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Weighted orbital integrals

Werner Hoffmann

Abstract. We explain the definition of weighted orbital integrals and the
associated invariant distributions, which appear in the Arthur-Selberg trace

formula. We report their known properties, leaving aside questions of en-

doscopy and concentrating on the calculation of their Fourier transforms. We
also announce a new result on those Fourier transforms over the reals. Finally,

we give explicit Fourier transforms for the groups GL(2, R) and GL(3, R).

Introduction

The present article is an introduction to weighted orbital integrals, which ap-
pear on the geometric side of the noninvariant Arthur-Selberg trace formula. We
also survey the associated invariant distributions, which take their place in the in-
variant trace formula. We do not treat the stable versions of those distributions and
related questions of endoscopy, but concentrate on the calculation of the Fourier
transforms of the invariant distributions. A classical application is the determina-
tion of Gamma factors of zeta functions of Selberg type. A detailed knowledge of
those Fourier transforms may also have applications in connection with Langlands’
ideas [19] to go beyond endoscopy.

Weighted orbital integrals arise as follows. The derivation of the trace formula
requires truncation of an integral kernel to make it integrable over a non-compact
quotient. On the geometric side, this produces weighted orbital integrals, which are
integrals of a test function on a reductive group G with respect to a certain non-
invariant measure supported on a conjugacy class. On the spectral side, truncation
gives rise to weighted characters, which are traces of induced representations of G
twisted by certain logarithmic derivatives of intertwining operators.

In this way one gets two families, each indexed by the Levi subgroups M of G,
of distributions which are non-invariant under inner automorphisms in a parallel
pattern. Arthur constructed from those two families a new family of invariant
distributions IM , in terms of which the trace formula can be restated. The ordinary
orbital integrals reappear unchanged as the terms IG.

An important technical device are the differential equations satisfied by IM as
a function of the orbit in case of the groundfield of real numbers. In fact, IM is
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fully characterised by those differential equations together with the asymptotic at
infinity and at the singular orbits. We announce a formula for the Fourier transform
of IM restricted to the principal series when M is a split maximal torus in G.

The differential equations form a holonomic system with a regular singularity
at infinity similar to the system satisfied by the matrix coefficients of an admissible
representation. Thereby the Fourier transform of IM can be explicitly calculated
in terms of higher-dimensional hypergeometric series at least for groups of low real
rank. We conclude the article with explicit formulas for those Fourier transforms
for the groups GL(2,R) and GL(3,R).

1. Definition

Let F be a local field of characteristic zero and G a connected reductive group
defined over F . To simplify notation, we will use the same symbol G for the set of
F -rational points ofG. We will denote by AG the greatest F -split torus in the center
of G and by G1 the intersection of the kernels of all continuous homomorphisms
G→ R.

If F = R, then for each g ∈ G there is a unique H ∈ aG such that the image of g
in G/G1 ∼= AG/A

1
G equals expH. For a general local field F , we define an R-vector

space a∗G := Hom(G,R) and denote its dual space by aG. Again for each g ∈ G,
there is a unique H ∈ aG such that every λ ∈ a∗G, considered as a homomorphism
G→ R, takes the value λ(H) on g. This gives rise to a continuous homomorphism
HG : G→ aG.

Every unramified character of G, i. e., every continuous homomorphism G →
C× factoring through R+, is of the form g 7→ eλ(HG(g)) for some λ in the complexified
space a∗G,C. We get an action (λ, π) 7→ πλ of the purely imaginary subspace ia∗G
on the unitary dual Π(G), i. e., the set of equivalence classes of irreducible unitary
representations, by setting πλ(g) = eλ(HG(g))π(g).

Example 1.1. If G = GL(n, F ) and we identify AG = F×, aG = R, then
HG(g) = 1

n log |det g|.

Every parabolic F -subgroup P of G has a Levi decomposition P = MN , where
N is the unipotent radical of P and M is a connected reductive F -group just
like G. We fix special maximal subgroup K, then G = PK = MNK. Writing
HP (mnk) := HM (m), we obtain a continuous map HP : G→ aM .

The set P(M) of parabolic F -subgroups P with given Levi component M is
in bijection with set of chambers a+

P in aM . We fix an invariant measure ηG
M on

aG
M := aM/aG and consider, for every x ∈ G, the following volume of a convex hull:

(1.1) vM (x) := volηG
M

conv{−HP (x) : P ∈ P(M)}.

This function is left M -invariant, because HP (mx) = HM (m) +HP (x).

Definition 1.2. For f in the Schwartz space C(G) of rapidly decreasing L2-
functions on G and for m ∈M such that the centraliser Gm of m in G is contained
in M , the weighted orbital integral is defined as

JM (m, f) := |D(m)|1/2

∫
Gm\G

f(x−1mx)vM (x) dẋ,

where D(m) := detgs\g(Id−Ad(s)) if s denotes the semisimple component of m.
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Here we have fixed, beside ηG
M , an invariant measure on Gm\G, and g denotes

(unlike aG) the Lie algebra of G over F . It has been shown ([3], Lemma 8.1) that
the integral converges and defines a tempered distribution JM (m) on G, i.e., a
continuous linear functional on C(G). Note that vG is constant equal to 1, so that
JG(g) is the ordinary (unweighted) orbital integral. This is the only case in which
JM (m) is invariant (under inner automorphisms).

In the above discussion, one may replace F by a number field and G by the
group of adèlic points. The resulting global weighted orbital integrals for F -rational
points m in M and a Schwartz-Bruhat function f are the main terms on the geo-
metric side of the trace formula ([2], p. 951). Global weighted orbital integrals can
be reduced to their local counterparts by splitting formulas ([6], Prop. 9.1) and will
not be discussed here.

The characteristic function of the convex hull in (1.1) can be written as an
alternating sum of characteristic functions of simplicial cones indexed by the ele-
ments of P(M). Their Fourier transforms as functions of λ ∈ a∗M,C converge for
Reλ in a certain chamber of aM , and in the limit one obtains

(1.2) vM (x) = lim
λ→0

∑
P∈P(M)

e−λ(HP (x))

θP (λ)
,

where θP is the suitably normalised product of the linear functions defining the
walls of the dual cone +a∗P of the chamber a+

P .
The integral over Gm\G in Definition 1.2 can be written as [Gm : G0

m]−1 times
the integral over G0

m\G, thus the existence condition can be weakened to G0
m ⊂M .

More general weighted orbital integrals for orbits with G0
m 6⊂ M also occur in the

trace formula; they have to be defined by a limit process ([5], p. 254) that we shall
describe in a special case only. Recall that the smallest Levi subgroups properly
containing M are the groups Mβ , for which aMβ

is the kernel of β in aM , where β is
a root of AM . If G0

m ⊂Mβ , then there is a real number r such that the distribution

(1.3) JM (ma, f) +
r

2
log

(
|aβ − 1| · |1− a−β |

)
· JMβ

(ma, f)

has a nontrivial limit as a ∈ AM tends to 1 while G0
ma ⊂ M , and that limit is

defined to be JM (m, f). If F = R, we may define aβ/2 in the obvious way for all
a ∈ AM with aβ > 0 and simplify

|aβ − 1| · |1− a−β | = |aβ/2 − a−β/2|2.

Definition 1.2 can be made more concrete when G has F -rank one. In this case
there are two parabolics P and P̄ containing a minimal Levi subgroup M , and we
may parametrise Gm\G by N ×K. Substituting n−1mn = mn′, we can view n as
a function of n′ and obtain

JM (m, f) = −
∣∣DM (m)

∣∣1/2
δP (m)

∫
K

∫
N

f(k−1mn′k)ρP (HP̄ (n)) dn′ dk,

where δP (m) = eρP (HM (m)) = det(Adn(m))1/2 is the modular character of P and
ρP was used to normalise the measure on aM . It is standard notation to indicate
by a superscript M that an object is associated to the reductive group M rather
than G.
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In the special case when G = GL(2, F ) and M is the subgroup of diagonal
matrices, we can explicitly calculate

−ρP (HP̄ ( 1 x
0 1 )) = log ‖(1, x)‖

in terms of a K-invariant norm on F 2.

2. Invariant Fourier transform

Given a continuous representation π of G on a complex Hilbert space V and a
continuous function f : G→ C of compact support, one can define

(2.1) π(f)v =
∫

G

f(g)π(g)v dg

for every v ∈ V . Then

(2.2) π(f1∗f2) = π(f1)π(f2).

If π is admissible and f is smooth, which means “locally constant” in the p-adic
case, the operator π(f) is of trace class, and the map f 7→ trπ(f) is a distribution,
called the character of π. The set Greg := {g ∈ G : G0

g is a torus} of regular
semisimple elements has complement of Haar measure zero. By Harish-Chandra’s
regularity theorem, there exists a locally integrable smooth function Θπ on Greg

such that

(2.3) trπ(f) =
∫

G

Θπ(g)f(g) dg.

Note that Θπ̌ = Θ̄π, where π̌ denotes the contragredient representation of π. An ad-
missible representation π is called tempered if its matrix coefficients define tempered
distributions. Such a representation is unitarisable, (2.1) converges for f ∈ C(G),
and the character of π is a tempered distribution as well. Sometimes it is preferable
to work with the function Φ(π, g) = |D(g)|1/2Θ(g).

We define the Fourier transform of f ∈ C(G) as the function f̂ on the set
Πtemp(G) of equivalence classes of tempered representations of G by

f̂(π) := trπ(f).

Equation (2.2) implies

(2.4) f̂1∗f2 = f̂2∗f1.

The trace Paley-Wiener theorem [11] claims that f 7→ f̂ is an open, continuous
surjection of C(G) onto a “Schwarz space” I(G) of functions φ : Πtemp(G) → C.
This statement has substance once an independent description of the space I(G) is
given. We will say more about that in the next section. The name of the theorem
originates from its analogue [13] for the space H(G) of compactly supported smooth
functions on G, also called the Hecke algebra.

Definition 2.1. The tempered distribution I : C(G) → C has the Fourier
transform Î : I(G) → C if Î(f̂) = I(f) for all f ∈ C(G).

It follows from (2.4) that a tempered distribution I possessing a Fourier trans-
form has the property I(f1∗f2) = I(f2∗f1). By letting f2 converge to a delta
distribution, one easily shows that the latter property is equivalent to I being in-
variant under inner automorphisms (whence the heading). Conjecturally, every
invariant tempered distribution has a Fourier transform.
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Example 2.2. If I is the delta distribution at the unit element, i. e., I(f) =
JG(e, f) = f(e), then Î is the Plancherel measure on Πtemp(G). Since f̂ is propor-
tional to the Haar measure chosen, the Plancherel measure is inversely proportional
to the Haar measure.

We mention in passing that there is also a Paley-Wiener theorem for the (bi-
jective) operator-valued Fourier transform π 7→ π(f) and a corresponding notion of
non-invariant Fourier transform of distributions.

3. Tempered dual

A unitary representation of G is called square-integrable (modulo the center) if
the square of the absolute value of one (equivalently: all) of its matrix coefficients is
integrable over G/AG. We denote the set of equivalence classes of square-integrable
representations by Π2(G) ⊂ Πtemp(G). In the case of compact centre, i. e., trivial
AG, this is the set of all atoms of the Plancherel measure, also called the discrete
series of G.

If L is a Levi component of a parabolic subgroup P of G (for short, a Levi
subgroup of G) and σ a tempered representation of L, considered as a represen-
tation of P , then the induced representation IndG

P σ is tempered and completely
reducible of finite length. Every tempered representation is a constituent of such a
representation parabolically induced from some square-integrable representation σ
of some Levi subgroup L.

If f ∈ C(G), then tr IndG
P σλ(f) is a Schwartz function of λ ∈ ia∗L/Stabσ.

Thus, for φ ∈ I(G), φ(IndG
P σλ) has to extend across the points of reducibility to

a Schwartz function. Here, the stabiliser of σ is trivial for archimedean F , while it
is a lattice in ia∗L for p-adic F , in which case any smooth function on the quotient
torus is called a Schwartz function. Incidentally, if f belongs to the Hecke algebra
H(G), then tr IndG

P σλ(f) is a Paley-Wiener function of λ ∈ a∗L,C/Stabσ in the
archimedean case and a finite Fourier series in the p-adic case.

If P ′ = LN ′ is another parabolic with the same Levi component L, there is an
operator JP ′|P (σλ) intertwining IndG

P σλ with IndG
P ′ σλ. It maps ψ to the function

ψ′ defined by

ψ′(g) =
∫

N∩N ′\N ′
ψ(n′g) dn′,

where the integral converges for Reλ in some cone in a∗L. By restriction ψ|K , the
space of IndG

P σλ is realised independently of λ as a space of functions on K with
values in the space of σ, called the compact picture. For K-finite ψ, the vector
JP ′|P (σλ)ψ has a meromorphic continuation to a∗L,C.

One can choose nonzero meromorphic functions rP ′|P as in ([8], Theorem 2.1)
so that

(3.1) JP ′|P (σλ) = rP ′|P (σλ)RP ′|P (σλ),

where the normalised intertwining operator RP ′|P (σλ) is holomorphic at λ = 0 and
satisfies

(3.2) RP ′′|P ′(σ)RP ′|P (σ) = RP ′′|P (σ), RP ′|P (σ)∗ = RP |P ′(σ).

In particular, RP ′|P (σ) is unitary, hence invertible. Thus, for the generic λ ∈ ia∗L
for which the representation

σG := IndG
P σ
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is irreducible, it does not depend on P ∈ P(L).
The trace of a representation induced from a subgroup is supported on the

conjugacy classes that meet the subgroup. It follows that ΘσG for a representation
σ of a proper Levi subgroup vanishes on the set Gell of all elliptic semisimple
elements, i. e., elements that are not contained in any proper parabolic subgroup.

Example 3.1. Let I(f) = JG(l, f), where l ∈ L ∩ Greg. This distribution is
proportional to the measure chosen on Gl\G, hence the Fourier transform Î(φ) =
ĴG(l, φ) must be inversely proportional to the measure on Gl. If φ ∈ I(G) is such
that suppφ ⊂ {σG : σ ∈ Π2(L)}, then ĴG(l, φ) vanishes unless l ∈ Lell, in which
case

(3.3) ĴG(l, φ) =
∑

σ∈Π2(L)/ia∗L

∫
ia∗L/ Stab σ

ΦL(σλ, l)φ(σG
λ ) dλ.

Note that for l ∈ Lell∩Greg, the torus Gl/AL is compact and has a Haar measure of
total mass 1. Thus the measure on Gl used in the definition of JG(l, f) corresponds
to a measure on AL, and the measure in (3.3) is the corresponding Plancherel
measure. We can combine sum and integral into one integral over Π2(L) with
respect to a measure dσ (different from the Plancherel measure of L).

We would like to rewrite the integral in the example as an integral over (a subset
of) Πtemp(G) in line with definition 2.1. An element w ∈WL := NormG L/CentG L,
whose representative w̃ can be chosen in K, induces a unitary intertwining operator

IndG
P w σ ∼ IndG

P (wσ)

simply by left translation, where Pw = w̃−1Pw̃ and wσ(l) = σ(w̃−1lw̃). In fact,
two representations σG and σ′G are equivalent iff the pairs (L, σ) and (L′, σ′) are
G-conjugate. For φ ∈ I(G), we see that φ(σG) is WL-invariant as a function of λ,
and we can rewrite the right-hand side of (3.3) as an integral over a subset of
WL\Π2(L) of full measure, which is embedded into Πtemp(G).

If φ ∈ I(G), then the limit of φ(σG
λ ) as λ tends to a point of reducibility has

to coincide with the sum of φ(π) over the constituents π. In the C-vector space
with basis Πtemp(G), Arthur has defined ([4], p. 93) a new basis T (G) that includes
all the representations IndG

P σ, σ ∈ Π2(L), in order to avoid the aforementioned
compatibility conditions in the description of I(G). The subset

Tell(G) := {τ ∈ T (G) : Θτ |Gell 6= 0}

is a union of ia∗G-orbits, and the map τ 7→ τG embeds WL\Tell(L) into T (G),
the latter being the disjoint union of the images over all conjugacy classes of Levi
subgroups L. In this way, one gets a description

I(G) ∼=
⊕̂
[L]

C(Tell(L))WL

as a direct sum of Weyl group invariants in Schwartz spaces completed with respect
to a natural topology.

Example 3.2. For SL(2,R), in order to pass from Πtemp(G) to T (G), one
has to replace the limits of discrete series π1, π2 by the virtual representations
τ± = π1 ± π2. Here τ+ is induced, while τ− ∈ Tell(G).
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4. Weighted characters

While weighted orbital integrals appear on the geometric side of the trace
formula, weighted characters are the analogous terms on the spectral side. For
simplicity, we discuss them for tempered representations of reductive groups over
local fields only. Just like the exponential functions in (1.2), intertwining operators
provide another instance of Arthur’s notion of (G,M)-families (in the given case,
(G,L)-families, because we reserve the letter M for the geometric side and the letter
L for the spectral side).

Definition 4.1. For a Levi subgroup L of G and σ ∈ Πtemp(L), set

RP (σ) := lim
λ→0

∑
P ′∈P(L)

RP ′|P (σ)−1RP ′|P (σλ)
θP (λ)

,

where the intertwining operators are considered in the compact picture (on our
fixed maximal compact subgroup K) of IndG

P σλ, which does not depend on λ.

If L is maximal, we can write this operator as a logarithmic derivative:

RP (σ) = − 1
θP (λ)

RP̄ |P (σ)−1 d

dz
RP̄ |P (σzλ)

∣∣∣
z=0

.

Although RP (σ) is a priori only defined on K-finite vectors, and the weighted
character

φL(f, σ) := tr(IndG
P (σ, f)RP (σ))

only for f ∈ H(G), one can show ([10], p. 175) that it extends to f ∈ C(G) and
provides a continuous map

φL : C(G) → I(L).
It follows from (3.2) and the intertwining property of RP ′|P that φL is independent
of P ∈ P(L), as the notation suggests. By definition, we have

(4.1) φG(f) = f̂ .

The normalising factors rP ′|P (σλ) give rise to a scalar-valued (G,L)-family if
they have no poles at λ = 0. However, that happens because they have to cancel
the poles of the intertwining operators JP ′|P (σλ) for λ ∈ ia∗L.

Definition 4.2. For a Levi subgroup L of G and generic σ ∈ Πtemp(L), set

rP (σ) := lim
λ→0

∑
P ′∈P(L)

rP ′|P (σ)−1rP ′|P (σλ)
θP (λ)

.

Then rP (σλ) extends to a meromorphic function of λ ∈ a∗L,C. It will turn up in
our formulas for Fourier transforms.

5. Invariant distributions

Neither weighted orbital integrals nor weighted characters are invariant when
their subscripts are proper Levi subgroups, hence they have no Fourier transform
in the sense of Definition 2.1. Now since they appear on the two sides of the
trace formula, it does not come as a surprise that they behave similarly under inner
automorphisms. Interpreting the members of one of the families as transformations,
one can use them to modify the other family to produce invariant distributions IM .
These are the main terms in the invariant trace formula [7]. There are two choices
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which are reciprocal in a certain sense ([3], p. 7/8, [10], §3). It is analytically easier
to modify the weighted orbital integrals.

The ordinary orbital integral is already invariant, so one simply sets

IG(g, f) := JG(g, f).

For Levi subgroups M that are maximal in G, one can easily single out a non-
invariant part of the weighted orbital integral JM (m, f) by composing the map φM

with the Fourier transform of the invariant orbital integral on M : If we write

JM (m, f) = ĴM
M (m,φM (f)) + IM (m, f),

then the remaining term, denoted IM (m, f), turns out to be invariant. If, moreover,
M is minimal, i. e., M/AM is compact, the Fourier transform can be made explicit
using Example 3.1:

(5.1) JM (m, f) =
∫

Πtemp(M)

ΦM (σ,m)φM (f, σ) dσ + IM (m, f).

Arthur has found a generalisation to arbitrary Levi subgroups.

Theorem 5.1. ([3], p. 53, [10], p. 179) For all G, M as in Definition 1.2 and
m ∈ M ∩ Greg, there are invariant tempered distributions IM (m) = IG

M (m) on G
such that

JM (m, f) =
∑

M ′⊃M

ÎM ′

M (m,φM ′(f))

for all f ∈ C(G), where the sum is taken over all Levi subgroups M ′ of G contain-
ing M .

The term with M ′ = G in the sum simplifies in view of (4.1), and the equivalent
form

JM (m, f) = IM (m, f) +
∑

M ′⊃M
M ′ 6=G

ÎM ′

M (m,φM ′(f))

of the equation can be read as a recursive definition of IM (m, f) in terms of the
invariant distributions on groups M ′ of smaller semisimple rank than G. The
existence of the Fourier transforms is part of the theorem. This is the hardest
part of the proof and relies on the local or global trace formula. The invariance
of IM (m, f) however is straightforward, as is its independence of the choice of a
maximal compact subgroup K.

In the case AG = {e}, the set Tell(G) is the discrete part of T (G), and a
linear functional on I(G), evaluated on functions with support in Tell(G), yields
a linear combination of delta-distributions on Tell(G). In the Fourier transform of
IM (m), however, delta-distributions at several other points may occur, giving rise
to a larger set Tdisc(G) ⊃ Tell(G), which can be explicitly described. In general,
Tdisc(G) is ia∗G-invariant, and a measure on this set can be defined in analogy with
Example 3.1.

Theorem 5.2. ([10], p 183) There exist smooth functions ΦM,L(m, τ) of m ∈
M ∩Greg and τ ∈ Tdisc(L) such that, for all φ ∈ I(G),

ÎM (m,φ) =
∑
[L]

∫
WL\Tdisc(L)

ΦM,L(m, τ̌)φ(τG) dτ.
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In Arthur’s statement, the sum runs over all Levi subgroups containing a fixed
minimal one, and the integral is over the full set Tdisc(L). This explains the addi-
tional factor |WL

0 |/|WG
0 | in his formula.

The distributions IM (m) satisfy descent identities ([10], (3.7)). If M1 is a Levi
subgroup of G containing M , then

IM1(m, f) =
∑

M2⊃M

dG
M (M1,M2)ÎM2

M (m, f̂M2),

where the sum is over all Levi subgroups M2 of G containing M , and f̂M2(τ2) =
f̂(τG

2 ) for τ2 ∈ T (M2). The constant dG
M (M1,M2) vanishes unless the natural map

aM2
M → aG

M/aM1
M

∼= aG
M1

is an isomorphism, in which case ηG
M1

equals dG
M (M1,M2)

times the image of ηM2
M . (If ηG

M is compatible with ηM1
M and ηG

M1
, this can be

equivalently expressed as follows: the constant vanishes unless the sum map aM1
M ⊕

aM2
M → aG

M is an isomorphism, in which case ηG
M equals dG

M (M1,M2) times the
image of the product of ηM1

M and ηM2
M .) With Theorem 5.2 it follows (cf. [10], (4.3))

that

(5.2) ΦM1,L(m, τ) =
∑

M2⊃M

dG
M (M1,M2)

∑
[L2]M2

∑
w∈W

M2
L2

\WL2,L

ΦM2
M,L2

(m,wτ),

where the middle sum is over M2-conjugacy classes of Levi subgroups L2 of M2,
and WL2,L = {g ∈ G | gLg−1 = L2}/L = L2\{g ∈ G | gLg−1 = L2}.

Theorem 5.2 was proved in [10] with the aid of the local trace formula. This
approach yields also a reciprocity between weighted orbital integrals and weighted
characters, whose simplest example is the following.

Theorem 5.3. ([9], p 106) If π ∈ Π2(G) ⊂ Tell(G), then

ΦM,G(m,π) =

{
(−1)dim aG

M Φ(π,m) for m ∈Mell,
0 otherwise,

In the reference, ΦM,G(m, τ) is actually computed for any τ ∈ Tell(G), while the
special case stated above had been proved already in [1] using differential equations.

Let us restate Example 3.1 in the present notation. If l ∈ L∩Greg and σ ∈ Π2(L)
with σG irreducible, then

ΦG,L(l, σ) =

{∑
w∈WL

ΦL(wσ, l) for l ∈ Lell,
0 otherwise.

The full Fourier transform of JG(g), g ∈ Greg, for F = R has been determined by
Herb [15] using character identities due to Shelstad.

The descent identities reduce the distributions IM (m) to the case when m ∈
Mell. This allows one to calculate ΦM,L from the above results for F = R and a
range of pairs (M,L) including those with dim aG

M +dim aG
L ≤ dim aG

Gm
. The latter

have also been obtained using differential equations [16].
The explicit formulas mentioned so far describe the restriction of the Fourier

transform ÎM (m) to a certain subset of T (G). If f̂ is supported on that subset, then
IM (m, f) = JM (m, f). The remaining components of ÎM (m), however, do depend
on the choice of normalizing factors in (3.1).
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6. Differential equations

Let the ground field F be R. Now every π ∈ Π(G) gives rise to a representation
of the Lie algebra g as well as its universal enveloping algebra U(g) on the subspace
of smooth vectors. By a version of Schur’s lemma, the center Z(g) of U(g) acts
by scalars, and the resulting algebra homomorphism χπ : Z(g) → C is called the
infinitesimal character of π.

If L is a Levi subgroup and σ ∈ Π(L), then the Harish-Chandra homomor-
phism Z(g) → Z(l), z 7→ zL, is characterised by the formula χσG(z) = χσ(zL) for
the infinitesimal character of a parabolically induced representation. This homo-
morphism depends only on the complexifications of g and l and can also be defined
for a maximal torus T in place of L. In this case, we get the Harish-Chandra iso-
morphism from Z(gC) to the algebra U(tC)W of invariants in Z(tC) = U(tC) under
the action of the Weyl group W of (gC, tC). Each λ ∈ t∗C determines a character χλ

of Z(gC) by χλ(z) = zT (λ), where we view zT ∈ U(tC) as a polynomial on t∗C, and
every character of Z(gC) is of this form.

The global characters Θπ in (2.3) are invariant eigendistributions of the al-
gebra Z(g), whose elements can be viewed as biinvariant differential operators
on G. Harish-Chandra determined all tempered invariant eigendistributions explic-
itly, and as a byproduct he showed that orbital integrals satisfy certain differential
equations. Arthur generalised these differential equations to the case of weighted
orbital integrals and the associated invariant distributions IM (m), m ∈M ∩Greg.

Since those distributions depend on m up to conjugacy only, we may assume
that m = t lies in a fixed maximal torus T and normalise the Haar measure on
Gt = T independently of t ∈ T ∩Greg.

Theorem 6.1. ([5], p. 279) For every connected reductive R-group G, its Levi
subgroup M and a maximal torus T ⊂ M , there exists a smooth map ∂M = ∂G

M :
T ∩Greg → HomC(Z(g), U(t)) with the following property. If L is a Levi subgroup
of G, τ ∈ Tell(L) and χ = χτG , then the functions ΦM (t) = ΦM,L(t, τ) satisfy the
differential equations

(6.1) χ(z)ΦM (t) =
∑

M ′⊃M

∂M ′

M (t, zM ′)ΦM ′(t)

on T ∩Greg for every z ∈ Z(g). Moreover, deg ∂M (t, z) ≤ deg z and

(6.2) ∂G(t, z) = zT .

The smoothness of the map ∂M (t, z) is meant for fixed z, where it takes values
in a finite-dimensional space. If we combine the ∂M ′

M into a matrix, we get an algebra
homomorphism from Z(g) into the algebra of matrix-valued differential operators
on T ∩ Greg. Thus, it suffices to consider (6.1) for z in a (finite) set of generators
of Z(g).

There is an algorithm to compute the differential operators, but no general
closed formula except for the Casimir element ω ∈ Z(g) (shifted by a constant),
which is characterised by ωT (λ) = 〈λ, λ〉 for a nondegenerate symmetric bilinear
form on t∗ whose extension to t∗C is W -invariant. In fact, ∂M (t, ω) vanishes unless
either M = G, in which case it is given by (6.2), or M is maximal, in which case

(6.3) ∂M (t, ω) =
∑
α

∣∣〈ηG
M , α〉

∣∣
(tα − 1)(1− tα)

,
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where the sum is taken over all roots α of tC such that gC,α 6⊂ mC, and the measure
ηG

M on the one-dimensional space aG
M is interpreted as a linear functional determined

up to sign and extended to a linear functional on t vanishing on t ∩m1 + aG.
For a parabolic subgroup P = MPN containing T , set

TP := {t ∈ T : |tα| > 1∀ roots α of tC in nC}

and define the subset TC,P of TC by the same conditions. The limit of a function
on TC,P as t→

P
∞ is meant with respect to the filter of all the translates of the sets

TC,P .

Theorem 6.2. ([18], pp. 780, 785, 790) The system applied to (ΦM )M⊃MP
is

holonomic on TC ∩ GC,reg and has a regular singularity at ∞ on TC,P . For every
λ ∈ t∗C with χλ = χ there is a unique solution Ψ = ΨP,λ on the universal covering
T̃C,P such that

• ΨG(expH) = eλ(H),
• ΨM (t) → 0 as t→

P
∞ if M 6= G.

For sufficiently regular χ, every solution is of the form

ΦM (t) =
∑

χλ=χ

∑
M ′⊃M

cM ′(λ)ΨP∩M ′,λ
M (t)

for suitable functions cM ′ .

Our holonomic system is similar to the system satisfied by matrix coefficients
of admissible irreducible representations studied in [14], but it is more complicated
as the torus T need not be R-split. By general results on holonomic systems with
regular singularity, the standard solutions ΨM (t) have a series expansion in powers
of tα, where α runs through the roots of TC in pC/pC ∩mC.

In order to compute the Fourier transforms of the invariant distributions IM (t)
explicitly, it remains to solve the following problems:

(1) Find cM ′(λ) = cPM ′,L(λ, τ) for the Fourier transforms ΦM (t) = ΦM,L(t, τ)
on each sector TP .

(2) Describe the standard solutions ΨM explicitly.

7. Asymptotic formula and jump relations

We retain the notation of the preceding section and fix a parabolic P ∈ P(M).
Arthur’s asymptotic formula gives information about IM (mT ) for mT = m expT
as the point T tends to infinity in the chamber a+

P in the sense that its distance
from the walls grows linearly with its norm. However, IM (mT , f) will tend to zero
for any fixed f ∈ C(G), which has thus to be replaced by a function fT ∈ C(G) that
varies with T . It is characterised with the help of multipliers as follows.

If L is a Levi subgroup, σ ∈ Π2(L) and Q ∈ P(L), then IndG
Q σ(fT ) = 0 unless

a conjugate of L is contained in M , and if L ⊂M , then

IndG
Q σ(fT ) =

1
|WL|

∑
w∈WL

ewν(T ) IndG
Q σ(f).

Here ν ∈ ia∗L denotes the infinitesimal central character of σ defined by σ(expH) =
eν(H)Id for H ∈ aL. Note that for M = G one simply gets fT (x) = f(x(expT )−1).
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Theorem 7.1. If P ∈ P(M), m ∈M ∩Greg and f ∈ H(G), then

lim
T→

P
∞
IM (mT , fT ) = e−ε(HM (m))ÎM

M (m, rP,εf̂M,ε),

where ε ∈ (a∗P )+ is sufficiently small and

f̂M,ε(σ) = f̂(σG
ε ), rP,ε(σ) = rP (σε)

for σ ∈ Πtemp(M) in the notation of Definition 4.2.

If we combine this result with the Riemann-Lebesgue lemma, we can determine
the coefficients cPM ′,L under favourable circumstances. With the aid of descent
formulas the result can be given a particularly simple shape in the following case.

Theorem 7.2. If T is an R-split maximal torus contained in a minimal para-
bolic P and σ(t) = tλ is sufficiently regular, then for t ∈ TP we have

ΦT,T (t, σ) =
∑

w∈W

∑
M⊃T

rP∩M (wσ)ΨP,wλ
T (t).

The details will appear in a forthcoming paper.
In general, the limit formula does not determine the solution of the differen-

tial equation uniquely. However, additional information is provided by the jump
relations ([1], Theorem 6.1) part of which we are going to state now.

Let α be a real root of the maximal torus T and β = α|AM
. As a special case

of (1.3), we consider the distribution

Jα
M (t, a, f) = JM (ta, f) + |ηMβ

M (α̌)| log |aβ/2 − a−β/2| · JMβ
(ta, f),

which is defined for t ∈ T such that ±α is the only root of T with tα = 1 and
a ∈ AM sufficiently close to 1. Here we interpret ηMβ

M as in (6.3).
Choose root vectors X±α ∈ g±α such that [Xα, X−α] = α̌ and define the

element c = exp π
4i (Xα + X−α) (e. g., in the complex adjoint group). The so-

called Cayley transform Ad(c) fixes the kernel of α in T pointwise, maps tC to the
complexified Lie algebra of a maximal torus T1 of Mβ and the coroot α̌ ∈ t to a
coroot α̌1 = i(Xα −X−α) ∈ it1. If we set, for θ ∈ R,

aθ = exp(θα̌) ∈ AM , bθ = exp(−iθα̌1) ∈ T1,

and define the Haar measures on T and T1 by volume forms whose complexifications
correspond under c, then

lim
θ→0+

d

dθ
Jα

M (t, aθ, f)− lim
θ→0−

d

dθ
Jα

M (t, aθ, f) = 2|ηMβ

M (α̌)| lim
θ→0+

d

dθ
JMβ

(tbθ, f).

We may replace J by I everywhere in equation (1.3) to define the invariant
distributions Iβ

M (m, f), and the jump relations are true for them as well. Conse-
quently, if we define

Φα
M,L(t, a, τ) = ΦM,L(ta, τ) + |ηMβ

M (α̌)| log |aβ/2 − a−β/2| · ΦMβ ,L(ta, τ),

then

(7.1) lim
θ→0+

d

dθ
Φβ

M,L(t, aθ, τ)− lim
θ→0−

d

dθ
Φβ

M,L(t, a−θ, τ)

= 2|ηMβ

M (α̌)| lim
θ→0+

d

dθ
ΦMβ ,L(tbθ, τ)
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for t as above and τ ∈ Tdisc(L).
To determine the coefficients cPM ′,L(λ, τ), we should find the analogous jump

relations for the standard solutions ΨM . This has been done for groups G of real
rank one in [18] and partly for G = GL(3,R) (see section 10).

8. Explicit solutions of the holonomic system

Now we turn to Problem 2, i. e., the explicit determination of the standard
solutions ΨM of our holonomic system. For sufficiently regular χ, the coefficients
of the series ΨM can be determined using the differential equation for the Casimir
element alone, and one can show ([18], Theorem 5.8) that those coefficients are
rational functions in λ. Moreover, unlike the case of matrix coefficients, the re-
cursive equations can be solved explicitly at least for groups of low rank, and an
unexpected cancellation keeps the degree of the denominators bounded.

Theorem 8.1. ([17], p. 71, 75) If P is a maximal parabolic subgroup and T a
maximal torus of its Levi component M , then

ΨP,λ
M (t) = tλ

∑
α

|ηG
M (α̌)|b(−λ(α̌), t−α),

where the sum is taken over the roots α of TC such that gα ⊂ nC but gα 6⊂ mC,
where ηG

M is interpreted as in (6.3) and extended to tC by C-linearity, and

b(s, z) =
∞∑

n=1

zn

n+ s
= z

∫ 1

0

xs

1− zx
dx (|z| < 1, Re s > −1).

The function b is a special case of the confluent hypergeometric function and
closely related to the incomplete Beta function. It extends to z ∈ C \ [1,∞) and
has the noteworthy properties

z
d

dz
b(s, z) =

z

1− z
− sb(s, z),(8.1)

lim
z→1

(b(s1, z)− b(s2, z)) = ψ(1 + s2) + ψ(1 + s1),(8.2)

b(s,−z)− b(−s,−z) =
πz−s

sinπs
− 1
s
, z /∈ (−∞, 0],(8.3)

where we use the principal branch of the complex power.
The coefficients of the series ΨP,λ

M are rational functions in λ, thus, in several
complex variables when M is not maximal. Although no unique decomposition in
partial fractions exists for such functions, experience with groups up to rank three
suggests that the coefficients should have a canonical expression in partial fractions
associated to certain combinatorial data in the root system, which were called root
cones in [18], p. 794. E. g., in the case of a minimal Levi subgroup of GL(3), there
are four root cones in a given Borel subgroup, which give rise to the four terms in
the following formula.

Theorem 8.2. If G = GL(3,R), P is the subgroup of upper triangular matrices
and M = A the subgroup of diagonal matrices a = diag(a1, a2, a3), then for each
unitary character χ of A with differential λ ∈ a∗C, we have

ΨP,χ
A (a) = nG

Aχ(a)
(
b̃(λ32, λ31, a32, a21) + b̃(λ21, λ31, a21, a32)

+ b(λ21, a31)b(λ32, a32) + b(λ21, a21)b(λ32, a31)
)
,
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where

b̃(s1, s2, z1, z2) =
∞∑

n2=1

∞∑
n1=n2

zn1
1 zn2

2

(s1 + n1)(s2 + n2)

= z1z2

∫ 1

0

∫ 1

0

xs1
1 x

s2
2

(1− z1x1)(1− z1z2x1x2)
dx1 dx2

(|zi| < 1, Re si > −1).

Here the components λi of λ are defined by

λ(diag(H1,H2,H3)) = λ1H1 + λ2H2 + λ3H3,

and we use the abbreviations aij = ai/aj and λij = λi − λj . The constant nG
A is

the covolume with respect to ηG
A of the lattice generated by the coroots of A.

9. Explicit Fourier transforms for GL(2,R)

We denote the group GL(2,R) by M , because it is a factor of a Levi subgroup
of G = GL(3,R) to be considered in the next section. In the group M , we have
two conjugacy classes of maximal R-tori represented by the group A of invertible
diagonal matrices and the group T of invertible matrices of the form

(
a −b
b a

)
. The

element w = ( 0 1
1 0 ) serves as a representative for the non-trivial elements of both

WA and WT , and c = 1√
2

(
1 −i
−i 1

)
defines a Cayley transform Ad(c) : aC → tC. The

roots of A are α12 and α21, where

diag(a1, a2)αij = aij =
ai

aj
.

There is only one conjugacy class of Levi R-subgroups also represented by A, and
the parabolics with Levi component A are the groups P12 and P21 of upper resp.
lower triangular matrices.

The principal series of M is parametrised by WA-orbits of unitary characters
χ ∈ Π2(A). These are of the form

χ(diag(a1, a2)) = χ1(a1)χ2(a2),

where
χi(ai) = χi(sgn(ai))|ai|λi

with Reλi = 0. The unitarily induced representations χM are irreducible, the
numerators in the character formulas are

ΦM (χM , a) = χ(a) + wχ(a), ΦM (χM , t) = 0

for a ∈ A and t ∈ T , and Langlands’ normalising factors for intertwining operators
(cf. [8], section 3) are

rM
Pji|Pij

(χ) = rij(χ) =
ΓR(λij +N)

ΓR(λij +N + 1)
.

Here
ΓR(s) = π−s/2Γ( s

2 ),

and N ∈ {0, 1} is determined by χ(γ) = (−1)N , where γ = diag(−1,−1).
It is customary to replace the restriction of |D|1/2 to T by

∆ij(t) = tρij − t−ρij ,
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where ρij is the character of T such that t2ρij = (c−1tc)αij . This leads to a modifica-
tion in the definition of the numerators in character formulas and orbital integrals
on orbits of elements of T , and we shall indicate the change by adding a super-
script ij.

The discrete series (including limits) of M is parametrised by WT -orbits of
characters χ ∈ Π2(T ). We have wχ = χ̄, and the differential λ ∈ t∗C of χ must be
T -integral, whence the components of λ ◦Ad(c) satisfy

λ1 + λ̄2 = 0, λ12 = λ1 − λ2 ∈ Z.
Such a character χ is determined by λ: if c−1tc = diag(t1, t2), then t2 = t̄1 and

(9.1) χ(t) = (t1t2)λ1tλ2−λ1
2 = (t1t2)λ2tλ1−λ2

1 .

Following Harish-Chandra, we define the representation σχ ∈ Πtemp(M) by its
character values

Θσχ
(t) = −χ(t)− wχ(t)

∆ij(t)
,

thus
ΦM,ij(σχ, t) = −(χ(t)− wχ(t)),

where χ is chosen in its WT -orbit so that λij ≥ 0. The character values on a =
diag(a1, a2) ∈ A are then determined by

ΦM (σχ, a) = 2 sgn(a1)


χ(cac−1), if sgn(a1) = sgn(a2), aij < 1,
wχ(cac−1), if sgn(a1) = sgn(a2), aij > 1,
0 if sgn(a1) 6= sgn(a2),

where χ is defined by (9.1). Those representations σχ for which wχ 6= χ exhaust the
discrete series Π2(M) = Πell(M), while those with wχ = χ belong to the principal
series.

For the group M , there is no reducibility under parabolic induction from dis-
crete series, thus T (M) = Πtemp(M). The subset Tdisc(M) = Πdisc(M) is the union
of Π2(M) and the set of those χM where rij(χ) has a pole, i. e., where the restric-
tion of χ to the subgroup A ∩ SL(2,R) is trivial. We shall identify such χ with
characters of the quotient torus A′M = A/A ∩ SL(2,R).

Theorem 9.1. (i) The Fourier transform of the orbital integral IM
M (a)

with a ∈ A ∩Mreg is given by

ΦM
M,M (a, σ) = 0, ΦM

M,A(a, χ) = χ(a) + wχ(a).

(ii) The Fourier transform of the orbital integral IM,ij
M (t) with t ∈ T ∩Mreg

vanishes on Πdisc(M) \Π2(M) and is given by

ΦM,ij
M,M (t, σ) = ΦM,ij(σ, t)

for σ ∈ Π2(M) and

ΦM,ij
M,A(t, χ) =

nM
A

2

(
χ(γ)χ̃(tc)− χ̃(γtc)

sinπλij
+
wχ(γ)wχ̃(tc)− wχ̃(γtc)

sinπλji

)
for χ ∈ Π2(A), where tc = c−1tc and nM

A is the length of α̌ij with respect
to ηM

A . Here we define χ̃ on a dense subset of AC by

χ̃(diag(a1, a2)) = aλ1
1 aλ2

2

using the principal branches of complex powers.
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(iii) The Fourier transforms of the invariant distribution IM
A (a) is given for

|aij | > 1 by
ΦM

A,M (a, σ) = −ΦM (σ, a)
for σ ∈ Π2(M),

ΦM
A,M (a, χM ) =

1
2
χ(a)

for χ ∈ Π2(A′M ),

ΦM
A,A(a, χ) = nM

A

(
χ(a)b(λji, aji) + χ(a)uij(χ)

+ wχ(a)b(λij , aji) + wχ(a)uij(wχ)
)
,

where b is the function defined in Theorem 8.1 and uij(χ) is the logarith-
mic derivative of rij(χ) with respect to the identification (aM

C )∗ → C that
sends λ to λij. If we denote the logarithmic derivative of the Γ-function
by ψ, then

uij(χ) =
1
2
ψ

(
λij +N

2

)
− 1

2
ψ

(
λij +N + 1

2

)
.

Assertion (i) is a contained in Example 3.1, assertion (ii) is a special case of
the results of [15]. Note that assertion (iii) gives the full Fourier transform because
IM
A (wa) = IM

A (a). The contribution from Π2(M) was given in Theorem 5.3, while
the statement about the principal series for IM

A (a) follows from Theorem 7.2. The
contribution of χM ∈ Πdisc(M) \Π2(M) can be read off from [17], equation (8), or
from [10], equation (4.7).

A different proof requires to check the jump relations, as it was done for SL(2,R)
in Lemma 6 of [17]. For GL(2,R), the group A has components (namely with
a12 < 0) where the roots never take the value 1, and one cannot use jump relations
to show that the two formulas define a smooth function across |a12| = 1. Instead,
this can be deduced from the identities (8.3) and(

ψ
(

s+N+1
2

)
− ψ

(
s+N

2

))
−

(
ψ

(−s+N+1
2

)
− ψ

(−s+N
2

))
= 2

(
π(−1)N

sin πs + 1
s

)
,

where N ∈ {0, 1}. Indeed, it follows that for x > 0 the value of

xs
(
b(−s,−x−2) + 1

2ψ
(

s+N
2

)
− 1

2ψ
(

s+N+1
2

))
+ (−1)Nx−s

(
b(s,−x−2) + 1

2ψ
(−s+N

2

)
− 1

2ψ
(−s+N+1

2

))
does not change if we interchange xs with (−1)Nx−s and x−2 with x2.

The Fourier transform of IA(a) defined in (1.3) for singular values of a ∈ A
can also be calculated using equation (8.2) together with the fact that b(0, z) =
− log(1− z), cf. [17], section 6.

10. Explicit Fourier transforms for GL(3,R)

In contrast to the preceding section, we shall now use the letter A to denote
the group of diagonal matrices diag(a1, a2, a3), which is a split torus as well as a
minimal Levi subgroup in G = GL(3,R). There are three maximal Levi subgroups
M1, M2 and M3 containing A. Namely, Mk consists of the matrices with zero non-
diagonal entries in the k-th row and the k-th column. Each of those groups is the
direct product of its counterpart in the previous section with the group GL(1,R).
In the same way we obtain from the maximal torus T three maximal tori Tk ⊂Mk.
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Not only minimal, but also maximal Levi subgroups as well as nonsplit tori are all
conjugate in G.

The results of the previous section carry over easily to the groups Mk, if we use
indices {i, j, k} = {1, 2, 3}. The tempered representations of Mk are obtained from
those of M by multiplying with χk(mk), where mk is the kth diagonal entry of m ∈
Mk and χk is a unitary character of GL(1,R). The same is true of the characters of
A and of Tk, of the formulas for the numerators ΦMk of the distributional characters
and, finally, the components of the Fourier transforms. If we denote a character of
A or Tk by χ and its differential by λ, then the formulas in Theorem 9.1 remain
literally true. Of course, we should use notations wk, ck and γk to indicate at which
diagonal place w, c resp. γ have been augmented by 1, and N should be replaced
by Nk = χ(γk).

The set Πtemp(G) consists of the representations χG (with χ ∈ Π2(A)/WA)
and σG (with σ ∈ Π2(Mk), the group WMk

being trivial). There is no reducibility,
so T (G) = Πtemp(G). The subset Πdisc(G) consists of the representations χG with
χ ∈ Π2(A) trivial on A ∩ SL(3,R). Such χ will be identified with characters of the
quotient torus A′G = A/A ∩ SL(3,R).

In order to make statements about arbitrary parabolic subgroups, we use indices
{i, j, k} = {1, 2, 3}. There are two parabolics with Levi component Mk, namely
P±k = MkN

±
k , where the roots of A in n+

k are αik and αjk, while those in n−k are
αki and αkj . We denote the restriction of the roots of A in n±k to AMk

by ±βk.
There are six parabolics with Levi component A, namely Pijk = ANijk for all
permutations (i, j, k) of (1, 2, 3), where the roots of A in nijk are αij , αjk and αik.
Langlands’ normalising factors for intertwining operators (cf. [8], section 3) are

rP−
k |P

+
k

(σχ) =
2π
λik

, rP+
k |P

−
k

(σχ) =
2π
λkj

for characters χ of Tk with differential λ such that λij > 0, and

rP−
k |P

+
k

(χM ) = rik(χ)rjk(χ), rP+
k |P

−
k

(χM ) = rki(χ)rkj(χ),

rPjik|Pijk
(χ) = rPjki|Pikj

(χ) = rPkji|Pkij
(χ) = rij(χ),

rPkji|Pijk
(χ) = rij(χ)rjk(χ)rik(χ)

for characters χ of A.
In many cases, the Fourier transforms of the invariant distributions on G can

be reduced to those on Levi subgroups with the aid of the descent identities (5.2):

Theorem 10.1. The Fourier transforms of ordinary orbital integrals IG for
m ∈Mk ∩Greg are given by

ΦG,Mk
(m,σ) = ΦMk

Mk,Mk
(m,σ), ΦG,A(m,χ) =

∑
w∈W

Mk
A \WA

ΦMk

Mk,A(m,wχ)

for σ ∈ Π2(Mk) and χ ∈ Π(A). In particular, for a ∈ A ∩Greg and t ∈ Tk ∩Greg,

ΦG,A(a, χ) =
∑

w∈WA

wχ(a), Φij
G,A(t, χ) =

nMk

A

2

∑
w∈WA

Sij
Tk,A(t, wχ),

where

Sij
Tk,A(t, χ) =

χ(γk)χ̃(tck)− χ̃(γkt
ck)

sinπλij
.
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The Fourier transforms of the invariant distributions IMk
(a) for a ∈ A ∩Greg are

given by

ΦMk,Mk
(a, σ) = dG

A(Mk,Mi)ΦMi

A,Mi
(a,wjσ) + dG

A(Mk,Mj)Φ
Mj

A,Mj
(a,wiσ),

ΦMk,A(a, χ) =
∑

w∈W
Mi
A \WA

dG
A(Mk,Mi)ΦMi

A,A(a,wχ)

+
∑

w∈W
Mj
A \WA

dG
A(Mk,Mj)Φ

Mj

A,A(a,wχ)

for σ ∈ Π2(Mk) and χ ∈ Π(A), and

ΦMk,Mk
(a, χMk) = dG

A(Mk,Mi)wjχ(a) + dG
A(Mk,Mj)wiχ(a)

for χ ∈ Π2(A′Mk
), where in the last case the measures on ia∗Mi

, ia∗Mj
and ia∗Mk

have
to be compatible under the action of WA.

All of these Fourier transforms vanish on Πdisc(G).

If we plug in the formulas from Theorem 9.1, some normalising constants be-
come

dG
A(Mk,Mi)nMi

A = nG
Mk

:= |ηG
Mk

(α̌)|

in the notation of Theorem 8.1.
Now we come to the distributions that cannot be reduced by descent.

Theorem 10.2. The Fourier transform of Iij
Mk

(t) is given for t ∈ Tk ∩ Greg

with tβk > 1 by

Φij
Mk,Mk

(t, σχ) = nG
Mk
wkχ(t)

(
b(λkj , tki) + b(λki, tkj) +

1
λki

+
(−tkj)λik

sinπλik

)
− nG

Mk
χ(t)

(
b(λki, tki) + b(λkj , tkj) +

1
λki

+
(−tki)λik

sinπλik

)
,

Φij
Mk,A(t, χ) =

nG
A

2

∑
w∈WA

Sij
Tk,A(t, wχ)

(
b((wλ)ki, tki) + uik(wχ)

+ b((wλ)kj , tkj) + ujk(wχ)
)

and for t ∈ Tk ∩Greg with tβk < 1 by

Φij
Mk,Mk

(t, σχ) = nG
Mk
wkχ(t)

(
b(λjk, tik) + b(λik, tjk) +

1
λjk

+
(−tik)λkj

sinπλkj

)
− nG

Mk
χ(t)

(
b(λik, tik) + b(λjk, tjk) +

1
λjk

+
(−tjk)λkj

sinπλkj

)
,

Φij
Mk,A(t, χ) =

nG
A

2

∑
w∈WA

Sij
Tk,A(t, wχ)

(
b((wλ)ik, tik) + uki(wχ)

+ b((wλ)jk, tjk) + ukj(wχ)
)
,
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where nG
A is as in (8.2) and χ is a unitary character of T resp. A. For all t ∈

T ∩Greg and χ ∈ Π2(A′Mk
),

Φij
Mk,Mk

(t, χMk) = −
nG

Mk

4

∑
w∈WA

wMkw−1 6=Mk

Sij
Tk,A(t, wχ).

Finally, Îij
Mk

(t) vanishes on Πdisc(G).

Sketch of the proof. According to Theorem 6.2, the restriction of the Fourier
transform to each conected component (Tk)P±

k
∩ Greg is a linear combination of

the standard solutions ΨMk,λ′

Mk
(t) = tλ

′
(which are characters of T̃k) and ΨP±

k ,λ′

Mk

(which are given by Theorem 8.1), where λ′ ∈ tk,C is in the W (gC, tk,C)-orbit of λ

resp. λ ◦ Ad(ck). The coefficients cP
±
k

G (λ′) of the latter functions can be read off
from Theorem 10.1, and in the case of ΦMk,A, the normalising constants simplify
as nMk

A nG
Mk

= nG
A.

The true Fourier transform is smooth on Tk∩Greg by Theorem 5.2 and satisfies
the asymptotic formula of Theorem 7.1. In fact, it extends continuously to {t ∈
Tk | Gt ⊂Mk}, where Gt/Tk remains compact. Using (8.3), one can check that the
two pieces of the putative Fourier transform also combine to a smooth function on
Tk ∩ Greg with a continuous extension as above. Moreover, this function satisfies
the same asymptotic formula as the true solution, because b(s, 0) = 0. (In the case
of ΦMk,Mk

, one has also to observe that the differential of χ(t)(−tki)λik is λ−wjλ.)
Now we know that the difference between the true and the putative Fourier

transform is given as a linear combination of characters tλ
′

on each connected
component of Tk ∩Greg, that it extends continuously with the exception of finitely
many points and tends to zero as t →

P±
k

∞. Therefore it must vanish.

The assertions about the contributions from Πdisc(G) and Πdisc(Mk) \Π2(Mk)
follow from [10], equation (4.7).

Theorem 10.3. The Fourier transform of the distribution IA(a) for a ∈ A
such that |a1| < |a2| < |a3| is given by

ΦA,Mk
(a, σχ) = −nG

Mk

(
ΦM1(s1σχ, a)

(
b(λik, a31) + b(λjk, a21) +

1
λkj

)
+ ΦM2(s2σχ, a)

(
b(λik, a32) + b(λkj , a21)

)
+ ΦM3(s3σχ, a)

(
b(λki, a32) + b(λkj , a31) +

1
λki

) )
for χ ∈ Π2(Tk) with λij > 0, where sl ∈WA conjugates Mk to Ml;

ΦA,A(a, χ) =
∑

χ′∈WAχ

(
ΨP,χ′

A (a) + nG
A

(
b(λ′21, a21)(u13(χ′) + u23(χ′))

+ b(λ′31, a31)(u12(χ′) + u23(χ′))

+ b(λ′32, a32)(u12(χ′) + u13(χ′))

+ u12(χ′)u13(χ′) + u13(χ′)u23(χ′) + u23(χ′)u12(χ′)
))
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for χ ∈ Π2(A), where ΨP,χ′

A is as in Theorem 8.2;

ΦA,Mk
(a, χMk) =

1
4

∑
w∈WA

(
dG

A(Mk,Mi)ΦMi

A,A(wa, χ) + dG
A(Mk,Mj)Φ

Mj

A,A(wa, χ)
)

for χ ∈ Π2(A′Mk
) and

ΦA,G(a, χG) = χ(a)
for χ ∈ Π2(A′G).

The statement gives the full Fourier transform, because IA(wa) = IA(a) for
w ∈WA.

Sketch of the proof. As in the preceding proof, we conclude easily from Theo-
rems 6.2, 8.1 and 10.1 that the putative Fourier transforms are correct on a con-
nected component of the given chamber AP123 up to a linear combination of terms
tλ
′
, where λ′ is in the WA-orbit of λ resp. λ ◦Ad(c−1).
The formula for ΦA,A follows from Theorem 7.2.
In the case of ΦA,Mk

, no asymptotic formula is available. Here one has to check
that the putative Fourier transform satisfies the jump relations (7.1) connecting it
with the function ΦMk,Mk

given in Theorem 10.2. This is a cumbersome calculation
using equation (8.1). In the end, one concludes that the difference between putative
and real Fourier transform is a linear combination of characters on each connected
component of A, and being tempered by [10], Theorem 4.1, equation (4.4), it must
vanish.

As in the preceding theorem, the assertions about the discrete contributions
follow from [10], equation (4.7).
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