$$M \cong R^{n_0} \oplus \bigoplus_{p \in \mathcal{P}} \bigoplus_{r>0} (R/(p^r))^{n(p,r)} \tag{1}$$

gibt, wobei \mathcal{P} ein Repräsentantensystem für die Klassen der assoziierten Primelemente in R ist und die $n(p,r)\in\mathbb{Z}_{\geq 0}$ fast alle verschwinden. Folgern Sie, dass es einen Isomorphismus

$$M \cong R/(a_1) \oplus R/(a_2) \oplus \cdots \oplus R/(a_t) \tag{2}$$

gibt, so dass $a_i \mid a_{i+1}$ für alle $i=1,\ldots,t-1$ gilt. Die a_i heißen *Elementarteiler* von M. Überlegen Sie sich ferner wie man die Darstellung (1) aus der Darstellung (2) erhält.

Abgabe: Donnerstag, 7. Juni 2018, bis 14 Uhr in das Postfach von Jan Geuenich im Raum V3-126.

Aufgabe 4. (4 Punkte)

Sei R ein Hauptidealring, $p \in R$ ein Primelement und n eine positive ganze Zahl. Sei M ein (nicht notwendig endlich erzeugter) R-Modul mit Untermoduln M_1, M_2, N_1, N_2 , so dass $M = M_i \oplus N_i$ und $N_i \cong R/p^nR$ für i=1,2 gilt. Zeigen Sie, dass die R-Moduln M_1 und M_2 isomorph sind.

Hinweis: Man kann zum Beispiel in mehreren Schritten wie folgt vorgehen:

- (i) Sei $N = Ru \cong R/p^n R$ ein Untermodul von M. Dann gilt $N \cap M_i = 0$ genau dann, wenn $p^{n-1}u \notin M_i$ gilt (i = 1, 2).
- (ii) Sei $N_1 = Rv$ und $N_2 = Rw$. Benutzen Sie (i) um zu zeigen, dass man ohne Einschränkung $N_1 \cap M_2 = 0$ annehmen darf. Falls nämlich $N_1 \cap M_2 \neq 0$ und $N_2 \cap M_1 \neq 0$ gilt, betrachtet man R(v+w).
- (iii) Zeigen Sie, $N_1 \oplus M_2 = M$ und folgern Sie daraus die Behauptung.