Übungen zu Analysis C

Blatt 3 - Abgabe bis 24.4.2006

- 11. Es sei f eine konvexe differenzierbare Funktion auf einem offenen Intervall I und $K = \{(x, y) \in I \times \mathbb{R} \mid y > f(x)\}$. Finden Sie die Gleichung für die Stützgerade an K in einem Punkt (x_0, y_0) des Graphen von f. Begründen Sie Ihre Antwort.
- 12. Bestimmen Sie die Minkowskifunktionale folgender Teilmengen von \mathbb{R}^2 :
 - (a) $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 4\},$
 - (b) $\operatorname{conv}\{(1,0),(0,1),(-1,0),(0,-1)\},\$
 - (c) $\{(x,y) \in \mathbb{R}^2 \mid -1 \le x \le 1\},\$
 - (d) $\{(x,y) \in \mathbb{R}^2 \mid y \ge x^2\}.$
- 13. Es sei K eine konvexe Teilmenge von \mathbb{R}^n . Zeigen Sie, dass folgende Aussagen äquivalent sind:
 - (a) Die Menge K hat innere Punkte.
 - (b) Die Menge K enthält n+1 affin unabhängige Punkte.
- 14. Bestimmen Sie für jede der folgenden konvexen Mengen die Menge E ihrer Extremalpunkte sowie die konvexe Hülle von E.
 - (a) $\{(x,y) \in \mathbb{R}^2 \mid y \ge x^2\},\$
 - (b) $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, |z| \le 1\},\$
 - (c) $\operatorname{conv}\{(x, y) \in \mathbb{Q}^2 \mid x^2 + y^2 \le 1\},\$
 - (d) $\{(x_1, x_2, \dots) \mid \sum_{i=1}^{\infty} |x_i| = 1\}.$
- 15.* Es sei A eine Teilmenge eines normierten reellen Vektorraums V mit abgeschlossener konvexer Hülle. Zeigen Sie, dass ein Punkt $x \in V$ genau dann zur konvexen Hülle von A gehört, wenn es für jedes stetige lineare Funktional L auf V einen Punkt $a \in A$ mit $L(x) \leq L(a)$ gibt.