Übungen zur Elementaren Zahlentheorie

Blatt 4 - Abgabe bis 16.11.2006

- 16. Beweisen Sie, dass für Pythagoräische Tripel (a_1, b_1, c_1) und (a_2, b_2, c_2) auch $(a_1a_2 b_1b_2, a_1b_2 + a_2b_1, c_1c_2)$ ein Pythagoräisches Tripel (aus nicht notwendigerweise positiven Zahlen) ist.
- 17. Finden Sie den Rest von 19^{135} bei Division durch 13 und den Rest von 5^{1000} bei Division durch 16.
- 18. Beweisen oder widerlegen Sie für ganze Zahlen m > 0, n > 0, a und b:
 - (a) Ist $na \equiv nb \pmod{m}$, dann gilt auch $a \equiv b \pmod{m}$.
 - (b) Ist $na \equiv nb \pmod{nm}$, dann gilt auch $a \equiv b \pmod{m}$.
 - (c) Ist $a \equiv b \pmod{m}$, dann gilt auch $a^n \equiv b^n \pmod{m^n}$.
- 19. Formulieren und beweisen Sie die Teilbarkeitsregeln durch 3 und 11 im Dezimalsystem und die Teilbarkeitsregeln durch 3 und 7 im Dualsystem.
- 20.* Für natürliche Zahlen a und b gelte

$$2a^2 + a = 3b^2 + b$$
.

Man beweise, dass a - b, 2a + 2b + 1 und 3a + 3b + 1 Quadratzahlen sind.