Stratification of modular representations of finite groups and dualisable objects

Henning Krause (joint with Dave Benson, Srikanth Iyengar, Julia Pevtsova)

Universität Bielefeld

Derived Representation Theory and Triangulated Categories Thessaloniki, June 23–27, 2025

www.math.uni-bielefeld/~hkrause

June 2, 1937 – June 23, 2025

The whole of this talk is divided into three parts:

- Stratification of modular representations via cohomology (Benson–Iyengar–K, 2011)
- Stratification of triangulated categories more abstractly (speculative)
- Dualisable objects and local regularity (Benson–Iyengar–K–Pevtsova, 2024)

¹J. Caesar, De bello Gallico

Part I: Modular representations

$\operatorname{Set-up}$

- G a finite group
- k a field
- kG the group algebra
- Mod kG the category of kG-modules
- $H^*(G, k) = \operatorname{Ext}_{kG}^*(k, k)$ the group cohomology

PROPOSITION

The category of kG-modules is a Frobenius category and is endowed with a tensor product (over k with diagonal G-action). The stable module category StMod kG is a

rigidly compactly generated tensor triangulated category.

THEOREM (GOLOD, VENKOV, EVENS)

The cohomology ring $H^*(G, k) = \operatorname{Ext}_{kG}^*(k, k)$ is graded-commutative and noetherian.

We set

 $Spec(H^*(G, k)) :=$ set of homogeneous prime ideals

and

$$\mathsf{Proj}(H^*(G,k)) := \mathsf{Spec}(H^*(G,k)) \smallsetminus \{H^+(G,k)\}.$$

For every homogeneous prime ideal \mathfrak{p} of $H^*(G, k)$ there is a local cohomology functor

$$\Gamma_{\mathfrak{p}} \colon \operatorname{StMod} kG \longrightarrow \operatorname{StMod} kG$$

This functor is exact and preserves all coproducts. Moreover,

$$\Gamma_{\mathfrak{p}}(M) \cong \Gamma_{\mathfrak{p}}(k) \otimes_k M$$
 for all $M \in \operatorname{StMod} kG$.

Thus Ker $\Gamma_{\mathfrak{p}}$ is a localising tensor ideal. The support of M is

$$\operatorname{supp}(M) := \{ \mathfrak{p} \in \operatorname{Proj}(H^*(G,k)) \mid \Gamma_{\mathfrak{p}}(M) \neq 0 \}.$$

THEOREM (BENSON-IYENGAR-K, 2011)

The map

$$\mathsf{StMod}\,kG\supseteq \mathbb{C}\longmapsto \mathsf{supp}(\mathbb{C}):=igcup_{M\in \mathbb{C}}\mathsf{supp}(M)$$

induces a bijection between the

- localising tensor ideals of StMod kG, and
- subsets of $Proj(H^*(G, k))$.

Thus the compactly generated tensor triangulated categories

$$\Gamma_{\mathfrak{p}}(\mathsf{StMod}\,kG) := \{M \in \mathsf{StMod}\,kG \mid \mathsf{supp}(M) \subseteq \{\mathfrak{p}\}\}\$$

= $\{M \in \mathsf{StMod}\,kG \mid M \cong \Gamma_{\mathfrak{p}}(M)\}$

are the minimal building blocks of StMod kG.

PART II: STRATIFICATION - MORE ABSTRACTLY

We think of T =StMod kG as fibred over X =Proj $(H^*(G, k))$.

Set-up (The triangulated category)

- $\blacksquare\ \ensuremath{\mathbb{T}}$ a compactly generated triangulated category
- 𝔅^c full subcategory of compact objects
- Loc(𝔅) lattice of localising subcategories of 𝔅
- Thick(𝔅) lattice of thick subcategories of 𝔅

SET-UP (THE SPACE)

- X a topological space
- $\Omega(X)$ lattice/frame of open subsets

TRIANGULATED CATEGORIES FIBRED OVER A SPACE

DEFINITION

- \mathfrak{T} is fibred over X via a map $\tau \colon \Omega(X) \to \mathsf{Thick}(\mathfrak{T}^c)$ if
 - ${\ensuremath{\,\, \rm e}}\ \tau$ preserves finite meets and arbitrary joins, and
 - $\tau(U)$ and $\tau(V)$ commute for each pair $U, V \in \Omega(X)$.

EXAMPLE

Let R be a graded-commutative ring acting on $\mathfrak{T}.$ Then \mathfrak{T} is fibred over

 $(\operatorname{Spec} R)^{\vee} := \operatorname{Hochster} \operatorname{dual} \operatorname{of} \operatorname{Spec} R.$

EXAMPLE

Let $\mathfrak{T}=(\mathfrak{T},\otimes,\mathbb{1})$ be a rigidly compactly generated tensor triangulated category. Then \mathfrak{T} is fibred over

 $(\operatorname{Spc} \mathfrak{T}^c)^{\vee} :=$ Hochster dual of the Balmer spectrum $\operatorname{Spc} \mathfrak{T}^c$.

Set-up

 \mathfrak{T} is fibred over X via a map $\tau \colon \Omega(X) \to \mathrm{Thick}(\mathfrak{T}^c)$.

For each $U \in \Omega(X)$ set

 $\mathfrak{T}_U :=$ localising subcategory of \mathfrak{T} generated by $\tau(U)$.

An inclusion $U \subseteq V$ induces a functor $\mathcal{T}_V \to \mathcal{T}_U$. For each $M \in \mathcal{T}$ there is a localisation triangle

$$\Gamma_U(M) \longrightarrow M \longrightarrow L_U(M) \longrightarrow$$

with $\Gamma_U(M) \in \mathfrak{T}_U$ and $L_U(M) \in (\mathfrak{T}_U)^{\perp}$. Commutativity means

$$\Gamma_U \Gamma_V \cong \Gamma_{U \cap V} \cong \Gamma_V \Gamma_U$$
 for all $U, V \in \Omega(X)$.

Support

Let $Y \subseteq X$ be locally closed, so $Y = V \setminus U$ with $U, V \in \Omega(X)$. Set

 $\Gamma_{\mathbf{Y}} := \Gamma_{\mathbf{V}} \mathcal{L}_{U}$ and $\mathfrak{T}_{\mathbf{Y}} := \mathfrak{T}_{\mathbf{V}} \cap (\mathfrak{T}_{U})^{\perp}$.

Lemma

The definitions of $\Gamma_{\mathbf{Y}}$ and $\mathfrak{T}_{\mathbf{Y}}$ do not depend on U, V.

Assume: Each point $p \in X$ is locally closed. Set $\Gamma_p := \Gamma_{\{p\}}$.

DEFINITION

For $M \in \mathfrak{T}$ the support equals

$$\operatorname{supp}_{\tau}(M) := \{ p \in X \mid \Gamma_p(M) \neq 0 \}.$$

This generalises definitions of Benson–Iyengar–K (2008) and Balmer–Favi (2011).

STRATIFICATION – A DIAGRAM

Set

$$P(X) :=$$
 power set of X

and for $U \subseteq X$

$$ar{ au}(U):=\{M\in \mathfrak{T}\ |\ ext{supp}_{ au}(M)\subseteq U\}.$$

Suppose there is an adjoint pair of maps between posets:

$$\begin{array}{l} \mathsf{Thick}(\mathfrak{T}^c) \xleftarrow{\sigma}{\tau} \Omega(X) \\ \mathfrak{U} \subseteq \tau(V) \iff \sigma(\mathfrak{U}) \subseteq V \quad \text{ for } \quad \mathfrak{U} \subseteq \mathfrak{T}^c, V \subseteq X. \end{array}$$

Then we obtain a commutative diagram of poset morphisms:

STRATIFICATION - COMMENTS

- The map σ describes the support of compact objects, so $\sigma(x) = \sigma(\operatorname{thick}(x))$ for each $x \in \mathbb{T}^c$.
- Commutativity means: the square of left adjoints and the square of right adjoints both commute. In particular, $\sigma(x) = \operatorname{supp}_{\tau}(x)$ for each $x \in \mathcal{T}^c$.
- The map $\bar{\tau}$ is injective iff τ is injective.
- Stratification means: the map τ
 identifies the subsets of X
 with certain localising subcategories of T.
- There are local criteria for stratification: the local-to-global principle and a minimality condition for each $\mathcal{T}_{\{p\}}$ $(p \in X)$.

Let $\mathfrak{T} = (\mathfrak{T}, \otimes, \mathbb{1})$ be a compactly generated tensor triangulated category. For $M \in \mathfrak{T}$ write

 $\mathcal{H}om(M,-) :=$ right adjoint of $M \otimes -$

DEFINITION

An object $M \in \mathcal{T}$ is

- compact if Hom(M, -) preserves all coproducts, and
- dualisable or rigid if

 $\mathcal{H}om(M, \mathbb{1}) \otimes N \xrightarrow{\sim} \mathcal{H}om(M, N)$ for all $N \in \mathcal{T}$.

T is rigidly compactly generated if compact = dualisable.

Lemma

For $M \in \text{StMod } kG$ are equivalent:

- *M* is finite dimensional (up to an isomorphism);
- M is compact;
- M is dualisable.

We write stmod kG for the full subcategory of compact objects.

Lemma

For $M \in \Gamma_{\mathfrak{p}}(\mathsf{StMod}\,kG)$ we have

```
M \text{ compact} \implies M \text{ dualisable.}
```

The converse only holds when p is a minimal prime.

THEOREM (BENSON-IYENGAR-K-PEVTSOVA, 2024)

For $\mathfrak{p} \in \operatorname{Proj}(H^*(G, k))$ and $M \in \mathfrak{T} = \Gamma_{\mathfrak{p}}(\operatorname{StMod} kG)$ the following are equivalent:

- (1) *M* has finite length in \mathfrak{T} ;
- (2) *M* is dualisable in \mathcal{T} ;
- (3) *M* is in the thick subcategory generated by $\Gamma_{\mathfrak{p}}(C)$ for $C \in \text{stmod } kG$.

The implications $(3) \Rightarrow (2) \Rightarrow (1)$ hold in a broader context and have been established in stable homotopy theory by Hovey and Strickland [Morava K-theories and localisation, 1999].

FINITE LENGTH

Let $\mathfrak{T} = (\mathfrak{T}, \otimes, \mathbb{1})$ be a compactly generated tensor triangulated category. For $M, N \in \mathfrak{T}$ write

$$\operatorname{Hom}^*(M,N) := \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}(M, \Sigma^n N).$$

This is a graded module over $R := \text{End}^*(1)$. So \mathcal{T} is *R*-linear.

DEFINITION

An object $M \in \mathcal{T}$ has finite length if Hom^{*}(C, M) has finite length over R for all compact $C \in \mathcal{T}$.

PROPOSITION

Suppose T has a compact generator. Then the finite length objects form a thick subcategory that has the Krull–Schmidt property.

THEOREM (BENSON-IYENGAR-K-PEVTSOVA, 2024)

For $\mathfrak{p} \in \operatorname{Proj}(H^*(G, k))$ and $M \in \mathfrak{T} = \Gamma_{\mathfrak{p}}(\operatorname{StMod} kG)$ the following are equivalent:

- (1) *M* has finite length in \mathfrak{T} ;
- (2) *M* is dualisable in \mathcal{T} ;
- (3) *M* is in the thick subcategory generated by $\Gamma_{\mathfrak{p}}(C)$ for $C \in \operatorname{stmod} kG$.

The proof of the implication $(1) \Rightarrow (3)$ is based on

local regularity

for compactly generated tensor triangulated categories.

Let $\ensuremath{\mathbb{C}}$ be an essentially small triangulated category.

DEFINITION (BONDAL-VAN DEN BERGH, 2003)

An object $C \in \mathcal{C}$ is a

- generator if C = thick(C) (using suspensions and extensions),
- strong generator if C = thick(C) with a global bound on the number of extensions that are needed.

EXAMPLE

Let A be a right noetherian ring. Then

 $\operatorname{Perf}(A)$ has a strong generator \iff gl.dim $A < \infty$.

LOCAL REGULARITY

Let $\mathfrak{T} = (\mathfrak{T}, \otimes, \mathbb{1})$ be a rigidly compactly generated tensor triangulated category with $R = \text{End}^*(\mathbb{1})$. Suppose that \mathfrak{T} is noetherian, so $\text{Hom}^*(C, D)$ is a noetherian *R*-module for all compact $C, D \in \mathfrak{T}$.

DEFINITION

The category \mathcal{T} is locally regular if \mathcal{T} admits a compact generator C such that thick($\Gamma_{\mathfrak{p}}(C)$) is strongly generated for each homogeneous prime ideal \mathfrak{p} of R.

EXAMPLE

Let A a commutative noetherian ring. Then

A is regular \iff **D**(Mod A) is locally regular.

Let $K(\ln j kG)$ denote the category of complexes of injective kG-modules, up to homotopy. Consider the following recollement:

$$\mathsf{StMod}\,kG \xleftarrow{} \mathsf{K}(\mathsf{Inj}\,kG) \xleftarrow{} \mathsf{D}(\mathsf{Mod}\,kG)$$

stmod
$$kG \longleftarrow \mathbf{D}^{b} (\text{mod } kG) \longleftarrow \mathbf{K}^{b} (\text{proj } kG)$$

 $Proj(H^*(G, k)) \qquad Spec(H^*(G, k)) \qquad \{H^+(G, k)\}$

There are three levels:

- compactly generated tensor triangulated categories
- subcategories of compact objects
- points classifying the localising tensor ideals

THEOREM (BENSON-IYENGAR-K-PEVTSOVA, 2024)

The tensor triangulated category $K(\ln j kG)$ is locally regular.

 The proof reduces to the case of an elem. abelian *p*-group, so eventually to a statement about commutative noetherian rings (via a dg Bernstein–Gelfand–Gelfand correspondence).

• For $\mathfrak{p} \in \operatorname{Proj}(H^*(G,k))$ we have

 $\Gamma_{\mathfrak{p}}(\mathsf{K}(\operatorname{Inj} kG)) \xrightarrow{\sim} \Gamma_{\mathfrak{p}}(\operatorname{StMod} kG).$

The category of dualisable objects

Let $\mathfrak{T}=(\mathfrak{T},\otimes,\mathbb{1})$ be a compactly generated tensor triangulated category. Set

 $\mathfrak{T}^d :=$ subcategory of dualisable objects.

- The category T^d = (T^d, ⊗, 1) is tensor triangulated and the thick tensor ideals form a spatial frame.
- Let Spc(𝔅^d) denote the space of prime ideals, i.e. the Balmer spectrum of 𝔅^d.

THEOREM (BALMER, 2010)

Suppose that $End^*(1)$ is noetherian. Then there is a continuous and surjective comparison map

$$\operatorname{Spc}(\mathbb{T}^d) \longrightarrow \operatorname{Spec}(\operatorname{End}^*(\mathbb{1})).$$

Problem

Compute the Balmer spectrum of $\Gamma_{\mathfrak{p}}(\mathbf{K}(\ln j kG))^d$.

Let
$$R = H^*(G, k)$$
. For $\mathfrak{p} \in \operatorname{Spec}(R)$ set

$$R_{\mathfrak{p}} :=$$
 localisation at \mathfrak{p}
 $R_{\mathfrak{p}}^{\wedge} :=$ completion of $R_{\mathfrak{p}}$ at its maximal ideal.

The tensor unit of $\Gamma_{\mathfrak{p}}(\mathbf{K}(\ln j kG))$ is $\Gamma_{\mathfrak{p}}(k)$.

THEOREM (BENSON-IYENGAR-K-PEVTSOVA, 2019)

For $\mathfrak{p} \in \operatorname{Proj}(R)$ we have

 $\operatorname{End}^*(\Gamma_{\mathfrak{p}}(k)) \cong R_{\mathfrak{p}}^{\wedge}.$

BALMER SPECTRUM OF $\Gamma_{\mathfrak{p}}(\mathsf{K}(\operatorname{\mathsf{Inj}} kG))^d$

For the maximal ideal $\mathfrak{p} = H^+(G, k)$ we have

•
$$\Gamma_{\mathfrak{p}}(\mathbf{K}(\operatorname{Inj} kG))^d \simeq \mathbf{D}^b(\operatorname{mod} kG)$$

- $H^*(G,k) \cong H^*(G,k)^{\wedge}_{\mathfrak{p}}$
- The comparison map is bijective, thanks to the classification theorem of Benson–Carlson–Rickard (1997).

THEOREM (BENSON-IYENGAR-K-PEVTSOVA, 2025)

For $\mathfrak{p} \in \operatorname{Proj}(H^*(G, k))$ the comparison map

$${\operatorname{\mathsf{Spc}}}(\Gamma_{\mathfrak{p}}(\operatorname{\mathsf{StMod}} kG)^d) \longrightarrow {\operatorname{\mathsf{Spc}}}(H^*(G,k)^\wedge_{\mathfrak{p}})$$

is bijective.

CONCLUSION

Locally, we may think of the dualisable object as a completion of the compact objects.