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Gallia est omnis divisa in partes tres ...1

The whole of this talk is divided into three parts:

Stratification of modular representations via cohomology
(Benson–Iyengar–K, 2011)

Stratification of triangulated categories – more abstractly
(speculative)

Dualisable objects and local regularity
(Benson–Iyengar–K–Pevtsova, 2024)

1J. Caesar, De bello Gallico



Part I: Modular representations

Set-up

G a finite group

k a field

kG the group algebra

Mod kG the category of kG -modules

H∗(G , k) = Ext∗kG (k, k) the group cohomology

Proposition

The category of kG-modules is a Frobenius category and is
endowed with a tensor product (over k with diagonal G-action).
The stable module category StMod kG is a

rigidly compactly generated tensor triangulated category.



Group cohomology

Theorem (Golod, Venkov, Evens)

The cohomology ring H∗(G , k) = Ext∗kG (k, k) is
graded-commutative and noetherian.

We set

Spec(H∗(G , k)) := set of homogeneous prime ideals

and
Proj(H∗(G , k)) := Spec(H∗(G , k))∖ {H+(G , k)}.



Local cohomology and support

For every homogeneous prime ideal p of H∗(G , k) there is a local
cohomology functor

Γp : StMod kG −→ StMod kG

This functor is exact and preserves all coproducts. Moreover,

Γp(M) ∼= Γp(k)⊗k M for all M ∈ StMod kG .

Thus KerΓp is a localising tensor ideal. The support of M is

supp(M) := {p ∈ Proj(H∗(G , k)) | Γp(M) ̸= 0}.



Stratification

Theorem (Benson–Iyengar–K, 2011)

The map

StMod kG ⊇ C 7−→ supp(C) :=
⋃
M∈C

supp(M)

induces a bijection between the

localising tensor ideals of StMod kG, and

subsets of Proj(H∗(G , k)).

Thus the compactly generated tensor triangulated categories

Γp(StMod kG ) := {M ∈ StMod kG | supp(M) ⊆ {p}}
= {M ∈ StMod kG | M ∼= Γp(M)}

are the minimal building blocks of StMod kG .



Part II: Stratification – more abstractly

We think of T = StMod kG as fibred over X = Proj(H∗(G , k)).

Set-up (The triangulated category)

T a compactly generated triangulated category

Tc full subcategory of compact objects

Loc(T) lattice of localising subcategories of T

Thick(Tc) lattice of thick subcategories of Tc

Set-up (The space)

X a topological space

Ω(X ) lattice/frame of open subsets



Triangulated categories fibred over a space

Definition

T is fibred over X via a map τ : Ω(X ) → Thick(Tc) if

τ preserves finite meets and arbitrary joins, and

τ(U) and τ(V) commute for each pair U,V ∈ Ω(X ).

Example

Let R be a graded-commutative ring acting on T. Then T is fibred
over

(SpecR)∨ := Hochster dual of SpecR.

Example

Let T = (T,⊗,1) be a rigidly compactly generated tensor
triangulated category. Then T is fibred over

(SpcTc)∨ := Hochster dual of the Balmer spectrum SpcTc .



Triangulated categories fibred over a space

Set-up

T is fibred over X via a map τ : Ω(X ) → Thick(Tc).

For each U ∈ Ω(X ) set

TU := localising subcategory of T generated by τ(U).

An inclusion U ⊆ V induces a functor TV → TU .
For each M ∈ T there is a localisation triangle

ΓU(M) −→ M −→ LU(M) −→

with ΓU(M) ∈ TU and LU(M) ∈ (TU)
⊥. Commutativity means

ΓUΓV
∼= ΓU∩V ∼= ΓVΓU for all U,V ∈ Ω(X ).



Support

Let Y ⊆ X be locally closed, so Y = V ∖ U with U,V ∈ Ω(X ).
Set

ΓY := ΓV LU and TY := TV ∩ (TU)
⊥.

Lemma

The definitions of ΓY and TY do not depend on U,V .

Assume: Each point p ∈ X is locally closed. Set Γp := Γ{p}.

Definition

For M ∈ T the support equals

suppτ (M) := {p ∈ X | Γp(M) ̸= 0}.

This generalises definitions of Benson–Iyengar–K (2008) and
Balmer–Favi (2011).



Stratification – a diagram

Set
P(X ) := power set of X

and for U ⊆ X

τ̄(U) := {M ∈ T | suppτ (M) ⊆ U}.

Suppose there is an adjoint pair of maps between posets:

Thick(Tc) Ω(X )
σ

τ

U ⊆ τ(V ) ⇐⇒ σ(U) ⊆ V for U ⊆ Tc ,V ⊆ X .

Then we obtain a commutative diagram of poset morphisms:

Loc(T) P(X )

Thick(Tc) Ω(X )

suppτ

τ̄

intloc

σ

τ

inc



Stratification – comments

Loc(T) P(X )

Thick(Tc) Ω(X )

suppτ

τ̄

intloc

σ

τ

inc

The map σ describes the support of compact objects, so
σ(x) = σ(thick(x)) for each x ∈ Tc .

Commutativity means: the square of left adjoints and the
square of right adjoints both commute. In particular,
σ(x) = suppτ (x) for each x ∈ Tc .

The map τ̄ is injective iff τ is injective.

Stratification means: the map τ̄ identifies the subsets of X
with certain localising subcategories of T.

There are local criteria for stratification: the local-to-global
principle and a minimality condition for each T{p} (p ∈ X ).



Part III: Compact and dualisable objects

Let T = (T,⊗,1) be a compactly generated tensor triangulated
category. For M ∈ T write

Hom(M,−) := right adjoint of M ⊗−

Definition

An object M ∈ T is

compact if Hom(M,−) preserves all coproducts, and

dualisable or rigid if

Hom(M,1)⊗ N ∼−−→ Hom(M,N) for all N ∈ T.

T is rigidly compactly generated if compact = dualisable.



Compact versus dualisable

Lemma

For M ∈ StMod kG are equivalent:

M is finite dimensional (up to an isomorphism);

M is compact;

M is dualisable.

We write stmod kG for the full subcategory of compact objects.

Lemma

For M ∈ Γp(StMod kG ) we have

M compact =⇒ M dualisable.

The converse only holds when p is a minimal prime.



Main theorem

Theorem (Benson–Iyengar–K–Pevtsova, 2024)

For p ∈ Proj(H∗(G , k)) and M ∈ T = Γp(StMod kG ) the following
are equivalent:

(1) M has finite length in T;

(2) M is dualisable in T;

(3) M is in the thick subcategory generated by Γp(C ) for
C ∈ stmod kG.

The implications (3) ⇒ (2) ⇒ (1) hold in a broader context and
have been established in stable homotopy theory by Hovey and
Strickland [Morava K-theories and localisation, 1999].



Finite length

Let T = (T,⊗,1) be a compactly generated tensor triangulated
category. For M,N ∈ T write

Hom∗(M,N) :=
⊕
n∈Z

Hom(M, ΣnN).

This is a graded module over R := End∗(1). So T is R-linear.

Definition

An object M ∈ T has finite length if Hom∗(C ,M) has finite length
over R for all compact C ∈ T.

Proposition

Suppose T has a compact generator. Then the finite length objects
form a thick subcategory that has the Krull–Schmidt property.



Proof of the main theorem

Theorem (Benson–Iyengar–K–Pevtsova, 2024)

For p ∈ Proj(H∗(G , k)) and M ∈ T = Γp(StMod kG ) the following
are equivalent:

(1) M has finite length in T;

(2) M is dualisable in T;

(3) M is in the thick subcategory generated by Γp(C ) for
C ∈ stmod kG.

The proof of the implication (1) ⇒ (3) is based on

local regularity

for compactly generated tensor triangulated categories.



Strong generation

Let C be an essentially small triangulated category.

Definition (Bondal–van den Bergh, 2003)

An object C ∈ C is a

generator if C = thick(C ) (using suspensions and extensions),

strong generator if C = thick(C ) with a global bound on the
number of extensions that are needed.

Example

Let A be a right noetherian ring. Then

Perf(A) has a strong generator ⇐⇒ gl.dimA < ∞.



Local regularity

Let T = (T,⊗,1) be a rigidly compactly generated tensor
triangulated category with R = End∗(1). Suppose that T is
noetherian, so Hom∗(C ,D) is a noetherian R-module for all
compact C ,D ∈ T.

Definition

The category T is locally regular if T admits a compact generator
C such that thick(Γp(C )) is strongly generated for each
homogeneous prime ideal p of R.

Example

Let A a commutative noetherian ring. Then

A is regular ⇐⇒ D(ModA) is locally regular.



A recollement of tt categories

Let K(Inj kG ) denote the category of complexes of injective
kG -modules, up to homotopy. Consider the following recollement:

StMod kG K(Inj kG ) D(Mod kG )

stmod kG Db(mod kG ) Kb(proj kG )

Proj(H∗(G , k)) Spec(H∗(G , k)) {H+(G , k)}

There are three levels:

compactly generated tensor triangulated categories

subcategories of compact objects

points classifying the localising tensor ideals



K(Inj kG ) is locally regular

Theorem (Benson–Iyengar–K–Pevtsova, 2024)

The tensor triangulated category K(Inj kG ) is locally regular.

The proof reduces to the case of an elem. abelian p-group, so
eventually to a statement about commutative noetherian rings
(via a dg Bernstein–Gelfand–Gelfand correspondence).

For p ∈ Proj(H∗(G , k)) we have

Γp(K(Inj kG )) ∼−−→ Γp(StMod kG ).



The category of dualisable objects

Let T = (T,⊗,1) be a compactly generated tensor triangulated
category. Set

Td := subcategory of dualisable objects.

The category Td = (Td ,⊗,1) is tensor triangulated and the
thick tensor ideals form a spatial frame.

Let Spc(Td) denote the space of prime ideals, i.e. the Balmer
spectrum of Td .

Theorem (Balmer, 2010)

Suppose that End∗(1) is noetherian. Then there is a continuous
and surjective comparison map

Spc(Td) −→ Spec(End∗(1)).



Local duality

Problem

Compute the Balmer spectrum of Γp(K(Inj kG ))d .

Let R = H∗(G , k). For p ∈ Spec(R) set

Rp := localisation at p

R∧
p := completion of Rp at its maximal ideal.

The tensor unit of Γp(K(Inj kG )) is Γp(k).

Theorem (Benson–Iyengar–K–Pevtsova, 2019)

For p ∈ Proj(R) we have

End∗(Γp(k)) ∼= R∧
p .



Balmer spectrum of Γp(K(Inj kG ))d

For the maximal ideal p = H+(G , k) we have

Γp(K(Inj kG ))d ≃ Db(mod kG )

H∗(G , k) ∼= H∗(G , k)∧p
The comparison map is bijective, thanks to the classification
theorem of Benson–Carlson–Rickard (1997).

Theorem (Benson–Iyengar–K–Pevtsova, 2025)

For p ∈ Proj(H∗(G , k)) the comparison map

Spc(Γp(StMod kG )d) −→ Spec(H∗(G , k)∧p )

is bijective.

Conclusion

Locally, we may think of the dualisable object as a completion of
the compact objects.


