Universität Bielefeld Sommer 2018

ALGEBRA II 13. ÜBUNGSBLATT

HENNING KRAUSE JAN GEUENICH

Aufgabe 1. (2+1+1 Punkte)

- (a) Sei R ein Ring und M ein R-Modul von endlicher Länge. Seien P und Q Untermoduln von M. Zeigen Sie, dass $l(P) + l(Q) = l(P+Q) + l(P\cap Q)$ gilt.
- (b) Sei $n \in \mathbb{Z}$. Bestimmen Sie die Länge des \mathbb{Z} -Moduls $\mathbb{Z}/n\mathbb{Z}$.
- (c) Sei $n \in \mathbb{Z}$ und k ein Körper. Bestimmen Sie die Länge des k[X]-Moduls $k[X]/(X^n)$.

Aufgabe 2. (4 Punkte)

Sei R ein Ring, M ein R-Modul und $n \in \mathbb{N}$. Zeige: Hat M als Modul über $\operatorname{End}_R(M)$ aufgefasst Länge n, so hat für jede Menge $I \neq \emptyset$ das Produkt M^I über $\operatorname{End}_R(M^I)$ die Länge n.

(Hinweis: Der Fall $|I| < \infty$ ist bereits interessant.)

Aufgabe 3. (2+2 Punkte)

Sei R ein Ring, M ein R-Modul und $f \in \operatorname{End}_R(M)$.

- (a) Sei r > 0 eine ganze Zahl. Zeigen Sie, dass $M/f^r(M)$ ein R-Modul endlicher Länge ist, falls M/f(M) endliche Länge hat.
- (b) Benutzen Sie das Fitting Lemma (Lemma 10.1) um zu zeigen, dass der R-Modul $\ker f$ endliche Länge hat falls M noethersch ist und M/f(M) endliche Länge hat.

Aufgabe 4. (2+2 Punkte)

- (a) Sei R ein Ring. Seien I und J Linksideale, so dass I+J=R gilt. Zeigen Sie, dass es einen R-Modulisomorphismus $I\oplus J\cong R\oplus (I\cap J)$ gibt.
 - (Hinweis: Betrachten Sie die kanonische Abbildung $I \oplus J \to R$)
- (b) Sein nun $R = \mathbb{Z}[\sqrt{-5}]$. Zeigen Sie, dass es einen R-Modul M gibt, so dass die Eindeutigkeitsaussage im Satz von Krull-Remak-Schmidt nicht gilt.

(Hinweis: Zeigen Sie, dass die Ideale $(3,2+\sqrt{-5})$ und $(3,2-\sqrt{-5})$ keine Hauptideale in R sind. Betrachten Sie dazu $|r| := r \cdot \overline{r} = a^2 + 5b^2$, wobei $r = a + b\sqrt{-5} \in R$ und \overline{r} die komplex Konjugierte von r bezeichne. Nutzen Sie nun |rs| = |r| |s|.)

Abgabe: Donnerstag, 12. Juli 2018, bis 14 Uhr in das Postfach von Jan Geuenich im Raum V3-126.