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Abstract

In order to study the asymptotic distribution of geometric or spectral
data associated with quotients of a reductive group by a lattice, one needs
a trace formula for test functions on that group with noncompact support.
Arthur has proved a trace formula for compactly supported test functions
on reductive groups of arbitrary rank. We show that the coarse geometric
expansion in his formula converges for rapidly decreasing functions.
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Introduction

Let G be a connected reductive group defined over a global field F and denote,
for each F -algebra E, by G(E) the group of E-valued points. The diagonal em-
bedding of F into its adele ring A gives rise to an embedding of G(F ) into the
locally compact group G(A) as a discrete subgroup. Thus we can consider the
space of square-integrable functions on G(F )\G(A) with respect to an invariant
measure. The unitary representation R of G(A) acting on this space by right
translations can be integrated with the aid of a Haar measure to give a repre-
sentation of the algebra L1(G(A)). The trace formula is one of the main tools to
study the decomposition of the discrete part of this representation, the notion of
discrete having been suitably modified if G(A) has noncompact centre. In case
G is anisotropic and f is a smooth compactly supported function on G(A), this
formula expresses the trace of R(f) in terms of geometric data. For general G,
one still has an identity between two distributions, called the spectral and the
geometric expansion, respectively [1], [2]. The trace of the discrete part of R(f)
is among the spectral terms, at least in the cases where a certain convergence
problem has been resolved [20].

In some applications of the trace formula, specifically if one asks for the
asymptotic distribution of geometric or spectral data associated with the space
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G(F )\G(A), it is awkward or even impossible to get by with test functions f
of compact support. One might expect that the trace formula is valid for f in
Harish-Chandra’s Schwartz space C1(G(FS)) for a finite set S of places of F ,
where FS :=

∏
v∈S Fv and f is suitably extended to G(A). The present paper is

devoted to the proof that the coarse geometric expansion of the trace formula, as
described in [1], is in fact absolutely convergent for test functions in the Schwartz
space Cp(G(FS)) for p small enough. Actually, we show not only the convergence
of an integral, but the rapid decay at infinity of its integrand. By inspection of
our proof one may derive an explicit, although not optimal, lower bound on the
best possible p for a given group G.

The operator R(f) is an integral operator with kernel K(x, y). If G is anisotro-
pic, then the trace can be obtained by integrating this kernel over the diagonal.
In general, one has to form an alternating sum of kernels KP (x, y) multiplied
with characteristic functions of certain sets. These sets depend on a so-called
truncation parameter T , which runs through an affine space. In [1], Arthur has
proved the convergence for sufficiently regular T depending on the support of f .
In our situation, this support could be all of G(A), and then no parameter T
would be sufficiently regular. In order to solve this problem, we give a different
argument, which works for all T . The resulting geometric side of the trace for-
mula depends polynomially on T (with a slight modification in case of positive
characteristic), as already proved in [3] in the sufficiently regular range. The pre-
vious lack of knowledge that the explicit expression is convergent for all T was
the source of certain complications in [4], which may now be avoided, at least for
compactly supported f . However, further insight will be required to extend the
fine geometric expansion of the trace formula to test functions of noncompact
support.

1 The results

Let F , A and G be as in the introduction. If G(A) has noncompact centre,
then R(f) is never of trace class. This is why one often considers functions on
G(F )\G(A) transforming under the centre according to a fixed central character.
We follow the alternative approach of [1] and replace G(A) by the subgroup
G(A)1 consisting of all g such that |χ(g)| = 1 for every rational character χ of G
defined over F . Note that this notation makes sense if we replace G by any linear
algebraic group defined over a field F and A by any locally-compact F -algebra,
where |a| denotes the module of a ∈ A× with respect to any Haar measure on A×.

In order to state the definition of the spectral expansion of the trace for-
mula, we first have to recall some notation. For each parabolic F -subgroup
P of G with unipotent radical N , we have a representation RP of G(A)1 on
L2(P (F )N(A)\G(A)1) by right translations. Fixing f ∈ L1(G(A)1) and integrat-
ing f(g)RP (g) with respect to a Haar measure of G(A)1, we obtain an integral
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operator with kernel given by

KP (x, y) =

∫
N(F )\N(A)

∑
γ∈P (F )

f(x−1γny) dn

for almost every x, y ∈ G(F )\G(A)1, which could also be written as an integral
over P (F )N(A) and whose convergence is deduced from Fubini’s theorem. All
invariant measures on coset spaces are chosen such that they satisfy the obvious
compatibility conditions. As usual, one omits the superscript P if P = G.

The coarse geometric expansion of these kernels comes from an equivalence
relation on G(F ) defined as the finest equivalence relation with the following
properties:

(a) Any two G(F )-conjugate elements are equivalent.

(b) If P is a parabolic F -subgroup with unipotent radical N , then the elements
of each N(F )-coset in P (F ) are mutually equivalent.

Let O be the set of equivalence classes. If M is a Levi component of P defined
over F , we can restate condition (b) as

P (F ) ∩ o = (M(F ) ∩ o)N(F )

for any o ∈ O. It is sufficient to require this for minimal P such that P (F )∩o 6= ∅.
In this case, any γ ∈ M(F ) ∩ o is F -elliptic in M (i.e., not contained in any
proper parabolic F -subgroup of M). One can check that in this way one obtains
a bijection between O and the set of G(F )-conjugacy classes of pairs (M, γ),
where M is a Levi F -subgroup of G and γ is an F -elliptic element of M(F ).

In the case char F = 0, there is an alternative description of our equivalence
relation, which was taken for the definition in [1]. Namely, one can show that two
elements of G(F ) are equivalent iff the semisimple components in their Jordan
decompositions are G(F )-conjugate. The remark after the proof of Lemma 2.1
in [1] proves this claim in one direction.

Deferring questions of convergence, we write KP (x, y) as the sum over all
o ∈ O of the partial kernels

KP
o (x, y) =

∫
N(F )\N(A)

∑
γ∈P (F )∩o

f(x−1γny) dn,

which are well defined due to condition (b). Such a partial kernel is not P (F )-
invariant as a function of x or y in general, but the function of one variable
obtained by setting x = y is.

Recall that A is the restricted direct product of all completions Fv with respect
to the places v of F . Taking the partial product over the archimedean and
nonarchimedean places, resp., we obtain direct product decompositions A = F∞×
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Af and G(A) = G(F∞)G(Af). The truncation procedure requires fixing a maximal
compact subgroup K of G(A). Such groups are of the form K =

∏
v Kv, where

Kv is a maximal compact subgroup in G(Fv). We assume that the partial product
Kf over all nonarchimedian places is an open subgroup of G(Af). Then G(A) is
the restricted direct product of the groups G(Fv) with respect to the subgroups
Kv, and Kv is a special maximal compact subgroup for almost all v. We further
assume that the latter is true for all nonarchimedean v. Then one has G(A) =
P (A)K for any parabolic F -subgroup P of G.

For each such P , let X(P ) be the group of all F -rational characters of P and
δP ∈ X(P ) the determinant of the adjoint action of P on the Lie algebra of N . We
define the real vector space aP = Hom(X(P ), R) and the map HP : G(A) → aP

by HP (pk) = HP (p) : χ 7→ log |χ(p)| for every p ∈ P (A), k ∈ K and χ ∈ X(P ).
These maps are compatible with the natural projections aP → aP ′ for P ⊂ P ′.
The cone +aP can be defined as the set of all H ∈ aP which take positive values
on δP ′ for all proper parabolic subgroups P ′ of G containing P . The kernel of
HP is P (A)1.

Now we are ready to define the geometric expansion of the trace formula. It
is customary (although not necessary, see [6], p. 271) to fix a minimal parabolic
F -subgroup P0. For o ∈ O, T ∈ a0 := aP0 and x ∈ G(A)1, we set

kT
o (x) =

∑
P

εG
P

∑
δ∈P (F )\G(F )

KP
o (δx, δx)τ̂P (HP (δx)− TP ),

the exterior sum being taken over all parabolic subgroups containing P0. Here
εG

P = (−1)dim aP /aG , TP is the projection of T on aP , and τ̂P is the characteristic
function of +aP . The coarse geometric expansion of the trace formula, introduced
in [1], is

JT (f) =
∑
o∈O

∫
G(F )\G(A)1

kT
o (x) dx.

(It is parallel to the coarse spectral expansion in terms of G(F )-conjugacy classes
of pairs (M, π), where M is a Levi F -subgroup of G and π is a cuspidal automor-
phic representation of M(A).) Of course, it has to be shown that all sums and
integrals occurring here are absolutely convergent.

We are going to prove this when f is a suitable extension of a function in a
certain Schwartz space Cp(G(FS)1), which has been introduced in the case p = 2
in [3], p. 28, and is some kind of tensor product of the spaces introduced by
Harish-Chandra. Namely, let Ξv and σv be the functions on G(Fv) used in [11]
and [13] in the definition of C(G(Fv)) (cf. section 3 for details). Given a finite set
S of places of F , we set, for any g ∈ G(FS),

ΞS(g) =
∏
v∈S

Ξv(gv), σS(g) =
∏
v∈S

σv(gv).

4



Let S = S∞ ∪ Sf be the decomposition into archimedean and non-archimedean
places. A function on G(FS)1 is called smooth if it is biinvariant under some open
compact subgroup K0 of G(FSf

) and is infinitely differentiable as a function on
the manifold K0\G(FS)1/K0. The actions of the Lie group G(FS∞)1 on G(FS)1

by left and right translations give rise to representations X 7→ XL, X 7→ XR of
its Lie algebra on the space of smooth functions, which extend to the universal
enveloping algebra G1

S. (If S∞ = ∅, then G(FS∞)1 = {1} and G1
S = C). For all

p > 0, r > 0 and finite sets F ⊂ G1
S ×G1

S we set

‖f‖p,F,r = max
(X,Y )∈F

sup
g∈G(FS)1

|XLYRf(g)|ΞS(g)−2/p(1 + σS(g))r.

We define Cp
K0

(G(FS)1) as the space of all K0-biinvariant smooth functions f on
G(FS)1 such that ‖f‖p,F,r < ∞ for all F and r. The seminorms ‖ . ‖p,F,r induce
a topology on Cp

K0
(G(FS)1), and we define Cp(G(FS)1) as the topological direct

limit, over all K0, of the spaces Cp
K0

(G(FS)1). It is known (see section 3) that
this space and its topology do not depend on the choice of KS =

∏
v∈S Kv and

that Cp(G(FS)1) ⊂ Lp(G(FS)1), the embedding being continuous.
Any function in Cp(G(FS)1) can be uniquely extended to a KS-invariant func-

tion on G(FS)1KS, where KS =
∏

v/∈S Kv. The resulting space will be denoted by
Cp(G(FS)1KS), and such functions will tacitly be extended to G(A)1 by setting
them equal to zero outside G(FS)1KS. The notations ‖f‖p,F,r for such functions
and Cp

K0
(G(FS)1KS) have the obvious meaning. We will always assume that S

contains all archimedean places (if any), so these functions are smooth on G(A)1,
and G1 = G1

S is independent of S.
Remark. Both functions Ξv and σv take value 1 on Kv. Thus, for S ⊂ S ′, the

restrictions of the seminorms of Cp(G(FS′)
1KS′) to Cp(G(FS)1KS) coincide with

the corresponding seminorms of the latter space. Consequently, the topological
direct limit Cp(G(A)1) of these spaces over all S is just their union, and it is
independent of K, because for any two maximal compact subgroups K and K ′

satisfying our assumptions we have Kv = K ′
v for almost all v.

Theorem 1 There exists p > 0 with the following property. For every S con-
taining all infinite places, every open compact subgroup K0 of G(FSf

) and every
truncation parameter T there exist a constant r and a finite set F ⊂ G1 × G1

such that ∑
o∈O

∫
G(F )\G(A)1

|kT
o (x)| dx ≤ ‖f‖p,F,r

for all f ∈ Cp
K0

(G(FS)1KS).

Note that kT
o depends implicitly on f . The ostensibly missing constant factor

has been absorbed into F.
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This theorem is our main result, which generalises Theorem 7.1 of [1] by
removing the assumptions that f have compact support, T be sufficiently regular
and F be a number field.

As already mentioned, Theorem 1 may be strengthened to a bound on kT
o .

This function being left G(F )-invariant, it is sufficient to bound its restriction to
a Siegel domain S1

0 with respect to P0 satisfying G(F )S1
0 = G(A)1, cf. [10]. (The

definition of a Siegel domain will be recalled in section 6.) Let us write ρ0 = ρP0

and H0 = HP0 .

Theorem 2 There exist c > 0 and d with the following property. For every S
containing all infinite places, every open compact subgroup K0 of G(FSf

), every
truncation parameter T and 0 < p < 1 there exist a constant r and a finite set
F ⊂ G1 ×G1 such that∑

o∈O

∣∣kT
o (x)

∣∣ ≤ ‖f‖p,F,r e(d−c/p)ρ0(H0(x))

for all f ∈ Cp
K0

(G(FS)1KS) and x ∈ S1
0 .

The method to prove this theorem goes back to an old preprint named “The
decay of truncated kernels on locally-symmetric spaces”, where I estimated the
non-adelic analog of the truncated kernel

kT (x, y) =
∑

P

εG
P

∑
δ,η∈P (F )\G(F )

KP (δx, ηy)τ̂P (HP (δx)− TP )τ̂P (HP (ηy)− TP )

without restricting it to the diagonal. Since kT (x, x) does not coincide with∑
o kT

o (x) unless all factors of G have F -rank one, and since it is impossible, for
x 6= y, to separate the contribution from various classes o, the old result does not
imply Theorem 1. It was intended as the first step in extending Faddeev’s method
of analytic continuation of (cuspidal) Eisenstein series ([7], cf. also ch. XIV of [15])
to the higher rank case. However, it never appeared in a journal as I was unable to
generalise the boudary conditions required for Faddeev’s method, while Jacquet’s
elegant simplification of Selberg’s original proof, as exposed in ch. IV of [19], made
the search for alternative methods pointless. Nevertheless, I include that kernel
estimate here as it might still have other applications and its proof is a byproduct
of the arguments we have to expound anyway.

Theorem 3 There exist c > 0 and d with the following property. For every S
containing all infinite places, every open compact subgroup K0 of G(FSf

), every
truncation parameter T , 0 < p < 1 and large r there exists a finite set F ⊂ G1×G1

such that ∣∣kT (x, y)
∣∣ ≤ ‖f‖p,F,r e(d−c/p)ρ0(H0(x)+H0(y))

for f ∈ Cp
K0

(G(FS)1KS) and x, y ∈ S1
0 .
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2 Preliminaries concerning root systems

In this section we collect some easy facts needed later. We consider a connected
reductive F -group G like in section 1, but now F can be any field.

Let A be an F -split torus in G and M its centraliser. We call A a special
F -torus in G if it is the largest F -split torus in the centre of M . If this is the
case, M is a Levi component of some parabolic F -subgroup of G or, as we shall
say for brevity, a Levi F -subgroup of G. In this way one gets a bijection between
the sets of special F -tori and of Levi F -subgroups of G.

Let X(A) denote the group of F -rational characters of the special F -torus A,
set a = Hom(X(A), R) (the “real Lie algebra” of A) and denote by ΣA ⊂ X(A)
the set of roots of A in G. Following tradition, we often write the group X(A)
additively and consider its elements as linear functionals on a. A subspace of a is
called a special subspace if it is the intersection of the kernels of some elements
from ΣA. If A′ is a special F -torus contained in A, then we have a natural
map a′ → a. All such maps are compatible, which allows us to identify a′ with
a subspace of a. In this way we get a bijection from the set of special F -tori
contained in A onto the set of special subspaces of a. Let areg denote the set of
all H ∈ a which are not contained in any special subspace except a itself. The
connected components of areg are called the chambers of a.

For A and M as above, let P(A) be the set of parabolic F -subgroups of G
having M as a Levi component. For P ∈ P(A), the space aP introduced in
section 1 depends on P but not on A, and is naturally isomorphic to a. The
set of roots of A in the unipotent radical of P , which we denote by ΣP , may be
identified with a subset of a∗P (which justifies the absence of A in the notation),
and we can regard ρP := 1

2
δP as a linear functional on a. Although a figured as

a universal variable in the symbol aP , in the presence of a special split torus the
corresponding lower-case gothic letter will henceforth refer to its real Lie algebra.
E.g., we denote by a+

P the set of all H ∈ a which take positive values on the
elements of ΣP , and we also regard +aP as a subset of a. Thus, by assigning a+

P

to P , we get a bijection of P(A) onto the set of chambers in a.

Lemma 1 If A is a special F -torus and H ∈ a, set

|H| = sup
P∈P(A)

ρP (H)

(i) This is a seminorm on a vanishing exactly on aG, and for every P ∈ P(A)
we have

|H| = 1

4

∑
α∈ΣA

mα|α(H)| = 1

2

∑
α∈ΣP

mα|α(H)|,

where mα is the multiplicity of α. Moreover, |H| = ρP (H) iff H ∈ a+
P .
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(ii) Suppose G and A are also defined over a subfield F ′ of F and that A′ is
a special F ′-torus in G contained in A. Let M ′ be the centraliser of A′

and define X ′(A′), a′ and | . |′ with respect to the ground field F ′. Then the
inclusion a′ → a dual to the restriction map X(A) → X(A′) ∼= X ′(A′) is
an isometric embedding, and the projection a → a′, H 7→ H ′, dual to the
restriction map X ′(M ′)→ X(M) satisfies |H ′|′ ≤ |H|.

Proof. Fix H ∈ a and choose Q ∈ P(A) such that H ∈ a+
Q. Then

ρP (H) =
1

2

∑
α∈ΣQ

±mαα(H) ≤ ρQ(H)

for a suitable choice of signs, because mα = m−α for α ∈ ΣA = ΣQ ∪ −ΣQ. Now
(i) follows easily.

The set of F ′-roots Σ′
A′ is the set of nonzero restrictions of elements of ΣA to

a′, and mα′ is the sum of mα over all α with α|a′ = α′. Using the first formula
from (i), we get the first assertion of (ii). Given H ∈ a with image H ′ ∈ a′, we

choose a parabolic F ′-subgroup P ′ with Levi component M ′ such that H ′ ∈ a′+P ′

and thus |H ′|′ = ρP ′(H
′). There exists P ∈ P(A) such that a′+P ′ ⊂ a+

P , i.e.,
P ⊂ P ′. The value of H ′ on δP ′ ∈ X ′(P ′) ∼= X ′(M ′) equals the value of H on
δP ′|M , namely ∑

α∈ΣP
α|A′ 6=1

mα|α(H)| ≤ 2|H|. �

Given special F -tori A′ ⊂ A in G and P ′ ∈ P(A′), we define a+
P ′ to be

just a′+P ′ . Then a is the disjoint union of the sets a+
P ′ where P ′ runs through all

parabolic F -subgroups of G containing the centraliser M of A. Let WA denote
the (F -rational) Weyl group of A in G (i.e., the quotient of the normaliser by
the centraliser of A in G(F )). Then wa+

P ′ = a+
(wP ′), where wP ′ := w̃P ′w̃−1 for a

representative w̃ of w. The Weyl group WM ′
A of A in M ′ is the pointwise stabiliser

of A′ in WA.

Lemma 2 Let A′ ⊂ A be special F -tori, w ∈ WA and P ′ ∈ P(A′).

(i) If wP ′ = P ′, then w acts trivially on a′.

(ii) The space of w-fixed vectors in a is a special subspace, i.e., the real Lie
algebra of a special F -torus A′′. The centraliser M ′′ of A′′ is the smallest
Levi subgroup containing both w̃ and the centraliser M of A.

(iii) In the situation of (ii), we have wP ′ = P ′ iff M ′′ ⊂ P ′.

(iv) If P ∈ P(A) and P ′ contains both P and wP , then wP ′ = P ′.
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Proof. (i) Since P ′ coincides with its own normaliser, we have w̃ ∈ P ′. As
M ′ is the unique Levi component of P ′ containing the centraliser M of A, w̃
normalises M ′. It is well known that the normaliser of M ′ in P ′ is M ′.

(ii) Let a′′ denote the space of w-fixed vectors in a. Pick H ∈ a′′, let P ′ be the
unique parabolic such that H ∈ a+

P ′ . Then wP ′ = P ′, and by (i) the span a′ of
a+

P ′ is contained in a′′. This shows that a′′ is a union of special subspaces. Since
there are only finitely many special subspaces in a and since a proper subspace
of a′′ is a null set for the Lebesgue measure on a′′, we see that a′′ itself must be
special.

(iii) If wP ′ = P ′, then a+
P ′ ⊂ a′′ by (i), and the converse is trivial.

(iv) In this situation, P ′ and w−1
P ′ are conjugate parabolic subgroups con-

taining the parabolic subgroup P . It is well known that they must coincide.
�

Suppose we are given parabolic F -subgroups P and Q of G. If there exist
parabolic F -subgroups contained in both P and Q, then there is a greatest such
parabolic, which we denote by P ∧ Q. In this case, of course, P ∧ Q = P ∩ Q,
because the latter is an algebraic F -subgroup containing a parabolic subgroup.
On the other hand, the set of parabolic F -subgroups containing both P and Q
is closed under intersection and non-empty, as G belongs to it. Hence there is

always a least such parabolic, which we denote by P ∨Q. Clearly, a+
P∨Q = a+

P ∩a+
Q.

Finally, let us recall some notation connected with parabolic descent. If P ′ is
a parabolic F -subgroup of G with Levi F -component M ′, the assignment P 7→
P ∩M ′ defines a bijection of the set of parabolic F -subgroups of G contained
in P ′ onto the set of parabolic F -subgroups of M ′. We write ΣP ′

P , ∆P ′
P and

ρP ′
P for ΣP∩M ′ , ∆P∩M ′ and ρP∩M ′ , resp., which are (sets of) linear functionals

on aP not depending on the choice of M ′. We denote by aP ′
P the kernel of the

projection aP → aP ′ dual to the restriction map X(P ′) → X(P ), and we write
(aP ′

P )+ for the chamber corresponding to P ∩ M ′. If A′ is a maximal F -split
torus in P ′ and A ⊃ A′ a maximal F -split torus in P , we have identified aP

with a and aP ′ with a′, hence aP ′ ⊂ aP . This yields a direct sum decomposition
aP = aP ′

P ⊕ aP ′ . The corresponding decomposition of elements H ∈ aP will be
written as H = HP ′ + HP ′ .

Lemma 3 Let P , Q ∈ P(A) and set P ′ = P ∨Q. Then there exists c > 0 such
that

0 < cρP ′

P (H) ≤ (ρP − ρQ)(H) ≤ 2ρP ′

P (H)

for all H ∈ aP such that HP ′ ∈ (aP ′
P )+.

Proof. Let Θ ⊂ ∆P be the set of primitive roots occurring in the decomposi-
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tion of elements of ΣP ∩ ΣQ̄, where ΣQ̄ = −ΣQ. Then

a+
P ∩ a+

Q = {H ∈ a+
P | α(H) = 0 ∀α ∈ ΣP ∩ ΣQ̄}

= {H ∈ a+
P | α(H) = 0 ∀α ∈ Θ},

a+
P ′ = {H ∈ a+

P | α(H) = 0 ∀α ∈ ΣP ′

P }.

Since a+
P ′ = a+

P ∩ a+
Q, it follows that Θ = ∆P ′

P . Moreover, ΣP ∩ ΣQ̄ ⊂ ΣP ′
P , and

therefore

ρP − ρQ =
∑

α∈ΣP∩ΣQ̄

mαα =
∑

β∈∆P ′
P

n′ββ,

2ρP ′

P =
∑

α∈ΣP ′
P

mαα =
∑

β∈∆P ′
P

nββ

whith positive nβ, n′β, because ΣP ∩ ΣQ̄ spans the dual of aP ′
P . �

3 Inequality of descent

Harish-Chandra has introduced the Schwartz space for p = 2 only. It is an
instance of his philosophy of descent that, roughly speaking, a Schwartz function
f on G gives rise, for each parabolic P , to a Schwartz function fP on the Levi
component of P . We shall extend the underlying inequality to the case 0 < p ≤ 2.

Since the entire discussion is purely local, we change our notation throughout
this section, denoting by F a local field, by G a connected reductive F -group and
by K a special maximal subgroup of G(F ). Hopefully, the notational simplifica-
tion of dropping the subscript v will outweigh the danger of confusing the reader.
If v is non-archimedean, we normalise the Haar measures on G(F ) and K so that
K has measure one. Note that, for each parabolic F -subgroup P , the objects
X(P ), aP , ΣP , a+

P and +aP are now defined with respect to the ground field F .
We define the map HP : G(F ) → aP by the same formula as in the global case.
The modular character dP of P (F ) is given by dP (p) = |δP (p)| = e2ρP (HP (p)).

The definition of the space Cp(G(F )) can be given in terms of the majorants

µp,r(g) := Ξ(g)2/p(1 + σ(g))−r, g ∈ G(F ),

where we use the basic spherical function

Ξ(g) :=

∫
K

eρ0(H0(kg))dk.

Here the subscript 0 refers to some fixed minimal parabolic F -subgroup P0, no
matter which one, since all of them are K-conjugate. Remember that our H0 is

10



right K-invariant. The function σ depends on the choice of a faithful F -rational
representation η of G and a K-invariant norm on its representation space V . We
set

σ(g) = log max(‖η(g)‖, ‖η(g−1)‖),

where ‖ . ‖ denotes the Hilbert-Schmidt norm (resp. operator norm) on EndF (V )
if F is archimedean (resp. nonarchimedean).

Note that Ξ(g) equals (h0, π0(g)h0), the matrix coefficient for a K-fixed unit
vector h0 of the representation π0 unitarily induced from the trivial representation
of P0. If h′0 is fixed under a different special maximal compact subgroup K ′, then
h′0 = π0(f)h0 for some smooth compactly supported function f on G(F ) by [23],
Lemma 1.11.3, hence the resulting spherical function is Ξ′ = f ∗ Ξ ∗ f ∗. In the
archimedean case we have Ξ′(g) = Ξ(g−1

0 gg0) for some g0 by the conjugacy of
maximal compact subgroups. If µ′p,r comes from K ′ and a different choice of η
and ‖ . ‖, then it follows from [25], Prop. 8.3.7.2 / [23], Lemma 4.2.3 and the
remarks on p. 150, that for every r > 0 there exist C > 0, r′ > 0 such that
µp,r ≤ Cµ′p,r′ . Moreover, µp,r ∈ Lp(G(F )) for large r by [25], Prop. 8.3.7.5 / [23],
Lemma 4.2.5. More precisely, if we fix a norm ‖ . ‖ on aG, there exist C and q > 0
such that ∫

G(F )1
µp,r(g0g)p dg ≤ C(1 + ‖HG(g0)‖)−qr. (1)

Let A0 be a maximal F -split torus of G whose apartment in the Bruhat-Tits
building of G contains the vertex fixed by K. In the archimedean case (cf. [22],
section 5), this means that the Lie algebras of K and A0(F ) are orthogonal with
respect to the Killing form. If A is a special subgroup of A0 and M the centraliser
of A, then KM := K ∩M(F ) is a special maximal subgroup of M(F ), and the
elements of the Weyl group WA have representatives in K. We may assume in
addition that A0 ⊂ P0 (by changing P0 or A0, because minimal parabolic F -
subgroups are K-conjugate). The inclusion map of the centraliser M0 of A0 into
G yields a bijection

KM0\M0(F )/KM0 → K\G(F )/K.

Therefore Ξ and σ are determined by their restrictions to

M0(F )+ := {m ∈M0(F ) | H0(m) ∈ a+
P0
}.

There are positive constants C1, C2 and r0 such that

C1 ≤ dP0(m)1/2Ξ(m) ≤ C2(1 + σ(m))r0 (2)

for m ∈ M0(F )+ by [25], Prop. 8.3.7.3 and Th. 8.3.7.4 / [23], Th. 4.2.1. Thus,
in the definition of Cp(G(F )), we could have replaced Ξ by the K-biinvariant
function whose restriction to M0(F ) is e−|H0(m)| in the notation of Lemma 1.

11



Lemma 4 Let P be a parabolic F -subgroup with unipotent radical N and Levi
component M containing M0. Given 0 < p ≤ 2, s > 0 and r > s + (2

p
+ 1)r0,

there exists C > 0 such that, for each m ∈M(F ),

dP (m)1/2

∫
N(F )

µp,r(mn) dn ≤ CµM
p,s(m)e−( 2

p
−1)|HM (m)|.

Here µM
p,r is defined using the basic KM -spherical function on M(F ) and the

restriction of σ to M(F ).

For p = 2, this is just [11], Lemma 21 / [13], Cor. 2 of Th. 25 (cf. also [25],
Th. 8.5.2.1 / [23], Th. 4.3.20). For the proof in the general case, we need the
following convexity theorem: If m0 ∈M0(F ) and k ∈ K, then H0(km0) lies in the
convex hull of the WA0-orbit of H0(m0). In the archimedean case, this has been
proved in [14], while a proof for the non-archimedean case has been sketched
in [24]. (We will not need Kostant’s full convexity theorem, which describes
{H0(km0) | k ∈ K} completely, nor its full analogue in the non-archimedean
case, for which the details of proof in [24] are scarce.) Thus,

H0(km0) =
∑

w∈WA0

aw wH0(m0) with aw > 0,
∑

w∈WA0

aw = 1,

and hence
|H0(km0)| ≤

∑
w∈WA0

aw|wH0(m0)| = |H0(m0)|

due to Lemma 1 and the WA0-invariance of | . |. If m0 ∈M0(F )+, then the right-
hand side equals ρ0(H0(m0)). Combined with (2) and the K-biinvariance of Ξ
and σ, this implies that

Ξ(g) ≤ C2e
−|H0(g)|(1 + σ(g))r0

for all g ∈ G(F ). In particular, for m0 ∈M0(F ) and n0 ∈ N0(F ) we get

Ξ(m0n0) ≤= C2e
−|H0(m0)|(1 + σ(m0n0))

r0 .

The same is true for nonminimal parabolics, too: Let m ∈M(F ), n ∈ N(F ).
Then m = k1m0k2 with k1, k2 ∈ KM and m0 ∈ M0(F ), hence |H0(m0)| ≥
|HM(m0)| = |HM(m)| by Lemma 1(ii). Setting n0 = k2nk−1

2 , we get

Ξ(mn) = Ξ(m0n0) ≤ C2e
−|HM (m)|(1 + σ(mn))r0 .

This shows that, for 0 < p ≤ 2,

µp,r+r2(nm) ≤ C
2/p
2 µ2,r(nm)e−( 2

p
−1)|HM (m)|

with r2 =
(

2
p
− 1
)
r0, and the Lemma follows from the special case p = 2 when

we integrate over n ∈ N(F ).
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4 Sums over Bruhat cells

We return to the setting of section 1, thus denoting by F a global field again.
The results of the previous section are applicable to the local field Fv for each
place v of F . The majorants on G(Fv) which were denoted by µp,r should now be
written as µv,p,r. If S is a finite set of places, then functions in Cp(G(FS)1) and
their invariant derivatives are bounded by

µS,p,r(g) :=
∏
v∈S

µv,p,r(gv).

As in section 1, we extend this to a KS-invariant function on G(A) vanishing
outside G(FS)KS.

Now we adapt Lemma 4 to this global setting. Let A be a special F -torus
with centraliser M , and let P ∈ P(A) with unipotent radical N . For each place
v of F , let Av be the greatest Fv-split torus in the centre of M . As explained in
section 3, the dependence of µv,p,r on Kv is insignificant. Hence we may assume
that Kv is in good relative position to Av for each v. By Lemma 1(ii),

|HM(mv)| ≤ |HM,v(mv)|v for mv ∈M(Fv),

where the map HM,v and the seminorm | . |v on av are defined with respect to the
ground field Fv. Lemma 4 now yields, after taking the product over v ∈ S,

dP (m)1/2

∫
N(FS)

µS,p,r(mn) dn ≤ C1µ
M
S,p,s(m)e−( 2

p
−1)|HM (m)|

for all m ∈ M(FS) and r > s + (2
p

+ 1)r0, where dP (m) = |δP (m)| with | . |
denoting the idele norm. By our assumption on Kv we have

Kv ∩ P (Fv) = (Kv ∩M(Fv))(Kv ∩N(Fv)).

Thus, if we normalise the measure on N(AS) so that vol(KS ∩ N(AS)) = 1, we
get

dP (m)1/2

∫
N(A)

µS,p,r(mn) dn ≤ C1µ
M
S,p,s(m)e−( 2

p
−1)|HM (m)| (3)

for all m ∈ M(A), which is the global analogue of Lemma 4. Similarly, the
estimate (1) implies the existence of constants C2, q > 0 such that, for large r,∫

G(A)1
µS,p,r(g0g)p dg ≤ C2(1 + ‖HG(g0)‖)−qr. (4)

Here we have split the integral and evaluated the one over G(FS)1/
∏

v∈S G(Fv)
1

using the fact that
∏

v∈S HG,v embeds that group into the vector space
∏

v∈S aG,v.
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Now we are going to state our main technical estimate, which has been inspired
by Lemma 11.4 of [21]. We fix a minimal parabolic F -subgroup P0 of G and its
Levi decomposition P0 = M0N0 defined over F and denote by A0 the greatest
F -split torus in the centre of M0. As F is now a global field, this notation differs
from that used in the preceding section. The set G(F ) is the disjoint union of
the Bruhat cells

Gw(F ) := P0(F )w̃P0(F ),

where w runs through the Weyl group W0 of A0 in G and w̃ ∈ G(F ) is a repre-
sentative of w. For x, y ∈ G(A), we set

κw
S,p,r(x, y) =

∑
γ∈Gw(F )

µS,p,r(x
−1γy).

Theorem 4 Let P0, S and w be as above, and set P = P0 ∨ wP0 in the notation
introduced in section 2. Then, for every 0 < p < 1 and large r, one can find
C > 0 such that, for all x, y ∈ G(A)1,

κw
S,p,r(x, y) ≤ Ce|H0(x)|+|H0(y)| e−( 2

p
−1)(|HP (x)−HP (y)|−wρP

0 (H0(x))+ρP
0 (H0(y))).

Corollary 1 In the situation of the theorem, there exists c > 0 with the following
property. For each truncation parameter T ∈ a0, 0 < p < 1 and large r one can
find C > 0 such that

κw
S,p,r(x, y) ≤ Ce−c( 2

p
−1)|H0(x)−wH0(y)|+|H0(x)|+|H0(y)|

for all x, y ∈ G(A)1 satisfying (H0(x)− T )P , (H0(y)− T )P ∈ (aP
0 )+.

Let us deduce the corollary from the bound provided in the theorem, which
we symmetrise as

κw
S,p,r(x, y) = κw−1

S,p,r(y, x) = (κw
S,p,r(x, y)κw−1

S,p,r(y, x))1/2

to obtain

log(κw
S,p,r(x, y)) ≤ c1 + |H0(x)|+ |H0(y)|

− (2
p
− 1)

(
|HP (x)−HP (y)|+ 1

2
(ρP

0 − wρP
0 )(H0(x)) + 1

2
(ρP

0 − w−1ρP
0 )(H0(y))

)
By Lemma 2(iv) we have w̃ ∈ P (F ), hence HP (y) = wHP (y) and ρP

0 − wρP
0 =

ρ0 − ρP − wρ0 + wρP = ρ0 − wρ0. Now Lemma 3 implies

1
2
(ρP

0 − wρP
0 )(H0(x)− T ) ≥ c2ρ

P
0 (H0(x)− T ) ≥ c3|(H0(x)− T )P |,

and similarly

1
2
(ρP

0 − w−1ρP
0 )(H0(y)− T ) ≥ c2ρ

P
0 (H0(y)− T ) ≥ c3|w(H0(y)− T )P |

14



due to the W0-invariance of | . |. The triangle inequality implies

|HP (x)− wHP (y)|+ c3|H0(x)P |+ c3|wH0(y)P | ≥ c3|H0(x)− wH0(y)|

and allows us to get rid of the T -shifts at the cost of modifying C.
This section and the next one are devoted to the proof of Theorem 4. At first,

we derive an estimate on the averaged function

κ̄w
S,t,r(x, y) :=

∫
N0(F )\N0(A)

∫
P0(F )\P0(A)1

κw
S,t,r(nx, py) dp dn.

Lemma 5 For 0 < t < 1 and large r there is C such that, for x, y ∈ G(A)1,

κ̄w
S,t,r(x, y) ≤ Ce(ρ0+( 2

t
−1)wρ0)(H0(x))+(2− 2

t
)ρ0(H0(y)).

Proof. Since both sides are right K-invariant in both arguments, we may
assume that x, y ∈ P0(A), in which case

κ̄w
S,t,r(x, y) = d0(y)

∫
N0(F )\N0(A)

∑
γ∈P0(F )\Gw(F )

∫
P0(A)1

µS,t,r((γnx)−1yp) dp dn. (5)

Equation (3) implies that, for each z ∈ G(A) and r > s + (2
t
+ 1)r0,∫

P0(A)1
µS,t,r(z

−1p) dp ≤ C1e
2
t
ρ0(H0(z))

∫
M0(A)1

µM0
S,t,s(m

−1
0 m) dm,

where m0 ∈ M(A) is such that z ∈ N0(A)m0K. For sufficiently large r we can
choose s such that (4) applies to the integral on the right-hand side. Now we set
z = y−1γnx, sum over γ and integrate over n to get

κ̄w
S,t,r(x, y) ≤ C2d0(y)1− 1

t

∫
N0(F )\N0(A)

∑
γ∈P0(F )\Gw(F )

e
2
t
ρ0(H0(γnx))dn.

The integral on the right-hand side is the constant term of a partial Eisenstein
series, hence of the form

c(w, (2
t
− 1)ρ0)e

(ρ0+( 2
t
−1)wρ0)(H0(x)),

where c(w, λ) is holomorphic on the set of all λ ∈ aP,C such that Re λ−ρP belongs
to the dual cone (a∗0)

+ of +a0 (see [10], § 3). �

We must strengthen Lemma 5 because it does not exhibit the decay of κ̄w
S,t,r

we need.

Lemma 6 For 0 < t < 1 and large r there exists C such that, for x, y ∈ G(A)1,

κ̄w
S,t,r(x, y) = Ceρ0(H0(x)+H0(y))e−( 2

t
−1)(|HP (x)−wHQ(y)|−wρP

0 (H0(x))+ρP
0 (H0(y))).
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Proof. Let P = MN be the Levi decomposition with M ⊃ M0. Then
P ′

0 := P0 ∩M is a minimal parabolic F -subgroup of M with Levi component M0

and unipotent radical N ′
0 := N0 ∩M . Since γ−1Nγ ⊂ N0 for γ ∈ Gw(F ), we see

that ∫
P0(A)1

µS,t,r(x
−1γpy) dp

is left N(A)-invariant as a function of x. In view of (5) we may, in the definition
of κ̄w

S,t,r, replace the integral over N0(F )\N0(A) by vol(N(F )\N(A)) times an
integral over N ′

0(F )\N ′
0(A).

By Lemma 2(iv), we have w ∈ WM
0 , w̃ ∈M(F ), and therefore

Gw = P ′
0Nw̃P ′

0N = P ′
0w̃P ′

0N = MwN.

Consequently,

κ̄w
S,t,r(x, y) =

∫
N ′

0(F )\N ′
0(A)

∑
γ∈Mw(F )/P ′0(F )

∫
P0(A)1

µS,t,r(x
−1n′−1γpy) dp dn′.

We split the inner integral according to P0 = P ′
0N and deduce from the inequality

of descent (3) that it does not exceed

C1dP (xy)1/2e−( 2
t
−1)|HP (x−1y)|

∫
P ′0(A)1

µM
S,t,s(x

′−1n′−1γp′y′) dp′,

where x′, y′ are the projections of x, y on M(A) along N(A). Note that we have
picked an additional factor dP (y) by a substitution in the integral over N(A).
Applying now Lemma 5 with (G, P0) replaced by (M, P ′

0), we obtain

κ̄w
S,t,r(x, y) ≤ C2e

ρP (HP (x)+HP (y))e−( 2
t
−1)|HP (x−1y)|

× e(ρ′0+( 2
t
−1)wρ′0)(H′

0(x′))+(2− 2
t
)ρ′0(H′

0(y′)).

We can rewrite the right-hand side as claimed in the lemma by using the facts
that ρ′0(H

′
0(x

′)) = ρP
0 (H0(x)) and that w acts trivially on a. �

5 Bounding sums by integrals

To finish the proof of Theorem 4, we still have to bound κw
S,t,r in terms of κ̄w

S,t,r.
The usual way to estimate a sum over a lattice is to replace the value of the
function at each lattice point by an integral over a small neighbourhood. In
our situation, this leads to the problem of counting the number of terms in a
sum like the one defining the kernel K(x, x) for compactly supported f . There
is a standard estimate on K(x, y) not depending on y (cf. [19], I.2.4), but the
following lemma will enable us to obtain a sharper bound in the case at hand.
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Lemma 7 Let P0 be a minimal parabolic F -subgroup and Ω a compact subset of
P0(A)1. Then there exists C > 0 such that, for all x ∈ P0(A) and p1, p2 ∈ P0(A)1

#(xΩ ∩ p1P0(F )p2) < Cd0(x)1/2e|H0(x)|,

where xΩ := xΩx−1.

Proof. We assert that the set

B = {p−1γp | p ∈ P0(A)1, γ ∈ P0(F ) \ {1}}

is closed in P0(A). Indeed, consider the maps

P0(A)
ϕ←− P0(A)1 × P0(A)

π1−→ (P0(F )\P0(A)1)× P0(A)
π2−→ P0(A),

where π1, π2 are the natural projections and ϕ(p, q) = pqp−1. Then the set
π−1

1 (π−1
2 (B)) = ϕ−1(P0(F )\{1}) is closed due to the discreteness of P0(F ), hence

π−1
2 (B) is closed and, in view of the compactness of P0(F )\P0(A)1, B is closed.

This allows us to choose a compact neighbourhood ω of 1 in P0(A)1 such that
ωω−1 ∩B = ∅. Then the sets p1γp2ω with γ ∈ P0(F ) are disjoint, and

#(xΩ ∩ p1P0(F )p2) vol(ω) = vol((xΩ ∩ p1P0(F )p2)ω) ≤ vol(xΩω), (6)

where vol refers to the Haar measure of P0(A)1.
Let A0 be as above, and fix a valuation v0 of F such that the norm functions

on A and Fv0 have the same range. If Q0 ∈ P(A0) with unipotent radical U0,
say, then any compact subset ω′ ⊂ U0(A) can be enlarged to a compact subset

ω′′ ∈ U0(A) such that aω′′ ⊂ ω′′ for all a ∈ A0(Fv0) satisfying H0(a) ∈ a−0,Q0
=

a+
0,Q̄0

. To see this, recall from [5], § 9.12, that there are F -morphisms φα of vector
groups Vα into U0 such that

φα(α(a)v) = aφα(v)a−1

for a ∈ A0 and v ∈ Vα and such that the product map∏
α∈ΣQ0

Vα → U0

(any fixed order of factors) is an isomorphism of F -manifolds. Given any compact
subset ω̃′ ⊂

∏
α∈ΣQ0

Vα(A), the image ω̃′′ of ω̃′ × {c ∈ Fv0 | |c| ≤ 1}ΣQ0 under

componentwise multiplication is compact, too.
Now we can deduce the lemma from the inequality (6). By changing p1

and p2, we may assume that x = a ∈ A0(Fv0). Now we choose Q0 such that

H0(a) ∈ a+
0,Q0

and set P+ = M0(N0 ∩ U0), P− = N0 ∩ Ū0. Then the product map
P+(A)1×P−(A)→ P0(A)1 is an isomorphism of measure spaces. As we have just
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seen, we can produce suitable compact sets Ω± ⊂ P±(A)1 with Ω ⊂ Ω+Ω− and
further compact sets Ω′

± ⊂ P±(A)1 with Ω−ω ⊂ Ω′
+Ω′

− such that

aΩω ⊂ aΩ+Ω−ω ⊂ aΩ+Ω′
+Ω′

− ⊂ a(Ω+Ω′
+)Ω′

−,

and we get
vol(aΩω) = d+(a) vol(Ω+Ω′

+Ω′
−),

where d+ is the modular character of P+(A), which satisfies

d+(a) =
∏

α∈ΣP0
∩ΣQ0

|α(a)|mα = dP0(a)1/2dQ0(a)1/2 = dP0(a)1/2e|H0(a)|

for the given a. Since there are only finitely many choices of Q0, one C suits all
of them. �

Corollary 2 If f is a non-negative function on P0(A), then∑
γ∈P0(F )

∫
Ω

f(γxp) dp ≤ Cd0(x)−1/2e|H0(x)|
∫

P0(A)1
f(px) dp

for all x ∈ P0(A). If, moreover, Ω is contained in N0(A), then∑
γ∈N0(F )

∫
Ω

f(γxn) dn ≤ Cd0(x)−1/2e|H0(x)|
∫

N0(A)

f(nx) dn

for all x ∈ P0(A), where dn denotes a Haar measure on N0(A).

Indeed, the left-hand side of the first inequality equals

d0(x)−1
∑

γ∈P0(F )

∫
xΩ

f(γpx) dp = d0(x)−1

∫
P0(A)1

f(p2x)
∑

γ∈P0(F )

χγ,x(p2) dp2,

where χγ,x is the characteristic function of γ · xΩ. Now one can bound the sum
with the aid of the lemma. The second inequality is proved in the same way.

Lemma 8 Let P0, S and w be as in the preceding section. Given t > 0 and
r > 0, there exists C > 0 such that

κw
S,t,r(x, y) ≤ Ce|H0(x)|−ρ0(H0(x))e|H0(y)|−ρ0(H0(y))κ̄w

S,t,r(x, y)

for all x, y ∈ G(A).
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Proof. As in Lemma 5, it suffices to consider x, y ∈ P0(A). Given compact sets
Ω, Ω′ ⊂ G(FS)KS, one easily deduces from [25], Prop. 8.3.7.2 / [23], Lemma 4.2.3
that there exists C1 > 0 such that

µS,t,r(g) ≤ C1µS,t,r(n
−1gp)

for all g ∈ G(A), p ∈ Ω and n ∈ Ω′. We may assume that Ω ⊂ P0(A)1, Ω′ ⊂ N0(A)
and that each set has positive Haar measure in the pertinent group. Setting
g = x−1γy with γ ∈ G(F ) and integrating, we get

µS,t,r(x
−1γy) ≤ C2

∫
Ω′

∫
Ω

µS,t,r(n
−1x−1γyp) dp dn.

Now we sum over γ ∈ Gw(F ) and apply the corollary of Lemma 7 to see that
κw

S,t,r(x, y) is bounded by

C3

∫
Ω′

∑
γ∈Gw(F )/P0(F )

d0(y)−1/2e|H0(y)|
∫

P0(A)1
µS,t,r(n

−1x−1γpy) dp dn,

which can be written as

C3d0(y)−1/2e|H0(y)|
∫

P0(F )\P0(A)1

∑
γ∈Gw(F )

∫
Ω′

µS,t,r((xn)−1γpy) dn dp.

Another application of the corollary, this time to the integral over n, completes
the proof. �

Theorem 4 clearly follows from Lemmas 6 and 8.

6 Alternating sums of constant terms

Recall that the constant term of a locally integrable function φ on N(F )\G(A),
where N is the unipotent radical of a parabolic F -subgroup P , is defined as

ΠP φ(x) =

∫
N(F )\N(A)

φ(nx) dn,

where the N(A)-invariant measure dn on N(F )\N(A) is normalised to have total
mass one. We will need a basic inequlity concerning alternating sums

ΠP ′

P φ =
∑

P1∈PP ′
P

εP ′

P1
ΠP1φ

for parabolic F -subgroups P ⊂ P ′. The ideas go back to Gelfand and Pyatetski-
Shapiro [8].
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For our present purposes, a Siegel domain with respect to a parabolic F -
subgroup P of G is a set of the form

S = {x ∈ ωA(A)K | HP (x) ∈ a+
P + TP},

where ω is a compact subset of P (A)1, A is a maximal F -split torus in P , TP ∈ aP

and K = K∞Kf is the maximal compact subgroup of G(A) fixed in section 1. The
right action of G(F∞) on G(A) associates to each element X of the corresponding
universal enveloping algebra G a differential operator, which will be denoted
by XR.

Lemma 9 Let P ⊂ P ′ in P0 such that P ′ 6= G is maximal and denote by α ∈ ∆P

the unique simple root not vanishing on aP ′. Let K0 be an open subgroup of G(Af),
S a Siegel domain for P and r ∈ N. Then there exists a finite set F ⊂ G such
that, for all φ ∈ C∞(N ′(F )\G(A)/K0) and x ∈ S,

|φ(x)− ΠP ′φ(x)| ≤ e−rα(HP (x)) sup
n′∈N ′(A)

max
X∈F
|XRφ(n′x)|.

Of course, it would suffice to let the variable n′ run through a fundamental
domain for N ′(F ). It is customary, but unnecessary to rewrite the bound with
the supremum over a set of right translations.

Since S is contained in a Siegel domain for P0 and there exists C1 > 0 such
that α(HP (x)) ≤ α0(H0(x)) + C1 for x ∈ S, where α0 is the analogue of α for
P0, it is enough to prove the lemma for P minimal. Variations on this result can
be found in [9], ch. III §8, [17], p. 45, [12], Lemma 2, [19], I.2.10 etc., so we will
not repeat the proof. If F is a function field (and G = C), one can even show
that there exists C2 > 0 such that the left-hand side vanishes for α(HP (x)) > C2

(cf. [19], I.2.7).

Lemma 10 Let P ⊂ P ′ ⊂ P ′′ in P0, K0 an open subgroup of G(Af), TP ∈ aP , ω
a compact subset of P (A)1 and λ a linear combination of the elements of ∆P ′′

P −∆P ′
P

with non-negative coefficients. Then there exists a finite set F ⊂ G such that, for
all φ ∈ C∞(N ′(F )\G(A)/K0) and all x ∈ ωA(A)K satisfying

(HP (x)− TP )P ′′ ∈
(
aP ′′

P

)+
in the notation introduced in section 2 we have

|ΠP ′′

P ′ φ(x)| ≤ e−λ(HP (x)) sup
n′∈N ′(A)

max
X∈F
|XRφ(n′x)|.

Proof. Actually, we prove the stronger inequality obtained upon replacing φ
by ΠP ′′φ. Thus assuming that φ is left N ′′(A)-invariant, we need only consider
φ(m′′k) as a function of m′′ ∈ M ′′(A) for each k ∈ K, where M ′′ is a Levi
component of P ′′. The intersection of the groups M ′′(A) ∩ kK0k

−1 over k ∈
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Kf/Kf∩K0 is open in M ′′(A), and the K∞-orbit of an element of M′′ is contained
in the span of a finite subset of G. Thus, by parabolic descent, we may assume
w.l.o.g. that P ′′ = G.

Now suppose for a moment that P ′ is maximal. Then ∆P −∆P ′
P = {α} and

λ = rα, r ≥ 0. The larger r is, the stronger the estimate will be, and for r ∈ N
it follows directly from Lemma 9. If P ′ is arbitrary, then

ΠG
P ′ =

∏
P1

ΠG
P1

,

where P1 runs through the maximal parabolic F -subgroups containing P ′, hence
the result follows upon iteration. �

Replacing G(A) by G(A)1 leads to minor changes in the preceding discussion.
In particular, the Siegel domain S has to be replaced by S1 = S ∩ G(A)1. We
leave the details to the reader.

7 Basic identities

As in section 4, we fix a minimal parabolic F -subgroup P0 = M0N0 and its F -
split component A0. The truncated kernel kT

o was defined as a sum over parabolic
F -subgroups P containing P0 and over δ ∈ P (F )\G(F ), where in each term the
variable HP (δx) was restricted to a shift of the cone +aP . In order to show,
with the aid of the results of the preceding section, that this kernel is rapidly
decreasing in certain directions, we have to decompose that cone into the subsets

sP ′

P = {H ∈ +aP | α(H) > 0 ∀α ∈ ∆P ′

P and α(H) ≤ 0 ∀α ∈ ∆P −∆P ′

P }

parametrised by the parabolic F -subgroups P ′ containing P and, for each pair
P ⊂ P ′, rewrite the kernel function in terms of alternating sums of constant
terms of a fixed function. The argument of [1] is not sufficient here as it requires
the test function to be compactly supported.

Let us recall some standard notation. We denote the characteristic function
of the chamber a+

P by τP and, as before, the characteristic function of the dual
cone +aP by τ̂P . More generally, if P ′ ⊃ P with a Levi component M ′ defined
over F , we set τP ′

P = τP∩M ′ , which is the characteristic function of (aP ′
P )+ + aP ′ ,

and τ̂P ′
P = τ̂P∩M ′ . We also extend these aP ′-invariant functions on aP to aP

0 -
invariant functions on a0 = aP

0 ⊕ aP . Finally, we denote by PP ′
P the set of all

parabolic F -subgroups P1 with P ⊂ P1 ⊂ P ′, usually omitting the superscript if
it equals G.

The results from the preceding section apply to restrictions of functions to
a Siegel domain. This requires restricting certain components of the argument
to compact sets, which will be granted by the appearance of a suitable cut-off
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function. Given P ′ ∈ P0 := PP0 and T ∈ a0, we define

F P ′(x, T ) =
∑

P∈PP ′
0

εP ′

P

∑
δ∈P (F )\P ′(F )

τ̂P ′

P (HP (δx)− TP ).

This P ′(F )N ′(A)A′(A)-invariant function on G(A) is the result of applying the
partial truncation operator ΛT,P ′ (see [2], p. 97) to the constant function 1. The
inner sum, which can also be taken over P (F ) ∩M ′(F )\M ′(F ), is locally finite
by Lemma 5.1 of [1]. For sufficiently regular T , one can alternatively define
F P ′(x, T ) as the characteristic function of a certain set. The next lemma shows
that the two definitions are equivalent.

Lemma 11 (i) For any T ∈ a0, we have the identity∑
P∈PP ′

0

∑
δ∈P (F )\P ′(F )

F P (δx, T )τP ′

P (H0(δx)− T ) = 1.

(ii) For sufficiently regular T ∈ a+
0 , our function F P (x, T ) coincides with that

defined in [1], p. 941.

(iii) For T , X ∈ a0, we have

F P ′(x, T + X) =
∑

P∈PP ′
0

∑
δ∈P (F )\P ′(F )

F P (δx, T )ΓP ′

P (H0(δx)− T, X),

where we use the function

ΓP ′

P (H, X) :=
∑

Q∈PP ′
P

εP ′

Q τQ
P (H)τ̂P ′

Q (H −X)

introduced in [3], p. 13.

(iv) As a function of x, F P (x, T ) is both bounded and compactly supported mod-
ulo P (F )N(A)A(A) uniformly for T varying in a compact set. Here N is
the unipotent radical and A is some maximal F -split torus of P .

Proof. (i) On the left-hand side, we insert the definition of F P (x, T ), in which
we change the summation variable to P1, say, and apply Langlands’ Combinato-
rial Lemma (see [16], Lemma 5; [1], Lemma 6.3)

∑
P∈PP ′

P1

εP ′

P τ̂P
P1

(H)τP ′

P (H) =

{
1 if P1 = P ′,

0 otherwise.

(ii) If we single out the term with P = P ′, the identity in (i) may be read as
a recursive definition of F P (x, T ). Due to [1], Lemma 6.4, it is also satisfied by
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the functions F P (x, T ) defined in that paper for sufficiently regular T . Thus, the
equality follows by induction.

(iii) By definition and the Combinatorial Lemma, F P ′(x, T + X) equals∑
P1⊂P⊂P2

εP2
P εP ′

P1

∑
δ∈P1(F )\P ′(F )

τ̂P
P1

(H0(δx)− T )τP2
P (H0(δx)− T )τP ′

P2
(H0(δx)− T −X),

the exterior sum being taken over all triples P1 ⊂ P ⊂ P2 in PP ′
0 . The sum over

P2 can be taken innermost and simplified using the definition of ΓP ′
P . Referring

to the definition of F P (x, T ) again, we obtain our assertion (which has also been
proved in [18] for X ∈ a+

0 and sufficiently regular T ).
(iv) For fixed sufficiently regular T , the support property follow from the

definition given in [1], p. 941. Thus, for every P there is a compact set ω1 ⊂
G(A) such that the support of F P (x, T ) is contained in P (F )N(A)A(A)ω1. By
Lemma 2.1 of [3], the function ΓP ′

P (H, X) is compactly supported in H ∈ aP ′
P

uniformly for X varying in a compact set Ω, say. Hence there is a compact set
ω2 ⊂ A(A) such that the corresponding term on the right-hand side of (iii) is
supported on P ′(F )N(A)A′(A)ω2ω1 for X ∈ Ω. And finally, there is a compact
set ω3 ⊂ M ′(A) ∩ N(A) such that N(A) = N(F )N ′(A)ω3. This shows that for
sufficiently regular T and compact Ω ⊂ a0 there exists a compact set ω ⊂ G(A)
such that the support of each term on the right-hand side of (iii) is contained in
P ′(F )N ′(A)A′(A)ω for all X ∈ Ω.

In order to prove the boundedness uniformly for T ∈ Ω, it suffices to bound the
number of terms in the sum defining F P (x, T ) for a fixed T such that Ω ⊂ +a0+T .
As we noted earlier, Lemma 5.1 of [2] shows that this number is locally bounded,
so it is bounded on the support of F P (x, T ), because the latter is compact, as we
have seen. �

In order to state the identities figuring in the title of this section, it is best to
introduce some new notation. For o ∈ O as in section 1, for x, y ∈ G(A)1 and
for w in the Weyl group W0 of A0 in G, we set

Lw
o (x, y) =

∑
γ∈Gw(F )∩o

f(x−1γy).

If a parabolic F -subgroup P ′ contains both P0 and wP0, then P ′ = wP ′ and
Gw = M ′

wN ′ (cf. the proof of Theorem 4). Since P ′(F )∩ o = (M ′(F )∩ o)N ′(F ),
it follows that Gw(F ) ∩ o is biinvariant under translations by N ′(F ). Hence the
function Lw

o is N ′(F )-invariant in each argument, and since Gw normalises N ′,
we have (

ΠP ′⊗ Id
)
Lw

o =
(
Id⊗ ΠP ′

)
Lw

o , (7)

where the tensor product with Id indicates to which argument of Lw
o the constant

term operator ΠP ′ is applied.
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Given P ⊂ P ′′ and Q ⊂ Q′′ in P0, we further define

KP ′′,Q′′

P,Q,o (x, y) =
∑

w∈W0

(
ΠP ′′∧wQ′′

P∨wQ ⊗ Id
)

Lw
o (x, y),

where we use the operations ∨ and ∧ introduced in section 2. If the parabolic
subgroup P ′′ ∧ wQ′′ exists and contains P ∨ wQ, the operator ΠP ′′∧wQ′′

P∨wQ has been
defined in section 6. (In this case, by the way, wQ′′ = Q′′.) In any other case, we
set this operator equal to zero. Equivalently, we could have restricted summation
to the appropriate subset of W0. We also use the notation

KP ′′

P,o(x) = KP ′′,P ′′

P,P,o (x, x), KP ′′,Q′′

P,Q =
∑
o∈O

KP ′′,Q′′

P,Q,o .

The first of these functions is left-invariant under P (F ), the second one—under
P (F )×Q(F ), whereas its o-components will not be so in general.

Theorem 5 Let f ∈ L1(G(A)1), o ∈ O, T ∈ a0 and x, y ∈ G(A). Then

kT
o (x) =

∑
P⊂P ′′

∑
δ∈P (F )\G(F )

F P (δx, T )σP ′′

P (HP (δx)− TP )KP ′′

P,o(δx),

provided the sum over δ is absolutely convergent, and

kT (x, y) =
∑

P⊂P ′′

Q⊂Q′′

∑
δ∈P (F )\G(F )
η∈Q(F )\G(F )

F P (δx, T )σP ′′

P (HP (δx)− TP )

× FQ(ηy, T )σQ′′

Q (HQ(ηy)− TQ)KP ′′,Q′′

P,Q (δx, ηy),

provided the sum over δ and η is absolutely convergent. Here, the exterior sums
run over the indicated configurations of elements of P0, and σP ′′

P denotes, as
usual, the characteristic function of the set sP ′′

P .

Proof. Ignoring questions of convergence for the moment, we insert the for-
mula from Lemma 11(i) in the definition of kT

o (x), which yields∑
P⊂P ′

εG
P ′

∑
δ∈P (F )\G(F )

F P (δx, T )τP ′

P (H0(δx)− T )τ̂P ′(H0(δx)− T )KP ′

o (δx, δx).

By [1], Lemma 6.1,

τP ′

P (H)τ̂P ′(H) =
∑

P ′′∈PP ′

σP ′′

P (H), (8)

where σP ′′
P has been extended to a0 in the customary way, and we get

kT
o (x) =

∑
P⊂P ′⊂P ′′

εG
P ′

∑
δ∈P (F )\G(F )

F P (δx, T )σP ′′

P (H0(δx)− T )KP ′

o (δx, δx).
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So far we have followed [1], p. 942/943. Now we claim that kT
o (x) equals∑

P⊂P1⊂P ′⊂P2⊂P ′′

εP ′

P1
εG

P2

∑
δ∈P (F )\G(F )

F P (δx, T )σP ′′

P (H0(δx)− T )
(
ΠP2⊗Id

)
LP1

o (δx, δx),

where
LP1

o (x, y) =
∑

γ∈P1(F )∩o

f(x−1γy).

This follows easily upon application of the identity

∑
P ′∈PP2

P1

εP ′

P1
=

{
1 if P1 = P2,

0 otherwise
(9)

(see [1], Prop. 1.1), if one notes that KP ′
o =

(
ΠP ′ ⊗ Id

)
LP ′

o .
Multiplying the Bruhat decomposition of M1 through with N1, we get

P1(F ) =
⋃

w∈W
M1
0

P0(F )w̃P0(F ) (disjoint union),

which implies that

LP1
o =

∑
w∈W

M1
0

Lw
o =

∑
w∈W0

P1=wP1

Lw
o

and therefore ∑
P1∈PP ′

P

εP
P1

LP1
o =

∑
w∈W0

Lw
o

∑
P1∈PP ′

P
P1=wP1

εP ′

P1
.

The interior sum depends only on the image of w in WA, where A is the max-
imal F -split torus in P containing A0. Due to Lemma 2(iv), this sum runs
over PP ′

P1∨wP1
. By (9), it vanishes unless P ′ = P1 ∨ wP1, and we formally obtain

the first identity claimed in the theorem.
If the sum over δ on the right-hand side is absolutely convergent, we may

rightfully perform all transformations in the opposite direction to arrive at the
definition of kT

o (x).
The proof of the second formula is similar. Using Lemma 11(i) and (8), we

get

kT (x, y) =
∑

P⊂P ′⊂P ′′

Q⊂P ′⊂Q′′

∑
δ∈P (F )\G(F )
η∈Q(F )\G(F )

F P (δx, T )σP ′′

P (H0(δx)− T )

× FQ(ηy, T )σQ′′

Q (H0(ηy)− T )KP ′(δx, ηy).
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Again we apply (9) to transform this into∑
P⊂P1⊂P ′⊂P2⊂P ′′

Q⊂P1⊂P ′⊂P2⊂Q′′

εP ′

P1
εG

P2

∑
δ∈P (F )\G(F )
η∈Q(F )\G(F )

F P (δx, T )σP ′′

P (H0(δx)− T )

× FQ(ηy, T )σQ′′

Q (H0(ηy)− T )
(
ΠP2 ⊗ Id

)
LP1(δx, ηy),

where LP1 =
∑

o LP1
o . As before, we decompose LP1 into a sum over w ∈ W0 such

that P1 = wP1 and observe that∑
P1∈PP ′

P ∩PP ′
Q

P1=wP1

εP ′

P1
=

∑
P1∈PP ′

P∨wQ

εP ′

P1
,

because if P1 ⊃ P and P1 ⊃ wQ, then P1 ⊃ P0 and P1 ⊃ wP0, hence P1 = wP1

by Lemma 2(iv). As in the case of the first formula, another application of (9)
completes the proof. �

8 Decay on P (F )\G(A)1

Here we estimate a generic term on the right-hand side of the basic identities
given in Theorem 5.

Theorem 6 There exist constants c > 0 and d with the following property.
Given a set S of places of F containing all infinite ones, an open compact sub-
group K0 ⊂ G(FS), a truncation parameter T ∈ a0, 0 < p < 1 and large r, we
can find a finite set F ⊂ G1×G1 such that, for all f ∈ Cp

K0
(G(FS)KS), subgroups

P ⊂ P ′′ and Q ⊂ Q′′ in P0 and x, y ∈ G(A)1 we have that

F P (x, T )σP ′′

P (H0(x)− T ) 6= 0

implies ∑
o∈O

∣∣∣KP ′′

P,o(x)
∣∣∣ ≤ ‖f‖p,F,r e−2( c

p
−d)|HP (x)|

and that
F P (x, T )σP ′′

P (H0(x)− T )FQ(y, T )σQ′′

Q (H0(y)− T ) 6= 0

implies ∣∣∣KP ′′,Q′′

P,Q (x, y)
∣∣∣ ≤ ‖f‖p,F,r e−( c

p
−d)(|HP (x)|+|HQ(y)|).

Remember that the left-hand side of either inequality depends implicitly on f .
Both sides of the first estimate are left P (F )-invariant, and we have to consider
only those x for which F P (x, T ) 6= 0. Due to Lemma 11(iv), we may thus assume
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that x belongs to N(A)A(A)ω1 for some compact subset ω1 of G(A), or better to
N(A)A(A)ω2K = N(A)ω2A(A)K for some compact subset ω2 of M(A)1, or even
to ωA(A)K, where ω is a compact subset of P (A)1. Similarly, both sides of the
second estimate are left P (F )×Q(F )-invariant, and we may assume in addition
that y ∈ χB(A)K, where B is a maximal F -split torus in Q and χ is a compact
subset of Q(A)1.

We are going to prove that, under these restrictions on x and y, the second
inequality remains valid if we replace the left-hand side by∑

o∈O

∣∣∣KP ′′,Q′′

P,Q,o (x, y)
∣∣∣

(which is not P (F )×Q(F )-invariant in general). After the foregoing discussion
it is clear that the two estimates in the Theorem are then corollaries. Actually
we are going to prove that the absolute value can even be taken separately of
each term in the sum over W0 which makes up KP ′′,Q′′

P,Q,o . It suffices to consider
the contribution from a fixed w for which the parabolic subgroup P2 := P ′′ ∧Q′′

exists and contains P1 := P ∨ wQ. In this notation, our task is to bound∑
o∈O

∣∣(ΠP2
P1
⊗ Id

)
Lw

o (x, y)
∣∣ .

The condition σP ′′
P (H0(x)− T ) 6= 0 implies

(HP (x)− TP )P ′′ ∈
(
aP ′′

P

)+
and, since P2 ⊂ P ′′, the same inclusion with P ′′ replaced by P2. Thus, for every
linear combination λ of the elements of ∆P2

P −∆P1
P with nonnegative coefficients,

Lemma 10 supplies a finite set Fλ ⊂ G1 such that∣∣(ΠP2
P1
⊗ Id

)
Lw

o (x, y)
∣∣ ≤ e−λ(HP (x)) sup

n∈N1(A)

max
X∈Fλ

|(XR ⊗ Id)Lw
o (nx, y)|.

By the triangle inequality, our condition on f and the definition of κw
S,p,r,∑

o∈O

|(XR ⊗ Id)Lw
o (nx, y)| ≤

∑
γ∈Gw(F )

|XLf((nx)−1γy)| ≤ ‖f‖p,(X,1),r κw
S,p,r(nx, y).

Similarly, for every linear combination µ of the elements of ∆P2
Q − ∆P1

Q with
nonnegative coefficients, we can find a finite set Fµ ⊂ G1 such that the kernel(
Id⊗ ΠP2

P1

)
Lw

o (x, y) has an analogous bound. However, both kernels coincide due
to equation (7), and if we multiply the two inequalities, we get(∑

o∈O

∣∣(ΠP2
P1
⊗ Id

)
Lw

o (x, y)
∣∣)2

≤ e−λ(HP (x))−µ(HQ(y))

× ‖f‖p,Fλ×{1},r‖f‖p,{1}×Fµ,r sup
n,u∈N1(A)

κw
S,p,r(nx, y)κw

S,p,r(x, uy).
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Here we take the square root and note that, by the Cauchy-Schwarz inequality,

‖f‖p,Fλ×{1},r‖f‖p,{1}×Fµ,r ≤ ‖f‖2p,F,r,

where F = Fλ × {1} ∪ {1} × Fµ.
Let P ′ = P0 ∨ wP0. Clearly P ′ ⊂ P1 and therefore P ′ ⊂ P ′′ and P ′ ⊂ Q′′.

(See the diagram for the various inclusions of parabolics.)

P ′′ [w]Q′′

@@ ��

P2

P ′

�� @@

P P1
wQ

�� @@

P0
wP0

Due to the restriction imposed on x and y, the projections H0(x)P and H0(y)Q

(in the notation of section 2) remain in compact sets, while

(HP (x)− TP )P ′′ ∈ (aP ′′
P )+, (HQ(y)− TQ)Q′′ ∈ (aQ′′

Q )+.

Projecting further, we see that the latter inclusions remain true with P ′′ and Q′′

replaced by P ′. Therefore there exists T1 ∈ a0 such that

(H0(x)− T1)
P ′ , (H0(y)− T1)

P ′ ∈ (aP ′
0 )+.

The corollary of Theorem 4 now provides constants c1 and C1 such that

κw
S,p,r(x, y) ≤ C1e

−c1( 2
p
−1)|HP (x)−wHQ(y)|+|HP (x)|+|HQ(y)|

for all x, y as above, where c1 is independent of S, T , p and r. We combine
this inequality with the preceding one and remark that its right-hand side is
unchanged if we replace x by nx and y by uy with n, u ∈ N1(A). At the cost of
enlarging C1 (which will be absorbed into F) we may replace HP (x) by HP (x)−
TP ∈ sP ′′

P and HQ(y) by HQ(y) − TQ ∈ sQ′′

Q . Now it is clear that the following
lemma serves to complete the proof of the theorem with c = max(2c1c2, q) and
d = c + 1.

Lemma 12 In the above notations, we can choose λ, µ and a positive constant
c2 such that

|U − wV |+ λ(U) + µ(V ) ≥ c2(|U |+ |V |)

for all U ∈ sP ′′
P and V ∈ sQ′′

Q .
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Proof. Both sides of the inequality are seminorms on aP × aQ invariant under
translations by aG × aG. If we pass to the quotient by that subspace, the right-

hand side becomes a norm, and the projection of sP ′′
P × sQ′′

Q intersects the corre-
sponding unit sphere in a compact set. Hence it suffices to show that the vanishing
of the left-hand side for the vectors U and V in question implies (U, V ) ∈ aG×aG.

The roots in ∆P2
P , which is a subset of ∆P ′′

P , are all non-negative on sP ′′
P , hence

so is λ. Similarly, µ is non-negative on sQ′′

Q . Consequently, if the left-hand side
of our inequality vanishes, so do all three terms.

The vanishing of the first term means that U − wV ∈ aG. By the preced-

ing step, the projection of sP ′′
P onto aP2

0 is contained in (aP2
P )+, and keeping the

definition of P1 in mind, we conclude that

HP2 ∈
(
aP2

P

)+ ∩ w
(
aP2

Q

)+
=
(
aP2

P1

)+
.

On the other hand, the restriction of ∆P2
P − ∆P1

P to aP2
P1

equals ∆P2
P1

, which is a

basis of that space, so we can choose λ such that it is positive on
(
aP2

P1

)+ − {0}.
Since

λ
(
HP2

)
= λ(H) = 0,

it follows that H ∈ aP2 .

The restriction of ∆P ′′
P to aP2 being ∆P ′′

P2
∪ {0}, we have sP ′′

P ∩ aP2 = sP ′′
P2

, and
the condition U − wV ∈ aG together with wQ′′ = Q′′ entails

U ∈ sP ′′
P2
∩ sQ′′

P2
.

The oppositional inequalitites defining these sets imply that α(U) = 0 for α ∈
∆P ′′

P2
− ∆Q′′

P2
or α ∈ ∆Q′′

P2
− ∆P ′′

P2
. Note that the definition P2 = P ′′ ∧ Q′′ can be

rephrased as ∆P ′′
P2
∩∆Q′′

P2
= ∅, while the parabolic P3 := P ′′ ∨Q′′ is characterised

by ∆P3
P2

= ∆P ′′
P2
∪ ∆Q′′

P2
. Thus, we have α(U) = 0 for α ∈ ∆P3

P2
, in other words,

U ∈ a3.
On the one hand, we know that U ∈ sP ′′

P2
⊂ +aP2 , hence U ∈ +aP3 . However,

the restriction of ∆P ′′
P2
−∆P3

P2
onto aP3 is ∆P ′′

P3
, so the inequalities

α(U) ≤ 0 for α ∈ ∆P ′′
P3
∪∆Q′′

P3
= ∆P3

are among those defining sP ′′
P2

and sQ′′

P2
. Thus, on the other hand, −U ∈ a+

P3
⊂

+aP3 . Since the projection of +aP3 onto aG
P3

is a proper cone, we conclude that
U ∈ aG.

Swapping P , P ′′, U , w with Q, Q′′, V , w−1, resp., we see that V ∈ aG as well.
�
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9 Proof of the main results

We know from Theorem 5 that

|kT
o (x)| ≤

∑
P⊂P ′′

∑
δ∈P (F )\G(F )

σP ′′

P (HP (δx)− TP )
∣∣F P (δx, T )KP ′′

P,o(δx)
∣∣ (10)

as soon as the right-hand side converges, keeping in mind that σP ′′
P takes on values

0 and 1 only. In order to prove Theorem 1, we integrate over G(F )\G(A)1 and
combine the integral on the right-hand side with the sum over P (F )\G(F ) (after
swapping it with the finite sum over P and P ′′) to get∫

G(F )\G(A)1
|kT

o (x)| dx

≤
∑

P⊂P ′′

∫
P (F )\G(A)1

σP ′′

P (HP (x)− TP )
∣∣F P (x, T )KP ′′

P,o(x)
∣∣dx

provided the last integral converges. We have to bound the sum of this expression
over all o ∈ O. Due to Theorem 6,

∑
o∈O

∫
P (F )\G(A)1

σP ′′

P (HP (x)− TP )
∣∣F P (x, T )KP ′′

P,o(x)
∣∣dx

≤ C1‖f‖p,F,r

∫
P (F )\G(A)1

|F P (x, T )|e−2( c
p
−d)|HP (x)| dx,

where C1 depends on the bound from Lemma 11(iv). The usual integration
formula shows that for suitably normalised measures the last integral equals∫

M(F )\M(A)1
|FM(m, T )| dm

∫
aG

P

e−2ρP (H)−2( c
p
−d)|H| dH,

which is finite for sufficiently small p > 0 by Lemma 11(iv) and Lemma 1(i). This
proves Theorem 1. (To improve the range of p, we could have replaced |HP (x)|
by |HP (x)− TP | at the cost of C1 and integrated over +aG

P only.)
The proof of Theorem 2 starts with the same inequality (10), where we im-

mediately substitute the bound from Theorem 6. Summing over O, we get∑
o∈O

|kT
o (x)| ≤ C1‖f‖p,F,r

∑
P∈P0

BT
P,2( c

p
−d)(x),

provided the series

BT
P,t(x) :=

∑
δ∈P (F )\G(F )

|F P (δx, T )|τ̂P (HP (δx)− TP )e−t|HP (δx)|

30



converges for t = 2( c
p
− d).

Before completing the proof, let us remark that Theorem 3 can be treated in
exactly the same way. We know from Theorem 6 that

|kT (x, y)| ≤
∑

P⊂P ′′

Q⊂Q′′

∑
δ∈P (F )\G(F )
η∈Q(F )\G(F )

∣∣F P (δx, T )σP ′′

P (HP (δx)− TP )

× FQ(ηy, T )σQ′′

Q (HQ(ηy)− TQ)KP ′′,Q′′

P,Q (δx, ηy)
∣∣,

if we assume the convergence of the right-hand side, which in turn is bounded,
due to Theorem 6, by

C2‖f‖p,F,r

∑
P,Q∈P0

BT
P, c

p
−d(x)BT

Q, c
p
−d(y).

It is clear that the following result suffices to complete the proof of Theorems 2
and 3.

Lemma 13 Given P ∈ P0, T ∈ a0 and any real number t0, there exist a > 0, b
and C such that, for all t > t0 and x ∈ S0,

|BT
P,t(x)| ≤ Ce(b−at)ρ0(H0(x)).

The proof of this lemma is a variation on that of Lemma 4.1 in [2]. Let us fix a
maximal F -split torus A in P , a height function on G(A) as in [19], section I.2.2,
and a valuation v0 of F as in the proof of Lemma 7.

By Lemma 11(iv) and the compactness of P (F )\P (A)1, there exists a compact
subset ω ⊂ P (A) such that F P (x, T ) = 0 unless x ∈ P (F )ωA(Fv0)K. We claim
that there exist C and c > 0 such that

‖y‖ ≤ Cec|HP (y)|

for all y ∈ ωA(Fv0)K. In view of the property ‖y1y2‖ ≤ ‖y1‖‖y2‖ of the height
function it suffices to check this for y ∈ A(Fv0), in which case it follows from
property (iv) of the height function (which is stated in [19] for a slightly different
group but holds for A(Fv0), too, while it would fail for A(A)).

Given x ∈ G(A) with F P (x, T ) 6= 0 and a coset P (F )δ in G(F ), we may thus
choose the representative δ in such a way that δx ∈ ωA(Fv0)K, which allows us
to bound |BT

P,t(x)| for t ≥ 0 by a similar expression in which e−t|HP (δx)| has been

replaced by ‖δx‖−t/c. If we define a modified Siegel domain with respect to P0 as

S ′0 = {x ∈ ω0A0(Fv0)K | H0(x) ∈ a+
0 + T0},

where ω0 is a compact subset of P0(A), then property (vii) of the height function
(see [19], whose proof applies here, too) says that there exists C0 > 0 such that

‖x‖ ≤ C0‖δx‖
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for all δ ∈ G(F ) and x ∈ S ′0. Consequently, for those x,

|BT
P,t(x)| ≤ (C0C)t/c‖x‖−t/c

∑
δ∈P (F )\G(F )

τ̂P (HP (δx)− TP ).

The sum occurring here is bounded by C1‖x‖c1 for suitable C1, c1 by Lemma 5.1
of [1].

If t0 ≤ t < 0, we start with a different estimate of the exponent. Namely,
there exist a0 > 0 and b0 such that

|H| ≤ a0ρP (H) + b0

for H ∈ +aP + TP . Assuming that t0 < −2, this allows us to estimate BT
P,t0

(and
hence BT

P,t) by an Eisenstein series, which is bounded by C2‖x‖c2 for suitable C2

and c2 > 0.
Property (vi) of the height function (see [19]) allows us to reformulate our

estimates in terms of the majorant figuring in the statement of the lemma, where
we may use the Siegel domain S ′0 as well, since both sides are P0(F )-invariant
and P0(F )S ′0 = P0(F )S0 for suitable ω0 and T0. Both cases for the sign of t can
be combined in one inequality by choosing a suitable affine function of t in the
exponent. �
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