CLASSIFYING REPRESENTATIONS THROUGH LOCAL HOMOLOGY AND COSUPPORT

Henning Krause

Universität Bielefeld

International Conference on Representations of Algebras ICRA 14, Tokyo, August 11–15, 2010

www.math.uni-bielefeld/~hkrause

TRIANGLES IN ENGAKU-JI AT KAMAKURA

Fix a triangulated category T with suspension $\Sigma \colon T \xrightarrow{\sim} T$.

Problem

Given two objects X, Y, find invariants to decide when

$$\operatorname{Hom}_{\mathsf{T}}^*(X,Y) = \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathsf{T}}(X,\Sigma^n Y) = 0.$$

In this talk I discuss an approach which is based on joint work with

Dave Benson and Srikanth lyengar.

A SIMPLE EXAMPLE: QUIVER REPRESENTATIONS

Fix a quiver Q of Dynkin type Δ and a field k.

- $\blacksquare \mathsf{T} = \mathsf{D}^b (\mathsf{mod} \, kQ)$
- \blacksquare NC $_{\Delta}$ = the lattice of non-crossing partitions of type Δ

PROPOSITION

There is a map $\sigma \colon T \to NC_{\Delta}$ such that for all X, Y in T

$$\operatorname{\mathsf{Hom}}^*_\mathsf{T}(X,Y)=0 \quad \Longleftrightarrow \quad \sigma(X)\cap\sigma(Y)=arnothing.$$

Idea:

- Ker Hom^{*}_T(X, -) and Ker Hom^{*}_T(-, Y) form thick subcategories of T.
- Work of Ingalls-Thomas and Brüning yields a bijection

 $\{\text{thick subcategories of } \mathsf{T}\} \ \stackrel{\sim}{\longrightarrow} \ \mathsf{NC}_\Delta\,.$

VANISHING OF HOM: SUPPORT AND COSUPPORT

Let R be a graded commutative noetherian ring and T an R-linear compactly generated triangulated category.

We assign to X in T

- the support supp_R $X \subseteq$ Spec R, and
- the cosupport $\operatorname{cosupp}_R X \subseteq \operatorname{Spec} R$,

where Spec R = set of homogeneous prime ideals.

THEOREM (BENSON-IYENGAR-K, 2010)

The following conditions on T are equivalent.

- T is stratified by R.
- For all objects X, Y in T one has

 $\operatorname{Hom}^*_{\mathsf{T}}(X,Y) = 0 \quad \Longleftrightarrow \quad \operatorname{supp}_R X \cap \operatorname{cosupp}_R Y = \varnothing.$

About stratification:

- T is stratified by R if for each p ∈ Spec R the essential image of the local cohomoloy functor Γ_p: T → T is a minimal localizing subcategory of T.
- The derived category D(Mod A) of a commutative noetherian ring A is stratified by A [Neeman, 1992].
- The stable module StMod *kG* of a finite group is stratified by its cohomology ring *H*^{*}(*G*, *k*) [Benson-Iyengar-K, 2008].

About support: The notion generalizes the one

- for commutative noetherian rings [Foxby, 1979], and
- for group representations [Benson-Carlson-Rickard, 1996].

About cosupport: Not much seems to be known ...

Fix an *R*-linear compactly generated triangulated category T.

Basic properties:

• For an exact triangle $X \to Y \to Z \to \Sigma X$,

 $\operatorname{cosupp}_R \Sigma X = \operatorname{cosupp}_R X \subseteq \operatorname{cosupp}_R Y \cup \operatorname{cosupp}_R Z.$

- $\operatorname{cosupp}_R(\prod_i X_i) = \bigcup_i \operatorname{cosupp}_R X_i.$
- $Max(cosupp_G X) = Max(supp_G X).$
- $\operatorname{cosupp}_R X = \emptyset$ if and only if X = 0.

Notation: $Max \mathcal{U} = \{ \mathfrak{p} \in \mathcal{U} \mid \mathfrak{p} \subseteq \mathfrak{q} \in \mathcal{U} \implies \mathfrak{p} = \mathfrak{q} \}.$

The setup:

- *G* a finite group (for simplicity: a *p*-group)
- kG = the group algebra over a field k
- StMod *kG* = the stable category of *kG*-modules
- $H^*(G, k) = \operatorname{Ext}_{kG}^*(k, k) =$ the group cohomology

Some facts:

- StMod *kG* is a compactly generated triangulated category.
- The ring $H^*(G, k)$ acts on StMod kG via homomorphisms

$$H^*(G,k) \longrightarrow \underline{\operatorname{End}}^*_{kG}(X), \quad \phi \mapsto \phi \otimes_k X.$$

• StMod kG is stratified by $H^*(G, k)$.

 V_G = the set of non-maximal homog. prime ideals of $H^*(G, k)$ $\kappa_{\mathfrak{p}}$ = the Rickard idempotent *kG*-module for $\mathfrak{p} \in V_G$

DEFINITION

Fix a kG-module X.

•
$$\operatorname{supp}_G X = \{ \mathfrak{p} \in V_G \mid \kappa_{\mathfrak{p}} \otimes_k X \neq \operatorname{proj.} \}$$

• $\operatorname{cosupp}_G X = \{ \mathfrak{p} \in V_G \mid \operatorname{Hom}_k(\kappa_{\mathfrak{p}}, X) \neq \operatorname{proj.} \}$

Some facts:

- $\operatorname{cosupp}_{G} \operatorname{Hom}_{k}(X, k) = \operatorname{supp}_{G} X.$
- $\operatorname{cosupp}_G X = \operatorname{supp}_G X$, if X is finite dimensional.

EXAMPLE: THE KLEIN FOUR GROUP

Let $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and k a field of characteristic 2.

- $kG \cong k[x_1, x_2]/(x_1^2, x_2^2)$ and $H^*(G, k) \cong k[\xi_1, \xi_2]$ with $|\xi_i| = 1$.
- kG/soc is stably equivalent to the Kronecker algebra.
- The non-zero primes in V_G parametrize the (homogeneous) tubes of the AR-quiver of mod kG.
- Let 0 ≠ p ∈ V_G. The modules with support {p} are precisely the non-zero modules in the direct limit closure of the corresponding tube.
- $\kappa_{\mathfrak{p}}$ is the Pruefer module $R(\mathfrak{p},\infty) = \bigcup_{n \ge 1} R(\mathfrak{p},n)$ for $\mathfrak{p} \neq 0$.
- The modules with support {0} are precisely the direct sums of copies of the generic module κ₀.
- $\sup_{\mathcal{G}} \kappa_{\mathfrak{p}} = \{\mathfrak{p}\} \text{ and } \operatorname{cosupp}_{\mathcal{G}} \kappa_{\mathfrak{p}} = \{\mathfrak{p}, 0\} \text{ for } \mathfrak{p} \in V_{\mathcal{G}}.$

A = a commutative noetherian ring D(Mod A) = the derived category of the category of A-modules $k(\mathfrak{p}) =$ the residue field $A_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}$ for a prime ideal \mathfrak{p}

DEFINITION

Fix a complex X of A-modules.

•
$$\operatorname{supp}_A X = \{ \mathfrak{p} \in \operatorname{Spec} A \mid k(\mathfrak{p}) \otimes^{\mathsf{L}}_A X \neq 0 \}$$

• $\operatorname{cosupp}_A X = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \operatorname{\mathsf{RHom}}_A(k(\mathfrak{p}), X) \neq 0 \}$

Some examples:

- $\operatorname{supp}_A X = \{\mathfrak{p} \in \operatorname{Spec} A \mid (H^*A)_{\mathfrak{p}} \neq 0\} \text{ for } X \in \operatorname{D}^b(\operatorname{mod} A).$
- Let $A = \mathbb{Z}$. Then $\operatorname{cosupp}_A X = \operatorname{supp}_A X$ for $X \in D^b (\operatorname{mod} A)$.
- Let (A, \mathfrak{m}) be complete local. Then $\operatorname{cosupp}_A A = \{\mathfrak{m}\}.$

Fix a triangulated category T with set-indexed (co)products.

DEFINITION

A triangulated subcategory $\mathsf{C}\subseteq\mathsf{T}$ is called

- localizing if C is closed under taking all coproducts,
- colocalizing if C is closed under taking all products.

Notation: For any class $S \subseteq T$ write

- Loc(S) = the smallest localizing subcategory containing S
- Coloc(S) = the smallest colocalizing subcategory containing S

Examples:

- Ker Hom^{*}_T(-, Y) is localizing for each $Y \in T$.
- Ker Hom^{*}_T(X, -) is colocalizing for each $X \in T$.

THEOREM (BENSON-IYENGAR-K, 2010)

Let G be a finite p-group and k a field. The assignment

 $V_{\mathcal{G}} \supseteq \mathfrak{U} \longmapsto \mathsf{Coloc}(\{\kappa_{\mathfrak{p}} \mid \mathfrak{p} \in \mathfrak{U}\}) \subseteq \mathsf{StMod}\,kG$

induces a bijection between

- the collection of subsets of V_G, and
- the collection of colocalizing subcategories of StMod kG.

The inverse map sends $C \subseteq StMod \ kG \ to \bigcup_{X \in C} cosupp_G X$.

COROLLARY

The assignment $C \mapsto C^{\perp}$ induces a bijection between

- the collection of localizing subcategories of StMod kG, and
- the collection of colocalizing subcategories of StMod kG.

This classification of colocalizing subcategories

- is surprising because products tend to be complicated,
- is inspired by a similar classification for D(Mod A) where A is commutative noetherian [Neeman, 2009],
- is based on local homology functors (= right adjoints of local cohomology functors),
- implies the classification of localizing subcategories:

costratification \implies stratification,

• implies for kG-modules X, Y:

 $\operatorname{Coloc}(X) \subseteq \operatorname{Coloc}(Y) \iff \operatorname{cosupp}_G X \subseteq \operatorname{cosupp}_G Y.$

NOT A TRIANGLE BUT A TRIPLE AT OBERWOLFACH

