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1. Introduction

Two of the first results learned in a linear algebra course concern finding normal
forms for linear maps between vector spaces.

We may consider a linear map f : V → W between vector spaces over some
field k. There exist isomorphisms V ∼= Ker(f)⊕ Im(f) and W ∼= Im(f)⊕Coker(f),
and with respect to these decompositions f = id ⊕ 0.

If we consider a linear map f : V → V with V finite dimensional, then we can
express f as a direct sum of Jordan blocks, and each Jordan block is determined
by a monic irreducible polynomial in k[T ] together with a positive integer.

We can generalise such problems to arbitrary configurations of vector spaces
and linear maps. For example

U1
f
−→ V

g
←− U2 or U

f
−→ V

g
−→ W.

We represent such problems diagrammatically by drawing a dot for each vector
space and an arrow for each linear map. So, the four problems listed above corre-
spond to the four diagrams

A : B : C : D :

Such a diagram is called a quiver, and a configuration of vector spaces and linear
maps is called a representation of the quiver: that is, we take a vector space for
each vertex and a linear map for each arrow.

Given two representations of the same quiver, we define the direct sum to be
the representation produced by taking the direct sums of the vector spaces and
the linear maps for each vertex and each arrow. Recall that if f : U → V and
f ′ : U ′ → V ′ are linear maps, then the direct sum is the linear map

f ⊕ f ′ : U ⊕ U ′ → V ⊕ V ′, (u, u′) 7→ (f(u), f ′(u′)).

If we choose bases, then the direct sum corresponds to a block diagonal matrix.
A representation is called decomposable if there exists a choice of basis for each
vector space such that all linear maps are simultaneously represented by block
diagonal matrices. If there exists no such choice of bases, then the representation is
called indecomposable. Clearly each finite dimensional representation is, after base
change, the direct sum of indecomposable representations, and the Krull-Remak-
Schmidt Theorem states that this decomposition is essentially unique.

The basic aim is therefore to classify all possible indecomposable representa-
tions (up to base change) of a given quiver.

For the one-subspace quiver, labelled A above, we have seen that every represen-
tation can be written as the direct sum of the three indecomposable representations

k k k 0 0 k
1

For the Jordan quiver, quiver B, each representation is a direct sum of Jordan
blocks, and these are indecomposable as seen by considering the corresponding
minimal polynomials.

For the two-subspace quiver, quiver C, we can use the rank-nullity theorem to
show that there are precisely six indecomposable representations

k k k k k 0 0 k k

0 k 0 k 0 0 0 0 k

1 1 1 1
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The problem of classifying all indecomposable representations of a given quiver
is generally consider impossible, so one may ask for which quivers there are only
finitely many indecomposables, and in these cases classify them. More generally,
one may ask if the possible dimensions of indecomposables can be determined.

The first question was answered by Gabriel in 1972.

Theorem 0.1 (Gabriel). A connected quiver admits only finitely many inde-
composables if and only if it is an oriented Dynkin graph. In this case the indecom-
posables are in bijection with the set of positive roots of the simple Lie algebra with
the same Dynkin graph. This bijection is given via the dimension of an indecom-
posable.

The Dynkin graphs are

An :

Dn :

E6 :

E7 :

E8 :

where the suffix gives the number of vertices.
We have already considered two examples of type A, namely the one-subspace

quiver · → · of type A2 and the two-subspace quiver · → · ← · of type A3. If we
label the vertices in the Dynkin graph of type A from left to right by the numbers
1, . . . , n, then the positive roots are given by the closed intervals [i, j] for i ≤ j.
Thus there are 1

2n(n + 1) such positive roots. We see that the positive roots and
the dimensions of the indecomposable representations we described above coincide
in our two examples, thus verifying Gabriel’s Theorem in these two cases.

An answer to the second question was given by Kac in 1982.

Theorem 0.2 (Kac). Given an arbitrary (connected) quiver, the set of dimen-
sions of the indecomposables coincides with the set of positive roots of the associated
(indecomposable) Kac-Moody Lie algbera (or generalised Kac-Moody Lie algebra if
the quiver contains vertex loops).

This raises the question of how deep the connection between quiver represen-
tations and Kac-Moody Lie algebras goes: can we explain Kac’s Theorem?

The answer was provided by Ringel in 1990 in the case of Dynkin quivers,
and by Green in 1995 for a general quiver. Ringel described how to construct an
associative algebra from the category of representations of a given quiver over a fixed
finite field k. The structure constants of this algebra reflect the possible extensions
in the category. The subalgebra generated by the simple nilpotent representations,
the composition algebra, is then isomorphic to the positive part of the quantised
enveloping algebra of the associated Lie algebra (specialised at v2 = |k|).

This result was extended by Sevenhant and Van den Bergh in 2001 to show
that the whole Ringel-Hall algebra can be viewed as the positive part of the quan-
tised enveloping algebra of a generalised Kac-Moody Lie algebra (although this Lie
algebra now depends on the finite field k). Deng and Xiao then showed in 2003 how
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this approach could be used to deduce Kac’s Theorem, by considering the charac-
ter of the Ringel-Hall algebra on the one hand and the character of the quantised
enveloping algebra on the other.

The aims of these lectures are as follows:

• develop the basic representation theory of quivers;
• introduce the Ringel-Hall algebra and study its basic properties;
• prove Green’s Formula, showing that the Ringel-Hall algebra is a self-dual

Hopf algebra;
• outline the necessary results from quantum groups necessary to prove the

isomorphism of Sevenhant and Van den Bergh;
• obtain a presentation of the Ringel-Hall algebra by generators and rela-

tions, and give Deng and Xiao’s proof of Kac’s Theorem;
• show how to use Green’s Formula to prove the existence of Hall polyno-

mials for cyclic quivers, Dynkin quivers and all other tame quivers;
• describe the reflection functors and explain the construction due to Bern-

stein, Gelfand and Ponomarev (1973) of the indecomposable representa-
tions for a Dynkin quiver;

• use this theory to describe Poincaré-Birkhoff-Witt bases for the Ringel-
Hall algebra in the Dynkin case;

• explain Lusztig’s construction of the canonical basis of the Ringel-Hall
algebra in the Dynkin case.

Exercises 1.

(1) Classify the indecomposables for the quivers · ← · → · and · → · → ·.
(2) Verify Gabriel’s Theorem for the quiver of type An with linear orientation

(all arrows go from left to right).
(3) Verify Gabriel’s Theorem for the three-subspace quiver (of type D4).

There are twelve positive roots in this case.
(4) We know that the four-subspace problem is not a Dynkin quiver. There-

fore there exist infinitly many indecomposable representations. Find in-
finitely many indecomposables for the dimension (1, 1, 1, 1, 2) when k is
an infinite field.





CHAPTER 1

Representation Theory of Quivers

7



8 1. REPRESENTATION THEORY OF QUIVERS

1. Quivers and Representations

A quiver is a finite directed graph, in which we allow multiple edges and vertex
loops. More precisely, it is a quadruple Q = (Q0, Q1, t, h) consisting of finite sets
Q0 and Q1 and two maps t, h : Q1 → Q0. The elements of Q0 are called the vertices
of Q and those of Q1 the arrows. We draw an arrow a : t(a) → h(a) for each a ∈ Q1.
Examples include

(1) Q0 = {1, 2}, Q1 = {a} with t(a) = 1 and h(a) = 2. Then Q is the
one-subspace quiver

1 2
a

(2) Q0 = {1}, Q1 = {a} with t(a) = h(a) = 1. Then Q is the Jordan quiver

1 a

(3) Q0 = {1, 2, 3}, Q0 = {a, b} with t(a) = 1, t(b) = 3 and h(a) = h(b) = 2.
Then Q is the two-subspace quiver

1 2 3
a b

A subquiver Q′ of a quiver Q is given by a pair (Q′
0, Q

′
1) such that t(a), h(a) ∈

Q′
0 for each a ∈ Q′

1. A subquiver Q′ is called full if Q′
1 contains all arrows a ∈ Q1

such that t(a), h(a) ∈ Q′
0. The opposite quiver Qop has the same sets Q0 and Q1

but with top = h and hop = t. The underlying graph of Q is given by forgetting
the orientation of the arrows; that is, by repacing each arrow by an edge.

We will always assume that Q is connected; that is, it is not the disjoint union
of two non-empty subquivers.

Let Q be a quiver and k a field. A representation of Q is a collection X =(
{Xi}i∈Q0

, {Xa}a∈Q1

)
consisting of a vector space Xi for each vertex i and a linear

map Xa : Xt(a) → Xh(a) for each arrow a. A morphism of representations θ : X → Y

is a collection θ =
(
{θi}i∈Q0

)
of linear maps θi : Xi → Yi for each vertex i such

that Yaθt(a) = θh(a)Xa for each arrow a. In other words, for each arrow a we have
a commutative diagram

Xt(a)
Xa−−−−→ Xh(a)yθt(a)

yθh(a)

Yt(a)
Ya−−−−→ Yh(a)

(1.1)

This defines a category Repk Q. We remark that θ is an isomorphism if and
only if each θi is an isomorphism. We denote by repk Q the full subcategory with
objects the finite dimensional representations; that is, those representations X such
that each vector space Xi is finite dimensional.

If X is finite dimensional we define the dimension vector of X as

dim X :=
∑

i∈Q0

(dim Xi)ei ∈ ZQ0. (1.2)

Given d =
∑

i diei ∈ ZQ0 we write supp(d) := {i ∈ Q0 : di 6= 0}. We call d a
dimension vector if di ≥ 0 for all i.

By choosing bases for each Xi we can represent each linear map Xa by a matrix.
It is clear that if two representations X and Y are isomorphic, then we can choose
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bases for each Xi and each Yi such that, for each arrow a, the linear maps Xa and
Ya are represented by the same matrix.

Given a dimension vector d we form the representation variety

Rep(d) :=
⊕

a∈Q1

M
(
dh(a) × dt(a)

)
. (1.3)

To each point x ∈ Rep(d) we have a representation X such that Xi = kdi and Xa

is the linear map associated to the matrix xa (with respect to the standard bases).
We note that dim X = d. Changing bases yields an action of the group

GL(d) :=
∏

i∈Q0

GL(di) (1.4)

on the representation variety Rep(d). This action is given explicitly by

(g · x)a = gh(a)xag−1
t(a). (1.5)

We observe that two points in Rep(d) give rise to isomorphic representations if and
only if they lie in the same GL(d)-orbit.

Lemma 1.1. There is a bijection between the isomorphism classes of represen-
tations of dimension vector d and GL(d)-orbits on Rep(d).

Given two dimension vectors d and e we define

Hom(d, e) :=
⊕

i

M(ei × di). (1.6)

Given points x ∈ Rep(d) and y ∈ Rep(e) we write

Hom(x, y) := {θ ∈ Hom(d, e) : yaθt(a) = θh(a)xa for all a ∈ Q1}. (1.7)

If X and Y are the corresponding representations, then it is clear that

Hom(X,Y ) ∼= Hom(x, y), Aut(X) ∼= Hom(x, x) ∩ GL(d) = StabGL(d)(x). (1.8)

2. Path Algebras

A path of length n ≥ 1 in Q is a sequence of arrows p = a1 · · · an such that
h(ar) = t(ar+1) for each 1 ≤ r < n. We write t(p) = t(a1) and h(p) = h(an).
Pictorially, if ir = t(ar) = h(ar+1), then

p : i1 i2 i3 in−1 in
a1 a2 an

(2.1)

Clearly the paths of length 1 are precisely the arrows of Q. For each vertex i there
is the trivial path εi of length 0 whose head and tail are vertex i.

The path algebra kQ has basis the the set of paths and where p · q is the
path given by the concatenation of the sequences of arrows if h(p) = t(q), and is
zero otherwise. In particular, the εi are pairwise orthogonal idempotents; that is,
εiεj = δijεi. It follows that the path algebra is an associative unital algebra, with
unit 1 =

∑
i εi.

Let Qr denote the set of paths of length r. This extends the notation for the
vertices Q0 and the arrows Q1. We have

kQ =
⊕

r≥0

kQr, (2.2)
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where kQr is the vector space with basis the elements of Qr. Also, by construction,

kQr · kQs = kQr+s. (2.3)

Thus kQ is an N0-graded algebra.
Examples.

(1) Let Q be the one-subspace quiver

1 2
a

Then kQ ∼=

(
k k
0 k

)
⊂ M(2 × 2), where

ε1 =

(
1 0
0 0

)
, ε2 =

(
0 0
0 1

)
, a =

(
0 1
0 0

)
.

(2) Let Q be the Jordan quiver

1 a

Then kQ ∼= k[T ], where ε1 = 1 and a = T .

Lemma 1.2. (1) εikQ has basis those paths p with t(p) = i. Dually, kQεi

has basis those paths p with h(p) = i.
(2) εikQεj has basis those paths p with t(p) = i and h(p) = j.
(3) kQεikQ has basis those paths passing through i.

Lemma 1.3. The εi form a complete set of pairwise inequivalent primitive or-
thogonal idempotents in kQ. In particular, kQ0 =

∏
i kεi is a semisimple algebra

and the modules Pi = εikQ are pairwise non-isomorphic indecomposable projective
modules.

Proof. We have already remarked that the εi form a complete set of orthog-
onal idempotents. Let x be any idempotent. We can write x = x0 + x′ where x0

is the homogeneous part of degree 0. Then x0 = 0 implies x = x′ = 0, by degree
considerations.

To show that the εi are primitive, suppose that εi = x+y is a sum of orthogonal
idempotents. Write x = x0 + x′ and y = y0 + y′ as above. Then εi = x0 + y0 is
sum of orthogonal idempotents of degree 0, hence x0 = 0 or y0 = 0 and so x = 0
or y = 0.

To show that they are inequivalent, suppose we can write εi = xy and εj = yx.
Writing x = x0 +x′ and y = y0 + y′ as before, we see that εi = x0y0 and εj = y0x0.
It follows that i = j. ¤

Proposition 1.4. The category Repk Q is equivalent to the category Mod kQ
of all right kQ-modules. Similarly, repk Q is equivalent to mod kQ. In particular,
both Repk Q and repk Q are abelian.

Proof. Given a representation X of Q, define a kQ-module FX as follows.
As a vector space set FX :=

⊕
i Xi. Let πi : FX → Xi and ιi : Xi → FX be the

canonical projection and inclusion maps with respect to the direct sum decompo-
sition of FX. Now define x · εi := ιiπi(x) and for p = a1 · · · an ∈ Qn

x · p := ιh(p)Xan
· · ·Xa1

πt(p)(x).
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Extending linearly endows FX with the structure of a right kQ-module. If θ : X →
Y is a morphism of representations we define Fθ :=

⊕
i θi to be the direct sum of

linear maps; that is,
Fθ(xi)i∈Q0

= (θi(xi))i∈Q0
.

Thus F determines a functor Repk Q → Mod kQ.
Conversely we define a functor G : Mod kQ → Repk Q as follows. For a module

M we define GM via

(GM)i := M · εi and (GM)a : M · εt(a) → M · εh(a), m 7→ m · a.

If φ : M → N is a morphism, then Gφ : GM → GN is defined via restriction; that
is, for m ∈ M · εi we have φ(m) = φ(m · εi) = φ(m) · εi ∈ N · εi.

Now, GF = id on Repk Q and FG ∼= id on Mod kQ. The difference lies in
the fact that FG(M) =

⊕
i M · εi is an outer direct sum, so we have natural

isomorphism M → FG(M), but not equality.
Clearly F and G preserve finite dimensionality, so induce equivalences between

repk Q and mod kQ. ¤

It follows that we can talk about subrepresentations and direct sums of rep-
resentations, hence also about indecomposable representations. Furthermore we
have the notions of kernels, images and cokernels of morphisms and of short exact
sequences in the category Repk Q, and can apply the techniques of homological
algebra.

As an example, we have for each vertex i a simple representation Si. This has
vector space k at vertex i, all other vector spaces 0 and all linear maps 0. These are
not the only simple representations, however. Consider the Jordan quiver. Then,
for each λ ∈ k we have a simple representation Rλ with vector space k and linear
map given by multiplication by λ. The simple S constructed above coincides with
the representation R0.

A more interesting example is to consider the indecomposable projective mod-
ule Pi = εikQ. This has as basis the set of paths with tail i. What does the
corresponding representation look like?

We consider this for the quiver Q : 1
a
−→ 2. Then kQ =

(
k k
0 k

)
, so P2 has basis

ε2 and P1 has basis ε1, a. Consider the functor G from the proof of Proposition
1.4. Then

P2 · ε1 = 0, P2 · ε2 = kε2,

so that P2 is the representation 0 → k with dimension vector dimP2 = e2. Similarly,

P1 · ε1 = kε1, P1 · ε2 = ka,

and multiplication by a sends basis vector ε1 to a. Thus P1 is the representation

k
1
−→ k with dimension vector dimP1 = e1 + e2.

Exercises 2.

(1) Calculate the indecomposable projectives for the quivers

and

(2) Recall that Q is connected. Show that the centre of kQ equals k[T ] if Q
is an oriented cycle, and k otherwise.
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(3) Prove that kQ is right noetherian if and only if, for all oriented cycles C
in Q and all vertices i ∈ C, there is precisely one arrow with tail i. Dually
kQ is left noetherian if and only if, for all oriented cycles C in Q and all
vertices i ∈ C, there is precisely one arrow with head i. Classify those
quivers which are both left and right noetherian.

(4) Show that εikQεi is isomorphic to the path algebra of a quiver which has a
unique vertex and one loop for each primitive cycle of Q starting at vertex
i. (A primitive cycle is a cycle which is not the product of two smaller
cycles.) Let ε be any idempotent. Show that εkQε is again isomorphic
to the path algebra of a (possibly infinite) quiver. Give an example of a
finite quiver Q and an idempotent ε such that εkQε is the path algebra
of an infinite quiver.

(5) Consider the double loop quiver Q

Show that kQ has simple modules of each dimension n ≥ 1. Find an
infinite dimensional simple module.

3. Krull-Remak-Schmidt Theorem

In this section we work over an arbitrary k-algebra A.

Lemma 1.5 (Fitting). For M ∈ mod A we have that M is indecomposable if
and only End(M) is local; that is, every endomorphism is either an automorphism
or nilpotent.

Proof. Let dim M = n be a finite dimensional module and f ∈ End(M) an
A-endomorphism of M . We can decompose M into its generalised eigenspaces with
respect to f , so M = M1 ⊕ · · · ⊕ Mr where Mi = Ker(pi(f))n for some monic
irreducible polynomial pi(t) ∈ k[t].

Since f is an A-endomorphism of M , the same is true of each polynomial in
f . In particular, each (pi(f))n is an A-endomorphism of M , so that the kernel is a
A-submodule. Thus the decomposition into generalised eigenspaces is also a direct
sum decomposition in mod A.

Now, if M is indecomposable, then each endomorphism must have characteristic
polynomial of power of a unique irreducible polynomial. An endomorphism is
thus nilpotent if its characteristic polynomial equals tn, and is an automorphism
otherwise.

Conversely, if M = M1 ⊕ M2 is decomposable, then the projection maps give
rise to two non-zero orthogonal idempotents in End(M), and these both have eigen-
values 0 and 1. ¤

Corollary 1.6. Let M be indecomposable, f, g ∈ End(M) nilpotent and θ ∈
End(M) an automorphism. Then f + g is nilpotent and f + θ is an automorphism.

Proof. Let f and g be nilpotent, say fn = 0 = gn, and let θ be an automor-
phism. Clearly

(1 − f)(1 + f + f2 + · · · + fn−1) = 1,

so 1− f is an automorphism of M . Also −θ−1f is nilpotent, since it has eigenvalue
0. Hence θ + f = θ(1 + θ−1f) is an automorphism.



3. KRULL-REMAK-SCHMIDT THEOREM 13

Suppose that f + g = θ is an automorphism. Then f = θ − g, and θ − g is an
automorphism whilst f is nilpotent, a contradiction. Hence f + g is nilpotent. ¤

For modules M and X with X indecomposable we define

RadHom(X,M) := {f ∈ Hom(X,M) : gf nilpotent ∀g ∈ Hom(M,X)}. (3.1)

Lemma 1.7. Let M , N , X and Y be modules with X and Y indecomposable.
Then

(1) RadHom(X,M) is a subspace of Hom(X,M).
(2) RadHom(X,M ⊕ N) = RadHom(X,M) ⊕ RadHom(X,N).
(3) RadHom(X,Y ) = Hom(X,Y ) if X 6∼= Y .

Proof. Let f, f ′ ∈ Rad Hom(X,M) and g ∈ Hom(M,X). Then g(f + f ′) =
gf + gf ′ ∈ End(X) is nilpotent since both gf and gf ′ are nilpotent.

We have the natural isomorphisms Hom(X,M⊕N) ∼= Hom(X,M)⊕Hom(X,N)
and Hom(M⊕N,X) ∼= Hom(M,X)⊕Hom(N,X). Let f = (f1, f2) ∈ Hom(X,M⊕
N) and g = (g1, g2) ∈ Hom(M,X)⊕Hom(N,X). Then gf = g1f1 + g2f2. If f is a
radical morphism, then considering those g with either g2 = 0 or g1 = 0 we deduce
that both f1 and f2 are radical. Conversely, if both f1 and f2 are radical, then g1f1

and g2f2 are nilpotent, so their sum gf is nilpotent, hence f is a radical morphism.
Finally, let Y be indecomposable and consider morphisms f : X → Y and

g : Y → X. Then gf ∈ End(X) is either nilpotent or an automorphism, and
similarly for fg ∈ End(Y ). Now, if fg is nilpotent, say (fg)n = 0, then (gf)n+1 =
g(fg)nf = 0 is nilpotent, and vice versa. Thus fg and gf are either both nilpotent
or both automorphisms. If fg and gf are both automorphisms, then f and g must
both be isomorphisms, hence Y ∼= X. ¤

Theorem 1.8 (Krull-Remak-Schmidt). Let M be a finite dimensional module.
Then we can write M ∼= Xa1

1 ⊕ · · · ⊕ Xar
r with the Xi pairwise non-isomorphic

indecomposable modules and each ai ≥ 1. If M ∼= Y b1
1 ⊕ · · ·Y bs

s is another such
decomposition, then r = s and, after reordering, Xi

∼= Yi and ai = bi.

Proof. Induction on dimension shows that every M ∈ mod kQ decomposes
into a finite direct sum of indecomposable modules. Suppose that M ∼= Xa1

1 ⊕
· · · ⊕Xar

r is such a direct sum decomposition with the Xi pairwise non-isomorphic
indecomposable modules and each ai ≥ 1.

Let Y be indecomposable and consider dim Hom(Y,M)−dim Rad Hom(Y,M)
dim End(Y )−dim Rad End(Y ) . We see

by the previous lemma that this number equals ai if Y ∼= Xi (there is at most
one such i) and 0 otherwise. In particular, this number is independent of the
decomposition. ¤

Exercises 3.

(1) Consider the four subspace quiver, with central vertex 0 and other vertices
1, 2, 3, 4. Define a representation of dimension vector 2re0 + re1 + re2 +
re3 + (r + 1)e4, where the matrices are given by

(
1r

0r

)
,

(
0r

1r

)
,

(
1r

1r

)
and

(
1r 0′

0′ 1r

)
.

Here we have written 0r and 1r respectively for the zero and the identity
r × r-matrices, and 0′ for the zero r × 1-matrix. Show that the endomor-
phism algebra of this representation is just k.
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(2) Let A be a finitely generated k-algebra, say with generators g1, . . . , gr.
Denote by ιi : A → A2r the canonical map onto the i-th component. Con-
sider the five subspace quiver and define a representation as follows. Let
V be the representation of the four subspace quiver constructed above,
such that dimV0 = 2r. Let A ⊗k V be the representation given by tak-
ing the tensor product with A at each vertex. Define the fifth subspace
via A 7→ A2r = (A ⊗k V )0, a 7→

∑r
i=1

(
ιi(a) + ιi+r(gia)

)
. Show that

the endomorphism algebra of this representation is isomorphic to the set
of all k-automorphisms of A which commute with each of the endomor-
phisms a 7→ gia. Hence show that this algebra is isomorphic to Aop. (This
construction is due to S. Brenner.)

(3) Show that all finitely generated k-algebras arise as the endomorphism
algebra of some module over the three Kronecker quiver.

4. Heredity and Tensor Algebras

We have already observed that kQ =
⊕

r≥0 kQr is a graded algebra such that

kQ0
∼=

∏
i kεi is semisimple and kQr · kQs = kQr+s. In this section we show that

kQ is actually the tensor algebra of the bimodule kQ1 over kQ0. Moreover, we
show that all such tensor algebras Λ are hereditary algebras.

A ring is called hereditary if each module in Mod Λ has a projective resolution
of length at most 1, i.e. gl dim Λ ≤ 1. This is equivalent to saying that every
submodule of a projective module is again projective, hence the term hereditary.

Let Λ0 be a semisimple ring and Λ1 a finite length Λ0-bimodule. The tensor
ring T (Λ0,Λ1) is the N-graded Λ0-module

Λ :=
⊕

r≥0

Λr, where Λr := Λ1 ⊗Λ0
· · · ⊗Λ0

Λ1 (r times) (4.1)

and with multiplication given via the natural isomorphism Λr ⊗Λ0
Λs

∼= Λr+s. If
λ ∈ Λr is homogeneous, we write |λ| = r for its degree.

In the case of a path algebra kQ, we see that each kQr is a kQ0-bimodule
and that as bimodules, kQr

∼= kQ1 ⊗kQ0
· · · ⊗kQ0

kQ1 (r times). Under this
identification, the multiplication in the path algebra is precisely the concatenation
of tensors, thus the path algebra is an example of a tensor ring.

Let Λ be a tensor ring as above. The graded radical of Λ is the ideal Λ+ :=⊕
r≥1 Λr. Note that Λ+

∼= Λ1 ⊗Λ0
Λ as a right Λ-module.

Theorem 1.9. Let Λ be a tensor ring and M ∈ ModΛ.

(1) There is a projective resolution of M

0 → M ⊗Λ0
Λ+

δM−−→ M ⊗Λ0
Λ

εM−−→ M → 0

where, for m ∈ M , λ ∈ Λ and µ ∈ Λ1,

εM (m ⊗ λ) := m · λ,

δM (m ⊗ (µ ⊗ λ)) := m ⊗ (µ ⊗ λ) − m · µ ⊗ λ.

(2) There is an injective resolution of M

0 → M
εM

−−→ HomΛ0
(Λ,M)

δM

−−→ HomΛ0
(Λ+,M) → 0
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where, for m ∈ M , λ ∈ Λ and µ ∈ Λ1,

εM (m)(λ) := m · λ,

δM (f)(λ ⊗ µ) := f(λ ⊗ µ) − f(λ) · µ.

In particular, Λ is hereditary.

Proof. We prove only the first statement.
It is clear that εM is an epimorphism and that εMδM = 0. To see that δM

is a monomorphism, we decompose M ⊗ Λ =
⊕

r≥0 M ⊗ Λr, and similarly for

M ⊗ Λ+. Then δM restricts to maps M ⊗ Λr → (M ⊗ Λr) ⊕ (M ⊗ Λr−1) for each
r ≥ 1, and moreover acts as the identity on the first component. In particular, if∑t

r=1 xr ∈ Ker(δM ) with xr ∈ M ⊗ Λr, then xt = 0. Thus the kernel of δM is

trivial. Similar considerations show that M ⊗ Λ =
(
M ⊗ Λ0

)
⊕ Im(δM ), whence

Ker(εM ) = Im(δM ).
It remains to show that this is a projective resolution. Since Λ0 is semisimple,

each Λ0-module is projective. Thus M ⊗Λ0
Λ and M ⊗Λ0

Λ+
∼=

(
M ⊗Λ0

Λ1

)
⊗Λ0

Λ
are both projective Λ-modules. ¤

Theorem 1.10 (Wedderburn). Let Γ be a finite dimensional algebra over a
perfect field k. Then there exists a tensor algebra Λ and an ideal I such that
Γ ∼= Λ/I and Λr

+ ⊂ I ⊂ Λ2
+ for some r.

Proof. Let J denote the Jacobson radical of Γ, so that Γ/J is a semisimple
k-algebra. Since k is a perfect field, this is a separable algebra, hence there exists
a subalgebra Γ0 ⊂ Γ with Γ = Γ0 ⊕ J (as Γ0-bimodules).

Moreover, we can consider the natural epimorphism J → J/J2. Again, this
is split as Γ0-bimodules (since Γe

0 = Γ0 ⊗k Γop
0 is semisimple). Thus we can write

J = Γ1 ⊕ J2 as Γ0-bimodules.
Finally we see that Γ is generated as a k-algebra by Γ0 and Γ1, since J is

nilpotent.
Define Λ := T (Γ0,Γ1). There is a surjective algebra homomorphism Λ → Γ,

using the splittings found above. Denote the kernel by I. Then clearly I ⊂ Λ2
+ and

Λ+/I = J . This is nilpotent, so Λr
+ ⊂ I for some r. ¤

Theorem 1.11. Let Λ be a tensor k-algebra and I ⊂ Λ2
+ an ideal such that

Λ/I is hereditary. Assume further that either I is graded, or else Λr
+ ⊂ I for some

r. Then I = 0.

Proof. Let Γ = Λ/I and set Γ+ = Λ+/I. If I is graded, then Γ is again
graded and Γ+ denotes the graded radical. On the other hand, if Λr

+ ⊂ I, then Γ
is finite dimensional and Γ+ equals the Jacobson radical.

Consider the short exact sequence of Γ-modules

0 → Γ+ → Γ → Γ/Γ+ → 0.

Since Γ is hereditary, Γ+ must be projective, hence the following short exact se-
quence of Γ-modules is split:

0 → I/Λ+I → Λ+/Λ+I → Λ+/I → 0.

It follows that there exists a right Λ-submodule M ⊂ Λ+ such that Λ+ = M + I
and M∩I = Λ+I. Since I ⊂ Λ2

+, we have Λ+ = M +Λ2
+. Then Λ2

+ = MΛ++Λ3
+ ⊂

M + Λ3
+, whence Λ+ = M + Λ3

+. By induction, Λ+ = M + Λn
+ for any n ≥ 2.
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If I is graded, then we may further take M to be a graded Λ-module, and from
the above, Λn ⊂ M for all n ≥ 1. Thus M = Λ+. If Λr

+ ⊂ I, then Λr+1
+ ⊂ Λ+I ⊂

M , so that Λ+ ⊂ M + Λr+1
+ ⊂ M and again M = Λ+.

In both cases we have that I = M ∩ I = Λ+I. Since I ⊂ Λ2
+, we see that

I ⊂ Λn
+ for all n ≥ 2. Hence I = 0. ¤

Up to Morita equivalence, we may always assume that Λ0 is basic semisimple.
Note that not all finite dimensional hereditary k-algebras are tensor algebras.

Let A be a basic finite dimensional hereditary k-algebra with Jacobson radical
J . Let 1 = ε1 + · · · + εn be a decomposition into pairwise orthogonal primitive
idempotents. Then one can order these idempotents such that εiJεj = 0 for i ≥ j.
In particular, J =

∑
i<j εiJεj and B :=

∑
i εiAεi is a semisimple subalgebra

satisfying A = B ⊕ J . The question is thus: does J → J/J2 split as B-bimodules?
Generally the answer is no.

Such an example was constructed by Dlab and Ringel. Let K be a field, σ an
automorphism of K and δ a (σ, 1)-derivation; that is, δ is additive and δ(ab) =
σ(a)δ(b) + δ(a)b. Let M be a K-bimodule, isomorphic to K ⊕ K as a left module,
and with the right k-action given via (a, b) · c := (ac + bδ(c), bσ(c)). Let A be the
n × n-upper triangular matrix ring given by taking a copy of K in each position
except (1, n), where we take a copy of the bimodule M . This ring is hereditary and
semiprimary, but is a tensor ring if and only if δ is an inner derivation. Moreover,
if δ is identically zero on k ⊂ Kσ, then A is even a k-algebra.

In fact, for this algebra, the representation type of A cannot be determined by
A/J2.

The result is true, however, if A is representation finite (Ringel). It also holds

if the quiver of A does not contain a subquiver of the form Ãn with all but one
arrow pointing clockwise (Dlab-Ringel).

Exercises 4.

(1) Let Λ =
⊕

n≥0 Λn be an N0-graded algebra. A N0-graded module M is

a Λ-module with a vector space decomposition M =
⊕

n≥0 Mn such that
Mr · Λs ⊂ Mr+s. Describe the graded simple modules for a path algebra
kQ. Prove that each finite dimensional graded module has a filtration by
such simples. Show that the converse does not hold: there exist modules
which admit a filtration by the graded simple modules but which are not
themselves gradable.

(2) Let Λ = T (Λ0,Λ1) be the tensor algebra of a bimodule Λ1 over a semisim-
ple algebra Λ0. Prove that ModΛ is isomorphic to the category whose ob-
jects consist of pairs (M,µM ) with M a Λ0-module and µM : M ⊗Λ0

Λ1 →
M a Λ0-homomorphism, and whose morphisms f : (M,µM ) → (N,µN )
are given by those Λ0-morphisms f : M → N such that µN (f ⊗1) = fµM .

(3) For Λ = kQ a path algebra, translate the first part of Theorem 1.9 into
the language of representations.

(4) Prove the second part of Theorem 1.9 concerning injective resolutions.

5. k-Species and the Euler Form

Let k be a field. By definition, a k-species is a tensor algebra Λ = T (Λ0,Λ1)
such that Λ0 is a basic semisimple finite dimensional k-algebra and Λ1 is a finite
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dimensional Λ0-bimodule on which k acts centrally. This is equivalent to saying
that Λ1 is a Λe

0 = Λ0 ⊗k Λop
0 -module, and implies that Λ is a k-algebra.

Recall that the category of Λ-modules is isomorphic to the category of pairs
(M,µM ) where M is a Λ0-module and µM : M⊗Λ0

Λ1 → M is a Λ0-homomorphism.
We record the fact that the path algebras introduced earlier are precisely those

k-species with Λ0 =
∏

i k is a product of copies of the base field.

Lemma 1.12 (Ringel). Let (M,µM ) and (N,µN ) be two Λ-modules. Consider
the map

γ : HomΛ0
(M,N) → HomΛ0

(M ⊗Λ0
Λ1, N), f 7→ µN (f ⊗ 1) − fµM .

Then Ker(γ) ∼= HomΛ(M,N) and Coker(γ) ∼= Ext1Λ(M,N).

Proof. The kernel of γ is given by those f such that µN (f ⊗1) = fµM , which
by definition is the set of Λ-homomorphisms M → N .

Given a map g : M ⊗Λ0
Λ1 → N we define an extension ηg ∈ Ext1(M,N) as

follows. We set E := M ⊕ N as a Λ0-module and define µg : E ⊗Λ0
Λ1 → E via

µg :=

(
µM 0
g µN

)
: (M ⊗Λ0

Λ1) ⊕ (N ⊗Λ0
Λ1) ⊗Λ0

Λ1 → M ⊕ N.

Then Eg := (E,µg) defines a Λ-module, and the natural Λ0-morphisms

ι =

(
0
1

)
: N → E and π =

(
0 1

)
: E → M

show that Eg is an extension of M by N . We define ηg ∈ Ext1Λ(M,N) to be the class
of this extension. Conversely, any short exact sequence 0 → N → E → M → 0 of
Λ-modules is split over Λ0, so every extension class is of the form ηg for some g.

Thus there is a surjective map HomΛ0
(M ⊗Λ0

Λ1, N) → Ext1Λ(M,N).
It remains to show that this is the cokernel of γ, so suppose g : M ⊗Λ0

Λ1 → N
is such that ηg = 0. Then there exists a commutative diagram of the form

0 −−−−→ N
ι

−−−−→ Eg
π

−−−−→ M −−−−→ 0
∥∥∥

yh

∥∥∥

0 −−−−→ N
ι

−−−−→ M ⊕ N
π

−−−−→ M −−−−→ 0

where M ⊕ N has the natural Λ-module structure given via µM ⊕ µN . Writing

h =

(
h11 h12

h21 h22

)
: M ⊕ N → M ⊕ N

as a matrix of Λ0-homomorphisms, we see that h11 = 1, h22 = 1 and h12 = 0,
by the commutativity of the two squares. Moreover, since h corresponds to a Λ-
homomorphism Eg → M ⊕ N , we must have

µN (h21 ⊗ 1) = h21µM + g.

Thus g = µN (h21 ⊗ 1) − h21µM = γ(h21).
Conversely, if g = γ(h21), then it is clear from the above constructions that

ηg = 0. ¤

Since Λ0 is basic semisimple, we can express it as

Λ0 =
∏

i∈Q0

ki, ki a skew-field. (5.1)
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We denote the unit in ki as εi. We can also decompose Λ1 as

Λ1 =
⊕

i,j∈Q0

kij , kij = εiΛ1εj a ki-kj-bimodule. (5.2)

By definition, k is contained in the centre of each ki and acts centrally on each kij .
Moreover, each ki and kij is finite dimensional over k. We write

si := dimk ki and aij := dimk kij . (5.3)

Note that

si dimki
kij = aij = sj dimkj

kij .

Define a matrix R = RΛ via

R :=
(
siδij − aij

)
i,j∈Q0

. (5.4)

The dimension vector of a Λ-module M is defined as

dimM :=
∑

i∈Q0

(
dimki

M · εi

)
ei ∈ ZQ0. (5.5)

Corollary 1.13. For M and N finite dimensional Λ-modules, we have

〈dim M,dim N〉 := (dim M)R(dimN)t = dim HomΛ(M,N) − dim Ext1Λ(M,N).

We shall also need the symmetrisation of this form, given by

(d, e) := 〈d, e〉 + 〈e, d〉 = (d)(R + Rt)(e)t. (5.6)

As for quivers, there is a natural parameterising space for the modules of di-
mension vector d. As a Λ0-module, this is naturally isomorphic to the k-vector
space M =

∐
i kdi

i . Using the decomposition of Λ1 given above, a module structure

on this space is completely determined by the maps µij : kdi

i ⊗ki
kij → k

dj

j . We
therefore take as parametrising space

Rep(d) :=
⊕

i,j

Homkj

(
kdi

ij , k
dj

j

)
. (5.7)

The notion of isomorphism translates into an action of the group

GL(d) :=
∏

i

GL(di, ki) (5.8)

on the space Rep(d), where the action is given by conjugation. We have used here

the identification kdi

ij = kdi

i ⊗ki
kij . Just as for quivers, the orbits are in bijection

with the isomorphism classes of modules of dimension vector d, and the stabiliser
of a point is isomorphic to the automorphism group of the corresponding module.

Of particular interest for these lectures is the case of a finite field k. We record
the following lemma determining the structure of the algebra ki ⊗k kj , and hence
the possible simple bimodules which can occur as summands of kij .

Lemma 1.14. Let k be a finite field with algebraic closure k̄. Let ki, kj, K and
L be field extensions of k contained in k̄ of degrees si, sj, gcd(si, sj) and lcm(si, sj)
respectively. Then

ki ⊗k kj =
⊕

[σ]∈G

L[σ] where G := Gal(L, k)/Gal(L,K) ∼= Gal(K, k).

The ki-kj-bimodule structure on L[σ] is given by a · λ · b := σ(a)λb.
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Proof. We know that ki ⊗k kj
∼= ki ⊗K (K ⊗k K)⊗K kj and that K ⊗k K ∼=⊕

τ∈Gal(K,k) Kτ . Here, Kτ is the K-K-bimodule which, as a set, is given by K,

and with action a · λ · b := τ(a)λb.
Let σ ∈ Gal(L, k) be a lift of τ . There is a map ki ⊗K Kτ ⊗K kj → Lσ of ki-kj-

bimodules sending λ⊗µ⊗ ν 7→ σ(λ)µν. Since this is surjective and the dimensions
over k agree, this is an isomorphism. In particular, Lσ, as a ki ⊗k kj-module,
depends only on the class [σ] ∈ G. ¤

The matrix RΛ gives us our first connection to Lie algebras.
Consider RΛop , the matrix arising from the opposite algebra. Since this only

depends on dimensions, we see that RΛop = Rt
Λ, the transpose. Thus B := R+Rt =(

2siδij − (aij + aji)
)

is a symmetric integer matrix, which depends only on the
dimensions si = dimk ki and aij + aji = dimk(kij ⊕ kji). In particular, if Λ = kQ
is a path algebra, we see that B is “independent of the orientation of Q”; that is,
any other orientation of the same underlying graph yields the same matrix B.

Note that the symmetric bilinear form (−,−) defined above is given by the
matrix B.

Define now D := diag(si), an invertible, diagonal matrix, and C := D−1B. We
note that

cii = 2(1 − aii/si) ∈ 2Z and cii ≤ 2;

cij ≤ 0 for i 6= j;

sicij = sjcji.

(5.9)

Thus C is a finite symmetrisable Borcherds matrix. (See Section 1 for a general
definition.) Note that a symmetrisable generalised Cartan matrix is a matrix as
above satisfying the extra condition that cii = 2 for all i.

Lemma 1.15. Every such finite symmetrisable Borcherds matrix arises from
some k-species over a finite field k.

Proof. Given si, let ki/k be a field extension of degree si. We may assume
that the indices are given by the integers 1, . . . , n. Then, for i < j, take kij/k a
field extension of degree −sicij and kji = 0. Finally, let kii/k be a field extension of
degree si(1− cii/s). In this way we obtain a k-species corresponding to the matrix
C. ¤

There is a natural way to associate a valued graph to any symmetrisable gener-
alised Cartan matrix. Given C = D−1B with rows and columns indexed by Q0, we
let Q0 be the set of vertices, with vertex i having value si and draw valued edges

si sj
|bij |

for i 6= j, and si si−bii/2

We usually omit the edge if it has value 0.
Note that our definitions are not the standard ones, but are simpler to draw

and retain the necessary information. In particular, we have a bijection between
valued graphs and pairs (D,B) such that C = D−1B is a finite symmetrisable
Borcherds matrix.

Similarly we can associate to any k-species a valued quiver. The vertices cor-
respond to the primitive idempotents, with vertex i having value si, and we draw
valued arrows
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si sj

aij

aji

for i 6= j, and si si−bii/2

If each si = 1, then we can omit these numbers and replace an arrow with
value m by m unvalued arrows. In this way we recover the quiver Q from the path
algebra kQ.

Exercises 5.

(1) Deduce Corollary 1.13 directly from the projective resolution of Theorem
1.9 by applying the functor Hom(−, N).

(2) Given a quiver Q, show that there exists a fully faithful functor Mod kQ →
Mod kQ′ (restricting to mod kQ → mod kQ′) for some other quiver Q′

without oriented cycles (so that kQ′ is finite dimensional).
(3) Use the Euler form to show the the category mod Λ is hereditary, where Λ

is a k-species. [Hint. Recall the definition of Ext2Λ(M,N) in terms of pairs
of exact sequences. The Euler form shows that if 0 → N → E → M → 0
is a short exact sequence, then Ext1Λ(E,X) → Ext1Λ(N,X) is surjective
for all X (by considering dimensions). We deduce that Ext2Λ(M,N) = 0.]

6. An Example

As an example, let K/k be a field extension of degree n. Then K is naturally
a k-K-bimodule, so we can form a k-species Λ using Λ0 := k ×K and Λ1 := K (as
a k-K-bimodule). Then

Λ :=

(
k K
0 K

)
, R =

(
1 −n
0 n

)
, C =

(
2 −n
−1 2

)
(6.1)

and the valued quiver of Λ is

(n, 1)

A representation is given by a k-vector space U , a K-vector space V and a
K-linear map φ : U ⊗k K → V . Now,

HomK(U ⊗k K,V ) ∼= Homk(U,HomK(K,V )) ∼= Homk(U, V ⊗K K) ∼= Homk(U, V ),

using the natural K-k-bimodule structure on K. Thus a representation can also be
thought of as a k-vector space U , a K-vector space V and a k-linear map φ : U → V .

There exists a uniuqe indecomposable (up to isomorphism) of dimension vector
e1 + e2. For, any such is given by a 1-dimensional k-subspace of K. Since we can
act by K∗, we may assume that this has basis vector 1 ∈ K.

Similarly, there are no indecomposable representations of dimension vector e1+
2e2. For, any 1-dimensional k-subspace of K2 has basis vector (1, 0)t up to the
action of GL2(K).

Now consider indecomposable representations of dimension vector 2e1+e2; that
is, a 2-dimensional k-subspace of K — so n ≥ 2. We can view φ : k2 → K as given
by a pair (x, y), where x, y ∈ K are linearly independent over k, thus a basis for
Im(φ). Isomorphisms are given via

k2 (x′,y′)
−−−−→ K

(
a b
c d

)y
yz

k2 (x,y)
−−−−→ K

where x′ =
ax + cy

z
, y′ =

bx + dy

z
. (6.2)
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Since x, y ∈ K are linearly dependent over k, we see that every indecomposable
representation is isomorphic to one given by a pair (x, 1) for some x ∈ K \ k.
Moreover, the pairs (x, 1) and (x′, 1) correspond to isomorphic representations if
and only if there exists an invertible matrix

(
a b
c d

)
such that x′ = (ax+ c)/(bx+ d).

Thus we are interested in this “Möbius transformation” on K \ k, sending
x 7→ (ax + c)/(bx + d).

Consider the endomorphism ring of the indecomposable representation corre-
sponding to (1, x). We see that this is given by those pairs

( (
a b
c d

)
, z

)
∈ M2(k)×K

such that z = bx + d and zx = ax + c; that is, bx2 + (d − a)x − c = 0. If 1, x, x2

are linearly dependent over k, then the endomorphism ring is isomorphic to k[x], a
field extension of k of degree 2. Otherwise the endomorphism ring is simply k.

Furthermore, the group GL2(k) has q(q−1)(q2−1) elements, and the stabiliser
under the Möbius transformation has size q − 1 if 1, x, x2 are linearly independent
over k, or else q2 − 1 if they are linearly dependent.

Case n = 2.
In this case, 1, x, x2 are always linearly dependent over k, so the endomorphism
ring is always isomorphic to K. Thus there are q(q − 1) pairs of the form (y, 1)
in the orbit of (x, 1). Hence all points y ∈ K \ k occur and there is precisly one
indecomposable representation up to isomorphism and its endomorphism ring is K.

Case n = 3.
In this case, there is no subfield k ⊂ L ⊂ K with [L : k] = 2. Hence 1, x, x2 must
be linearly independent and any indecomposable has endomorphism ring k. There
are now q(q2−1) pairs of the form (y, 1) in the orbit of x, hence all points y ∈ K \k
occur. There is thus a unique indecomposable and its endomorphism ring is k.

Case n = 4.
In this case there is a unique subfield k ⊂ L ⊂ K with [L : k] = 2. Any x ∈ L \ k
gives rise to an indecomposable with endomorphism ring L. There are q(q−1) points
in its orbit, which thus covers all elements in L \ k. Thus this indecomposable is
unique up to isomorphism.

For all other points x ∈ K \L, the corresponding indecomposable has endomor-
phism ring k, hence each orbit under the Möbius transformation has size q(q2 − 1).
Therefore there are q orbits, so q isomorphism classes of indecomposables.
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1. Hall Numbers and Ringel-Hall Algebras

In this section, we define the Ringel-Hall algebra H(A) for the category A =
mod Λ, where Λ is a species over some finite field k with q elements.

For three modules M , N and E we define

PE
MN := {(f, g) : 0 → N

f
−→ E

g
−→ M → 0 exact} and PE

MN := |PE
MN |. (1.1)

Note that PE
MN is a finite number since both Hom(N,E) and Hom(E,M) are finite

sets.
We also define

FE
MN := {U ≤ E : E/U ∼= M,U ∼= N} and FE

MN := |FE
MN |. (1.2)

The FE
MN are called Hall numbers.

There is a natural map PE
MN → FE

MN sending (f, g) to the submodule Im(f) =
Ker(g). The fibres are given by the natural action of Aut(M) × Aut(N) on PE

MN ,
and this action is free.

For any object X, the automorphism group Aut(X) ⊂ End(X) is finite. We
write

aX := |Aut(X)|. (1.3)

The above considerations immediately give the following lemma.

Lemma 2.1. FE
MN = PE

MN/aMaN .

The Ringel-Hall algebra H(A) is the free abelian group with basis u[X] param-
eterised by the isomorphism classes of objects in A and with multiplication

u[M ]u[N ] :=
∑

[E]

FE
MNu[E] =

∑

[E]

PE
MN

aMaN
u[E]. (1.4)

We note that this sum is finite since Ext1(M,N) is a finite set. Also, we are
implicitly using the fact that A is essentially small, so that the basis of H(A) is a
set.

We shall often abuse notation and write uX for u[X]. Similarly, although most
summations will be over isomorphism classes of objects, we shall write

∑
E for∑

[E].

Lemma 2.2 (Ringel). The Ringel-Hall algebra H(A) is an associative algebra
with unit u0 corresponding to the zero module. In particular

∑

X

FX
LMFE

XN =
∑

X

FE
LXFX

MN

for all objects L, M , N and E.

Proof. Consider the products uL(uMuN ) and (uLuM )uN . We have

uL(uMuN ) =
∑

X

FX
MNuLuX =

∑

X,E

FE
LXFX

MNuE ,

(uLuM )uN =
∑

X

FX
LMuXuN =

∑

X,E

FX
LMFE

XNuE .
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Comparing coefficients we see that the multiplication is associative if and only if
we have the identity

∑

X

FX
LMFE

XN =
∑

X

FE
LXFE

MN for all L, M , N and E.

We can rewrite this in terms of the numbers PE
MN to get

∑

X

PX
LMPE

XN

aX
=

∑

X

PE
LXPX

MN

aX
for all L, M , N and E.

We will show that there is a bijection

∐

X

PX
LM × PE

XN

Aut(X)
←→

∐

Y

PE
LY × PY

MN

Aut(Y )
,

where the action of Aut(X) on PX
LM × PE

XN is given via

ξ · ((a, b), (f, g)) := ((ξa, bξ−1), (f, ξg)).

Note that this action is free, since g is an epimorphism. Similarly for the action of
Aut(Y ) on PE

LY × PY
MN .

There is a natural map

PX
LM × PE

XN −→
∐

Y

PE
LY × PY

MN

Aut(Y )

given by the pull-back construction. This is well-defined since the pull-back is
uniquely determined up to isomorphism. We can draw this in a commutative dia-
gram as ((a, b), (f, g)) 7→ ((a′, b′), (f ′, g′)), where

N N
yf ′

yf

Y
a′

−−−−→ E
b′

−−−−→ L
yg′

yg

∥∥∥

M
a

−−−−→ X
b

−−−−→ L

In fact, this map only depends on the pair ((a, b), (f, g)) up to the action of Aut(X),
so we obtain an induced map

∐

X

PX
LM × PE

XN

Aut(X)
−→

∐

Y

PE
LY × PY

MN

Aut(Y )
.

There is a map in the other direction induced by taking the push-out, and these
constructions are easily seen to be mutual inverses. In other words, the square

Y
a′

−−−−→ E
yg′

yg

M
a

−−−−→ X

is both a push-out and a pull-back, or a homotopy Cartesian square.
It is clear that u0 is the identity for this multiplication. ¤
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In fact, this proof works much more generally. We only need A to be an
essentially small, finitary, exact category: that is, an exact category for which
Hom(M,N) and Ext1(M,N) are finite abelian groups and such that the isomor-
phism classes of objects form a set.

For example, we may take A to be the finite length modules over some ring
with only finitely many elements, since each such module will have only finitely
many elements [Ringel]. We could also take the category of coherent sheaves over
some projective k-scheme [Schiffmann].

We note that iterated multiplications can be expressed using filtrations. Given
objects M1, . . . ,Mr and E, define

FE
M1···Mr

:= {0 = Ur+1 ⊂ Ur ⊂ · · · ⊂ U1 = E : Ui/Ui+1
∼= Mi},

FE
M1···Mr

:= |FE
M1···Mr

|.
(1.5)

Then

uM1
· · ·uMr

=
∑

E

FE
M1···Mr

uE . (1.6)

The Ringel-Hall algebra H(A) is naturally graded by the Grothendieck group
K(A), where

H(A)α =
⊕

M̄=α

ZuM . (1.7)

Then H acquires the structure of a graded algebra; that is, Hd He ⊂ Hd+e.
Finally we relate Hall numbers to counting extension classes. Given objects M ,

N and E write Ext1Λ(M,N)E ⊂ Ext1(M,N) for the set of all classes of extensions
of M by N which are isomorphic to E.

Proposition 2.3 (Riedtmann’s Formula).

FE
MN =

|Ext1(M,N)E |

|Hom(M,N)|
·

aE

aMaN
.

Proof. Recall that there is a natural map PE
MN → Ext1(M,N)E sending

(f, g) to the class of the corresponding extension, which we may denote by [(f, g)].
The fibre over a given class [(f, g)] consits of those pairs (f ′, g′) = (θf, gθ−1) for
some θ ∈ Aut(E). Pictorially this is given by

0 −−−−→ N
f

−−−−→ E
g

−−−−→ M −−−−→ 0
∥∥∥

yθ

∥∥∥

0 −−−−→ N
f ′

−−−−→ E
g′

−−−−→ M −−−−→ 0

Thus we have an action of Aut(E) on PE
MN , with quotient precisely Ext1(M,N)E .

Thus we need to describe the stabiliser in Aut(E) of some point (f, g) ∈ PE
MN .

The stabiliser of (f, g) is the set of automorphisms θ such that gθ = g and
θf = f . Since (θ−1)f = 0, we see from the long exact sequence for Hom(−, E) that
there exists a unique φ ∈ Hom(M,E) satisfying φg = θ−1. Now 0 = g(θ−1) = gφg.
Since g is an epimorphism, we deduce that gφ = 0. Applying Hom(M,−) shows that
there exists a unique ψ ∈ Hom(M,N) such that φ = fψ, hence that θ = 1 + fψg.

We have shown that there exists an injective map Stab(f, g) → Hom(M,N)
sending θ to the unique ψ such that θ = 1+ fψg. This map is also surjective, since
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if ψ ∈ Hom(M,N), then fψg ∈ End(E) satisfies (fψg)2 = 0, so that 1 + fψg ∈
Aut(E). Hence the stabiliser of any point has size |Hom(M,N)|.

We deduce that PE
MN = |Ext1(M,N)| aE

|Hom(M,N)| . ¤

2. The Coalgebra Structure

Since the multiplication is given by taking two objects and forming extensions
of these, it is natural to ask the dual question about breaking an object into a
submodule and its factor module. We need to be careful here, however, since it is
not true in general that an object has only finitely many subobjects.

Define a comultiplication ∆: H(A) → H(A) → H(A) on the free abelian group
H(A) via

∆(uE) :=
∑

M,N

FE
MN

aMaN

aE
uM ⊗ uN =

∑

M,N

PE
MN

aE
uM ⊗ uN . (2.1)

We see that this notion is really dual to the multiplication, where we used the

structure constants
P E

MN

aM aN
.

Lemma 2.4. The Ringel-Hall coalgebra is coassociative with counit ε(uM ) =
δM0.

Proof. We have

(∆ ⊗ 1)∆(uE) =
∑

N,X

PE
XN

aE
∆(uX) ⊗ uN =

∑

L,M,N,X

PX
LMPE

XN

aXaE
uL ⊗ uM ⊗ uN ,

(1 ⊗ ∆)∆(uE) =
∑

L,X

PE
LX

aE
uL ⊗ ∆(uX) =

∑

L,M,N,X

PE
LXPX

MN

aXaE
uL ⊗ uM ⊗ uN .

Thus the coassociativity of ∆ follows from the same identity used to prove the
associativity of Hall multiplication:

∑

X

PX
LMPE

XN

aX
=

∑

X

PE
LXPX

MN

aX
.

For the counit, we note the identity

(ε ⊗ 1)∆(uE) =
∑

M,N

PE
MN

aE
ε(uM ) ⊗ uN =

PE
0E

aE
1 ⊗ uE = 1 ⊗ uE ,

since PE
0E = aE . Similarly (1 ⊗ ε)∆(uE) = uE ⊗ 1. ¤

In fact, we see from the proof that the comultiplication can also be defined for
exact categories satisfying some finiteness condition: namely that each object has
only finitely many subobjects. This clearly holds for the category of finite length
modules over a finite ring, but fails for the category of coherent sheaves over a
projective scheme. In this case, one needs to work harder, using a completion of
the Hall alegbra [Schiffmann].

The comultiplication respects the grading on H(A) given by the Grothendieck
group K(A):

∆: Hd →
⊕

e+e′=d

He ⊗He′ .
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Also, if S is simple, then uS is a primitive element

∆(uS) = uS ⊗ 1 + 1 ⊗ uS ,

but the converse is almost never true. In fact, it is important to be able to find the
primitive elements [Sevenhant-Van den Bergh].

We can again relate powers of the comultiplication to numbers of filtrations via
the formula

∆r(uE) =
∑

M1,··· ,Mr

FE
M1···Mr

aM1
· · · aMr

aE
uM1

⊗ · · · ⊗ uMr
. (2.2)

3. Examples

One of the simplest examples is when A is the category of vector spaces over
some finite field k with q elements. This is equivalent to the category mod k =
mod kQ for the quiver consisting of a single vertex.

Write um, m ≥ 0, for the basis element u[km] in H(A). Then

umun = Fm+n
mn um+n

and the Hall number Fm+n
mn counts the number of n-dimensional subspaces of km+n,

so equals the number of points in the Grassmannian Gr
(
m+n

n

)
over k. Thus

Fm+n
mn = |Gr

(
m+n

n

)
| =

[
m+n

n

]
+

:= [m+n]+!
[m]+![n]+! ,

where we have used the quantum numbers

[m]+ :=
qm − 1

q − 1
and [m]+! := [m]+[m − 1]+ · · · [1]+.

Note that um =
um

1

[m]+! is a divided power and that Fm+n
mn is given by a “universal

polynomial” in Z[T ], evaluated at T = q = |k|.
We also wish to consider the comultiplication. We first note that

am = |Aut(km)| = |GLm(q)| = (qm−1)(qm−q) · · · (qm−qm−1) = q(
m
2 )(q−1)m[m]+!

This is again given by a universal polynomial. Now,

Pm+n
mn = Fm+n

mn aman = q(
m
2 )+(n

2)(q − 1)m+n[m + n]+!

= q(
m+n

2 )−mn(q − 1)m+n[m + n]+! = am+nq−mn.

Thus

∆(ur) =
∑

m+n=r

q−mnum ⊗ un.

We observe that H(A) is both commutative and cocommutative. In fact, this
holds whenever A is a semisimple category.

Finally we wish to compare the multiplication and comultiplication. We first
calculate

∆(urus) =

[
r + s

r

]

+

∆(ur+s) =
∑

m+n=r+s

q−mn

[
m + n

r

]

+

um ⊗ un,

∆(ur)∆(us) =
∑

a+b=r
c+d=s

q−ab−cduauc ⊗ ubud =
∑

m+n=r+s
a,b,c,d

q−ab−cd

[
m

a

]

+

[
n

b

]

+

um ⊗ un,
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where the latter sum is over those a, b, c and d such that

a + b = r, c + d = s, a + c = m, b + d = r.

In order to compare these formulae, we need a lemma, which is the quantum
analogue of the classical formula

(
m + n

r

)
=

∑

a+b=r

(
m

a

)(
n

b

)
.

Lemma 2.5. The following holds for quantum binomial coefficients:
[
m + n

r

]

+

=
∑

a+b=r

qb(m−a)

[
m

a

]

+

[
n

b

]

+

.

Proof. The proof for ordinary binomial coefficients runs as follows. We divide
the set of size m + n into a set of size m and a set of size n. To choose a subset of
size r is then to choose a decomposition r = a + b together with a subset of size a
from the set of size m and a subset of size b from the set of size n.

We now emulate this proof, using the philosophy that choosing r points from a
set of size n corresponds to choosing an r-dimensional subspace of a vector space of
dimension n. (See John Baez’s Stuff http://math.ucr.edu/home/baez/week184.

html .)
We fix a short exact sequence

0 → km → km+n p
−→ kn → 0

and a decomposition r = a + b. This defines a closed subscheme Ga,b of the

Grassmannian Gr
(
m+n

r

)
via

Ga,b := {U ∈ Gr
(
m+n

r

)
: dim p(U) = b}.

Then Ga,b is naturally a vector bundle over the product Gr
(
m
a

)
× Gr

(
n
b

)
, where

U 7→ (U ∩ km, p(U)). The fibre over some point (V,W ) is canonically isomorphic
to Hom(W,km/V ). Counting points now completes the proof. ¤

Using this result, together with the identity −mn + b(m− a) = −ab− cd− ad,
we see that

∆(urus) =
∑

m+n=r+s
a,b,c,d

q−ab−cd−ad

[
m

a

]

+

[
n

b

]

+

um ⊗ un

∆(ur)∆(us) =
∑

m+n=r+s
a,b,c,d

q−ab−cd

[
m

a

]

+

[
n

b

]

+

um ⊗ un,

(3.1)

where a, b, c and d satisfy the same relations as before. Hence even in this simple
example, the comultiplication is not an algebra homomorphism.

Our second example involves A = mod kQ, where k is a finite field with q
elements and Q is the quiver of type A2

1 2
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We have indecomposables S1, S2 and X, where X is both projective and injec-
tive. Write ui for uSi

. We calculate some monomials in the ui. We have

u2u1 =
∑

E

FE
S2S1

uE = uS1⊕S2
.

For, any exact sequence

0 → S1 → E → S2 → 0

must split, since S2 is projective. Since there are no homomorphisms between
non-isomorphic simple modules, the Hall number FS1⊕S2

S2S1
equals 1.

On the other hand,

u1u2 =
∑

E

FE
S1S2

uE = uX + uS1⊕S2
.

For, there are only two non-isomorphic modules with dimension vector e1 + e2,
namely X and S1 ⊕ S2. Both of these contain a unique submodule isomorphic to
S2, and the cokernel is necessarily S1. Thus both Hall numbers are 1.

We know that End(Si) = k and ai = q − 1. Thus

u2
i = [2]+uS2

i
= (q + 1)uS2

i
.

Similar considerations yield the following tables of Hall numbers FE
SiSjSk

, where

the triples (i, j, k) label the rows and the modules E label the columns:

S1 ⊕ X S2
1 ⊕ S2

(1, 1, 2) q + 1 q + 1
(1, 2, 1) 1 q + 1
(2, 1, 1) 0 q + 1

X ⊕ S2 S1 ⊕ S2
2

(1, 2, 2) q + 1 q + 1
(2, 1, 2) 1 q + 1
(2, 2, 1) 0 q + 1

For example, we have that

u2
1u2 = (q + 1)uS1⊕X + (q + 1)uS2

1⊕S2
and u2u1u2 = uX⊕S2

+ (q + 1)uS1⊕S2
2
.

From these tables we obtain the quantum Serre relations

u2
1u2 − (q +1)u1u2u1 + qu2u

2
1 = 0 and u1u

2
2 − (q +1)u2u1u2 + qu2

2u1 = 0. (3.2)

We next consider the comultiplication. We have already remarked that simple
objects must be primitive, so consider the comultiplication applied to S1 ⊕ S2 and
to X. We have

∆(uS1⊕S2
) = uS−1⊕S2

⊗ 1 + u1 ⊗ u2 + u2 ⊗ u1 + 1 ⊗ uS1⊕S2

∆(uX) = uX ⊗ 1 + (q − 1)u1 ⊗ u2 + 1 ⊗ uX ,
(3.3)

where we have used that End(X) = k and aX = q − 1.
We note that H(A) is neither commutative nor cocommutative. This is gener-

ally the case for Ringel-Hall algebras.
We now try to relate the multiplication and comultiplication. Writing uS1⊕S2

=
u2u1 as a product, we have that

∆(u2)∆(u1) = (u2 ⊗ 1 + 1 ⊗ u2)(u1 ⊗ 1 + 1 ⊗ u1)

= u2u1 ⊗ 1 + u2 ⊗ u1 + u1 ⊗ u2 + 1 ⊗ u2u1 = ∆(u2u1).
(3.4)

If we consider the product

u1u2 = uX + uS1⊕S2
= uX + u2u1,
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however, we obtain

∆(u1)∆(u2) = u1u2 ⊗ 1 + u1 ⊗ u2 + u2 ⊗ u1 + 1 ⊗ u1u2,

∆(u1u2) = ∆(uX) + ∆(u2u1) = u1u2 ⊗ 1 + qu1 ⊗ u2 + u2 ⊗ u1 + 1 ⊗ u1u2.
(3.5)

We again see that ∆ is not an algebra homomorphism.

4. Green’s Formula and the Hopf Algebra Structure

By analogy to quantum groups (which we have not yet introduced), one does
not expect that the multiplication and comultiplication are directly compatible,
but rather that one needs to introduce a twist. Define a new multiplication on the
tensor product H⊗H by

(uA ⊗ uB) · (uC ⊗ uD) := q−〈A,D〉uAuC ⊗ uBuD. (4.1)

Consider our examples again.
The first example, where A is the category of k-vector spaces, yields

∆(ur) · ∆(us) =
∑

a+b=r
c+d=s

q−ab−cd(ua ⊗ ub) · (uc ⊗ ud)

=
∑

a+b=r
c+d=s

q−ab−cd−aduauc ⊗ ubud = ∆(urus),
(4.2)

where we have used that A is a semisimple category, so that

〈ka, kd〉 = dim Hom(ka, kd) = ad.

The second example yields

∆(u2) · ∆(u1) = (u2 ⊗ 1 + 1 ⊗ u2) · (u1 ⊗ 1 + 1 ⊗ u1)

= u2u1 ⊗ 1 + u1 ⊗ u2 + u2 ⊗ u1 + 1 ⊗ u2u1 = ∆(u2u1)

∆(u1) · ∆(u2) = (u1 ⊗ 1 + 1 ⊗ u1) · (u2 ⊗ 1 + 1 ⊗ u2)

= u1u2 ⊗ 1 + qu1 ⊗ u2 + u2 ⊗ u1 + 1 ⊗ u1u2 = ∆(u1u2),

(4.3)

where we have used that

〈S1, S2〉 = −dim Ext1(S1, S2) = −1 and 〈S2, S1〉 = −dim Ext1(S2, S1) = 0.

Hence in both cases ∆ becomes an algebra homomorphism. The main theorem
of this chapter says that this is always the case.

Theorem 2.6 (Green). The comultiplication is an algebra homomorphism with
respect to this twisted multiplication on H⊗H.

Consider what this means for objects M and N . On the one hand we have

∆(uMuN ) =
∑

E

PE
MN

aMaN
∆(uE) =

∑

X,Y

∑

E

PE
MNPE

XY

aMaNaE
uX ⊗ uY , (4.4)
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whreas on the other hand we have

∆(uM ) · ∆(uN ) =
∑

A,B,C,D

PM
ABPN

CD

aMaN
(uA ⊗ uB) · (uC ⊗ uD) (4.5)

=
∑

A,B,C,D

q−〈A,D〉P
M
ABPN

CD

aMaN
uAuC ⊗ uBuD

=
∑

X,Y

∑

A,B,C,D

q−〈A,D〉P
M
ABPN

CDPX
ACPY

BD

aMaNaAaBaCaD
uX ⊗ uY . (4.6)

The theorem is therefore equivalent to the following proposition.

Proposition 2.7 (Green’s Formula). For all M , N , X and Y we have the
identity

∑

E

PE
MNPE

XY

aE
=

∑

A,B,C,D

q−〈A,D〉P
M
ABPN

CDPX
ACPY

BD

aAaBaCaD
.

Rewriting this in terms of Hall numbers we have

∑

E

FE
MNFE

XY

aE
=

∑

A,B,C,D

q−〈A,D〉FM
ABFN

CDFX
ACFY

BD

aAaBaCaD

aMaNaXaY
.

The rest of this section will be devoted to proving this formula. We fix repre-
sentations M , N , X and Y .

Recall that the associativity and coassociativity of H, Lemmas 2.2 and 2.4,
were proved by considering push-out/pull-back diagrams.

In a similar vein, we reformulate Green’s Formula in terms of 3 × 3 exact
commutative diagrams of the form

0 0 0
y

y
y

0 −−−−→ D
δY−−−−→ Y

βY
−−−−→ B −−−−→ 0

yδN

yη

yβM

0 −−−−→ N
ν

−−−−→ E
µ

−−−−→ M −−−−→ 0
yγN

yξ

yαM

0 −−−−→ C
γX

−−−−→ X
αX−−−−→ A −−−−→ 0

y
y

y

0 0 0

(4.7)

For convenience, we also set

α := αMµ = αXξ, β := βMβY = µη,

δ := ηδY = νδN , γ := γXγN = ξν.
(4.8)

The left hand side of Green’s Formula then corresponds to counting “crosses”, given
by ignoring the corners, whereas the right hand side is given by counting “frames”,
given by ignoring the centre.
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Define D(A,B,C,D : E) to be the set of all exact commutative 3× 3 diagrams
of the above form. More precisely, D is the set of all morphisms which fit into such
a diagram.

We note that

e := dimE = dim(M ⊕ N) = dim(X ⊕ Y ) = dim(A ⊕ B ⊕ C ⊕ D). (4.9)

We first wish to count the number of crosses. In particular, we need to know
how to construct the corner objects from a given cross.

Lemma 2.8. Consider a partial exact commutative 3 × 3 diagram of the form

0 0
y

y

0 −−−−→ D −−−−→ Y
y

y

0 −−−−→ N −−−−→ E −−−−→ M −−−−→ 0
y

y

X −−−−→ A −−−−→ 0
y

y

0 0

We can complete this to a full 3 × 3 diagram if and only if the top left square is a
pull-back and the bottom right square is a push-out.

Proof. Suppose that D is a pull-back and A a push-out. Consider the exact
commutative diagram

0 −−−−→ Y ⊕ N
(η 0
0 ν)

−−−−→ E2
(ξ 0
0 µ)

−−−−→ X ⊕ M −−−−→ 0
y(η,ν)

y(1,1)

y

0 −−−−→ E E −−−−→ 0 −−−−→ 0

Since D is a pull-back, the Snake Lemma gives that 0 → D
δ
−→ E

( ξ
−µ)

−−−→ X ⊕ M is
exact. Since A is a push-out, we have by definition that A is the cokernel of the
right-most map. This shows that the first sequence below is exact. The exactness
of the second sequence is shown similarly.

0 −−−−→ D
δ

−−−−→ E
( ξ
−µ)

−−−−→ X ⊕ M
(αX ,αM )
−−−−−−→ A −−−−→ 0

0 −−−−→ D
( δY
−δN

)
−−−−→ Y ⊕ N

(η,ν)
−−−−→ E

α
−−−−→ A −−−−→ 0.

(4.10)

Now consider the exact commutative diagram

0 −−−−→ N
(0
1)

−−−−→ Y ⊕ N
(1,0)

−−−−→ Y −−−−→ 0
∥∥∥

y(η,ν)

yµη

0 −−−−→ N
ν

−−−−→ E
µ

−−−−→ M −−−−→ 0

(4.11)
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If D is a pull-back and A a push-out, then applying the Snake Lemma to (4.11)
and using (4.10) yields the exact sequence

0 −−−−→ D
δ

−−−−→ Y
µη

−−−−→ M
αM−−−−→ A −−−−→ 0.

For, the only non-trivial part is to determine the map x : M → A. We know that
xµ = α = αMµ, so the surjectivity of µ gives x = αM . Factoring µη through its
image B provides a completion of the top right square. Dually we can find C, and
hence a completion to a full 3 × 3 diagram.

Conversely, suppose that we can complete to a full 3 × 3 diagram. Then µη =
β = βY βM and so we have an exact sequence

0 −−−−→ D
δY−−−−→ Y

β
−−−−→ M

αM−−−−→ A −−−−→ 0.

Thus the Snake Lemma applied to (4.11) yields the exact sequence

0 −−−−→ D
( δY
−δN

)
−−−−→ Y ⊕ N

(η,ν)
−−−−→ E

α
−−−−→ A −−−−→ 0.

For, the only non-trivial part is to determine the map x : D → N . We know that
νx = ηδY = δ = νδN , so the injectivity of ν gives x = δN . Hence the top left square
is a pull-back. Dually for the bottom right square. ¤

Define C(A,B,C,D : E) to be the set of all crosses of the form

0
y

Y
yη

0 −−−−→ N
ν

−−−−→ E
µ

−−−−→ M −−−−→ 0
yξ

X
y

0

such that D is the pull-back in the top left corner, A is the push-out in the bottom
right corner, and B and C are the kernels/cokernels whose existence is ensured by
the previous lemma.

Lemma 2.9. The canonical map D(A,B,C,D;E) → C(A,B,C,D;E) is sur-
jective, with fibres isomorphic to Aut(A) × Aut(B) × Aut(C) × Aut(D).

Proof. Given a cross, we may form the pull-back in the top left corner, the
push-out in the bottom right corner, and then complete the top right and bottom
left corners using the previous lemma. Hence the map is surjective. Moreover,
by construction, the fibres are given by the orbits of the canonical action of the
group Aut(A) × Aut(B) × Aut(C) × Aut(D) on D(A,B,C,D;E). This is clear
since all constructions are either kernels or cokernels, hence unique up to unique
isomorphism. In particular, the group action is free. ¤
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Next, define F(A,B,C,D) to be the set of all frames of the form

0 0
y

y

0 −−−−→ D −−−−→ Y −−−−→ B −−−−→ 0
y

y

N M
y

y

0 −−−−→ C −−−−→ X −−−−→ A −−−−→ 0
y

y

0 0

Lemma 2.10. Each frame yields a canonical element in Ext2(A,D) as follows.
We form the push-out of the top left corner and the pull-back of the bottom right
corner to get

D
δY−−−−→ Y

yδN

yη′

N
ν′

−−−−→ S

and

R
µ′

−−−−→ M
yξ′

yαM

X
αX−−−−→ A

Set α′ := αMµ′ = αXξ′ and δ′ := ν′δN = η′δY . Then there exists an exact sequence

0 −−−−→ D
δ′

−−−−→ S
h

−−−−→ R
α′

−−−−→ A −−−−→ 0
and h is uniquely determined by the relation

(
µ′

ξ′

)
h(η′, ν′) =

(
β 0
0 γ

)
.

Proof. Consider the exact commutative diagram

0 −−−−→ D
( δY
−δN

)
−−−−→ Y ⊕ N

(η′,ν′)
−−−−→ S −−−−→ 0

y0

y(β 0
0 γ)

y0

0 −−−−→ R
(µ′

ξ′)
−−−−→ M ⊕ X

(αM ,−αX)
−−−−−−−→ A −−−−→ 0

Since we clearly have the exact sequence

0 −−−−→ D2

(
δY 0
0 δN

)
−−−−−−→ Y ⊕ N

(
β 0
0 γ

)
−−−−−→ M ⊕ X

(
αM 0
0 αX

)
−−−−−−−→ A2 −−−−→ 0,

we can apply the Snake Lemma to the above diagram to obtain the exact sequence

0 −−−−→ D
( 1
−1)

−−−−→ D2 (δ′,δ′)
−−−−→ S

h
−−−−→ R

(α′

α′)
−−−−→ A2 (1,−1)

−−−−→ A −−−−→ 0.
This yields the exact sequence

0 −−−−→ D
δ′

−−−−→ S
h

−−−−→ R
α′

−−−−→ A −−−−→ 0.
Also, by definition, the connecting homomorphism h satisfies

(
µ′

ξ′

)
h(η′, ν′) =

(
β 0
0 γ

)
.
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Since
(
µ′

ξ′

)
is injective and (η′, ν′) surjective, this determines h uniquely. ¤

Lemma 2.11. A frame can be completed to a 3 × 3 diagram if and only if the
corresponding element of Ext2(A,D) vanishes. In particular, every frame can be
completed to a 3 × 3 diagram if and only if the category is hereditary.

Proof. Recall that the exact sequence

0 −−−−→ D
δ′

−−−−→ S
h

−−−−→ R
α′

−−−−→ A −−−−→ 0

vanishes in Ext2(A,D) precisely when there exists an exact commutative diagram
of the form

0 −−−−→ D
δ′

−−−−→ S
π

−−−−→ I −−−−→ 0
∥∥∥

yf

yι

0 −−−−→ D
δ

−−−−→ E
g

−−−−→ R −−−−→ 0
yα

yα′

A A

(4.12)

where h = ιπ is the factorisation of h via its image. In particular, the top right
square is homotopy Cartesian.

Suppose that we can complete the frame to a 3 × 3 diagram. By the universal
property of S and R we have unique maps f : S → E and g : E → R such that

f(ν′, η′) = (ν, η) and

(
µ′

ξ′

)
g =

(
µ

ξ

)
.

In particular, fδ′ = fη′δY = ηδY = δ and similarly α′g = α. Moreover,
(

µ′

ξ′

)
gf(η′, ν′) =

(
µ

ξ

)
(η, ν) =

(
β 0
0 γ

)
,

so that gf = h.
Applying the Snake Lemma to the diagram

0 −−−−→ D
( δY
−δN

)
−−−−→ Y ⊕ N

(η′,ν′)
−−−−→ S −−−−→ 0

y
y(η,ν)

yf

0 −−−−→ 0 −−−−→ E E −−−−→ 0

and using the following exact sequence from (4.10),

0 −−−−→ D
( δY
−δN

)
−−−−→ Y ⊕ N

(η,ν)
−−−−→ E

α
−−−−→ A −−−−→ 0,

gives that

0 −−−−→ S
f

−−−−→ E
α

−−−−→ A −−−−→ 0
is exact. Similarly, the sequence

0 −−−−→ D
δ

−−−−→ E
g

−−−−→ R −−−−→ 0

is exact and we obtain a diagram as in (4.12).
Conversely, suppose we have a diagram as in (4.12). We set

ν := fν′, µ := µ′g, η := fη′, ξ := ξ′g.
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Then, from the definition of h = ιπ = gf , we have
(

µ

ξ

)
(η, ν) =

(
µ′

ξ′

)
h(η′, ν′) =

(
β 0
0 γ

)
.

Hence we can fit E into a commutative 3 × 3 diagram. We need to show that the
middle row and column are exact.

Since S is a push-out, we have the exact commutative diagram

0 −−−−→ D
δY−−−−→ Y

βY
−−−−→ B −−−−→ 0

yδN

yη′

∥∥∥

0 −−−−→ N
ν′

−−−−→ S
β′

−−−−→ B −−−−→ 0
yγN

yγ′

C C

It follows that (
βMβ′

γXγ′

)
(η′, ν′) =

(
β 0
0 γ

)
=

(
µ

ξ

)
f(η′, ν′),

whence βMβ′ = µf and γXγ′ = ξf . We thus have the exact commutative diagram

0 −−−−→ S2
(f 0
0 f)

−−−−→ E2
(α 0
0 α)

−−−−→ A2 −−−−→ 0
y(β′ 0

0 γ′)
y(µ 0

0 ξ)
∥∥∥

0 −−−−→ B ⊕ C
(βM 0
0 γX

)
−−−−−→ M ⊕ X

(αM 0
0 αX

)
−−−−−→ A2 −−−−→ 0

Applying the Snake Lemma, using the exact sequence

0 −−−−→ N ⊕ Y
(ν′ 0
0 η′)

−−−−→ S2
(β′ 0
0 γ′)

−−−−→ B ⊕ C −−−−→ 0,

yields the exact sequence

0 −−−−→ N ⊕ Y
(ν 0
0 η)

−−−−→ E2
(µ 0
0 ξ)

−−−−→ M ⊕ X −−−−→ 0

as required. ¤

We now need to study the fibres of the map from diagrams to frames, however
different frames will yield different isomorphism classes of middle term E. We
therefore use the parameterising space Rep(e). More precisely, let us fix points in
the respective parameterising spaces representing the modules A, B, C, D, M , N ,
X and Y . Then, given a point in Rep(e) representing the module E, we can identify
Hom(N,E) for example with a subset of Hom(dimN, e) depending on the chosen
points representing N and E.

Lemma 2.12. There is a natural surjection
∐

E∈Rep(e)

D(A,B,C,D;E) → F(A,B,C,D)

with fibres of size |GL(e)|q−〈A,D〉E.
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Proof. The first statement is clear, since we are working in an hereditary
category. For the second statement, let us fix a frame as well as the two homotopy
squares

D
δY−−−−→ Y

yδN

yη′

N
ν′

−−−−→ S

and

R
µ′

−−−−→ M
yξ′

yαM

X
αX−−−−→ A

We further obtain the map h : S → R, which we factor via its image as h = ιπ.
The previous lemma tells us that the number of completions of our frame to a

3 × 3 diagram is precisely the number of triples (f, g;E) such that

S
π

−−−−→ I
yf

yι

E
g

−−−−→ R

is homotopy Cartesian. For, if (f̄ , ḡ;E) is another such triple for the same E and
with (

µ′

ξ

)
g =

(
µ

ξ

)
=

(
µ′

ξ′

)
ḡ and f(ν′, η′) = (ν, η) = f̄(ν′, η′),

then (f, g) = (f̄ , ḡ) since
(
µ′

ξ′

)
is injective and (ν′, η′) is surjective.

To construct such a triple (f, g;E), we first take an extension class [(s, g)] ∈
Ext1(R,D)E whose pull-back along ι is precisely the class [(δ′, π)] ∈ Ext1(I,D).
We then find f such that gf = h and fδ′ = s. It is clear that all such triples arise
in this way.

We define the sets

T := {(f, g;E) : f ∈ Hom(S,E), g ∈ Hom(E,R), gf = h, (fδ′, g) ∈ PE
RD}

⊂ Hom(dim S, e) × Hom(e,dim R) × Rep(e)

P := {(s, g;E) : (s, g) ∈ PE
RD} ⊂ Hom(dim D, e) × Hom(e,dim R) × Rep(e).

Consider the maps

T → P → Ext1(R,D) → Ext1(I,D),

where the first map sends (f, g;E) to the triple (fδ′, g;E) and the last map is given
by taking the pull-back along ι.

The first map has fibres of size q[I,D]. For, if (f̄ , g) and (f, g) map to the same
point, then f − f̄ = λπ for some λ : I → E and gλπ = g(f − f̄) = 0. Since π is
surjective, we see that gλ = 0, hence λ = fδ′µ for some µ : I → D (where we have
used that fδ′ is a kernel for g). Then f̄ = f(1 − δ′µπ) and 1 − δ′µπ ∈ Aut(D) for
all µ ∈ Hom(I,D).

The second map has fibres of size |GL(e)|/q[R,D]. For, as as shown in the
proof of Riedtmann’s Formula, Proposition 2.3, the map PE

RD → Ext1(R,D)E has

fibres of size aE/q[R,D], whereas the number of points in Rep(e) isomorphic to E is
|GL(e)|/aE .

Finally, the third map is surjective, since the category is hereditary, and by the
long exact seqence for Hom(−,D) applied to

0 −−−−→ I
ι

−−−−→ R
α′

−−−−→ A −−−−→ 0
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the fibres all have size q[R,D]−[I,D]−〈A,D〉.
Now, the triples (f, g;E) ∈ T fitting into a homotopy Cartesian square as above

are precisely those whose image in Ext1(I,D) equals the class [(δ′, π)]. We deduce
that there are exactly |GL(e)|q−〈A,D〉 such triples. ¤

The proof of Green’s Formula, Proposition 2.7, follows easily. For, it is clear
that

|F(A,B,C,D)| = PM
ABPN

CDPX
ACPY

BD,
∑

A,B,C,D

|C(A,B,C,D;E)| = PE
MNPE

XY .

Also, the lemmas above imply that

q−〈A,D〉P
M
ABPN

CDPX
ACPY

BD

aAaBaCaD
= q−〈A,D〉 |F(A,B,C,D)|

aAaBaCaD

=
1

|GL(e)|

∑

E∈Rep(e)

|D(A,B,C,D;E)|

aAaBaCaD

=
∑

E

|D(A,B,C,D;E)|

aAaBaCaDaE

=
∑

E

|C(A,B,C,D;E)|

aE
.

Note that the last two sums are over isomorphism classes of E, whereas the first
sum is over points in the parameterising space Rep(e).

Summing over all isomorphism classes of A, B, C and D and substituting in
for |C(A,B,C,D;E)| completes the proof.

5. Rank Two Calculations

Our first example is the n-Kronecker quiver

1 2
(n, n)

The corresponding path algebra is Λ =

(
k kn

0 k

)
. The projectives are given

by the rows P1 = (k, kn) and P2 = (0, k), and the injectives are given by the duals

of the columns I1 = D
(
k
0

)
and I2 = D

(
kn

k

)
, where D = Homk(−, k) is the standard

duality.
For a dimension vector d, define

ud :=
∑

dim M=d
M indec

uM . (5.1)

Consider first a product u2ru1u2s , where uim := u[Sm
i ]. Clearly

u1u2s =
∑

dim M=(1,s)

uM , (5.2)

and since dim M = (1, s), we know M ∼= N ⊕ S2s−a , where dim N = (1, a) and
N is indecomposable. Moreover, since Hom(N,S2) = 0, we can use Riedtmann’s
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Formula to deduce that F
St

2⊕N

St
2N

= 1. Thus u2tuN = u[St
2⊕N ], and so

u2ru1u2s =
s∑

a=0

u2ru2s−au(1,a) =
s∑

a=0

[
r + s − a

r

]

+

u2r+s−au(1,a). (5.3)

We have used here that End(Si) = k and Ext1(Si, Si) = 0, so that the subcategory
add(Si) is isomorphic to the category of k-vector spaces.

We now note that u(1,m) = 0 for m > n, and u(1,n) = u[P1]. There are two
ways of seeing this. Let N be a module of dimension vector (1,m). First, we
may consider the corresponding representation µ : k ⊗k kn → km. If m > n, then
dim Im(µ) ≤ n < m. Hence we can find a non-zero complement to the image,
or in other words S2 is a direct summand. If m = n, then the representation is
indecomposable if and only if µ is an isomorphism, or in other words N ∼= P1.
The second way is more categorical. There is an epimorphism N → S1, hence a
morphism f : P1 → N . The cokernel of Im(f) has dimension vector (0, t) for some
t, hence is isomorphic to St

2, which is projective. Thus N is indecomposable if and
only if N ∼= Im(f). It is now clear that dim N ≤ dimP1 = (1, n), and we have
equality if and only if f is an isomorphism.

Coming back to our products u2ru1u2s we see that for r + s = n + 1 there
are n + 2 possible products, but only n + 1 possible summands u2n+1−au(1,a) for
0 ≤ a ≤ n. Hence we have a relation of the form

∑

r+s=n+1

λru2ru1u2s =

n∑

a=0

( n+1−a∑

r=0

λr

[
n + 1 − a

r

]

+

)
u2n+1−au(1,a) = 0. (5.4)

We need to determine the coefficients λr such that
∑n+1−a

r=0 λr

[
n+1−a

r

]
+

= 0 for all
0 ≤ a ≤ n.

Consider first the corresponding result for the ordinary binomial coefficients.
We have

m∑

r=0

(−1)r

(
m

r

)
= 0 for all m. (5.5)

The proof is easy, using the binomial formula

(1 + x)m =
m∑

r=0

(
m

r

)
xr (5.6)

and setting x = −1.
We emulate this proof for the quantum binomial coefficients, using the formula

(1 + x)(1 + qx) · · · (1 + qm−1x) =
m∑

r=0

q(
r
2)

[
m

r

]

+

xr. (5.7)

The proof can be done by induction on m. If we multiply both sides by 1 + qmx,
then the result follows from the identity

q(
r
2)

[
m

r

]

+

+ qm+(r−1
2 )

[
m

r − 1

]

+

= q(
r
2)

[
m + 1

r

]

+

.

Setting x = −1 yields the identity
m∑

r=0

(−1)rq(
r
2)

[
m

r

]

+

= 0 for all m. (5.8)
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Our coefficients must therefore be λr = (−1)rq(
r
2). (Setting x = −q−t gives zero

only when m ≥ t + 1, but we need to obtain zero for all m ≥ 1, so the solution is
unique up to scalars.)

We thus have the relation∑

r+s=n+1

(−1)rq(
r
2)u2ru1u2s = 0. (5.9)

Similarly,

u1ru2u1s =

r∑

a=0

[
r + s − a

s

]

+

u(a,1)u1r+s−a . (5.10)

Note that, since S1 is injective, multiplying on the right by copies of S1 yields direct
summands, whereas it was multiplication on the left for the projective S2.

Again, u(m,1) = 0 for m > n, whereas u(n,1) = u[I2]. Hence we obtain the
relation ∑

r+s=n+1

(−1)sq(
s
2)u1ru2u1s = 0. (5.11)

Our second example is the cyclic quiver

1 2

In this case the category mod Λ is uniserial, without any (non-zero) projective
or injective objects. We simplify the notation by writing, for example 2

1 1r for the
module S2(2) ⊕ Sr

1 , where S2(2) has simple top S2 and Loewy length 2. We then
have the identities

u2u1s = u 2
1 1s−1

+ u1s2

u1ru2u1s =

[
r + s − 2

r − 1

]

+

u 1
2
1 1r+s−2

+

[
r + s − 1

r

]

+

u 2
1 1r+s−1

+

[
r + s − 1

r − 1

]

+

u 1
2 1r+s−1

+

[
r + s

r

]

+

u1r+s2.

(5.12)

For fixed r+s, there are at most four possible summands, hence there is definitely a
relation when r + s = 4. We can do better, though, since there is already a relation
when r + s = 3. In detail, we have the products

u13u2 = u 1
2 12

+ u132

u12u2u1 = u 1
2
1 1

+ [2]+u 1
2 12

+ u 2
1 12

+ [3]+u132

u1u2u12 = u 1
2
1 1

+ u 1
2 12

+ [2]+u 2
1 12

+ [3]+u132

u2u13 = u 2
1 12

+ u132.

(5.13)

We see that

u12u2u1 − u1u2u12 = q
(
u 1

2 12
− u 2

1 12

)
= q

(
u13u2 − u2u13

)
, (5.14)

whence (by symmetry) the relations

qu13u2 − u12u2u1 + u1u2u12 − qu2u13 = 0

qu1u23 − u2u1u22 + u22u1u2 − qu23u1 = 0.
(5.15)

As expected, the relations depend upon the chosen orientation, as of course do
the categories mod Λ.
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Exercises 6.

(1) Calculate the relations for the species Λ =

(
k K
0 K

)
where [K : k] = n,

corresponding to the valued graph

1 2
(n, 1)

where we note that these must be homogeneous of degrees (n + 1, 1) and
(1, 2).

(2) What about an arbitrary rank two species?

6. Twisting the Bialgebra Structure

Rather surprisingly, Ringel [Hall algebras revisited] showed how to remove the
dependence of the Ringel-Hall algebra on the chosen orientation by twisting the
multiplication with respect to the Euler form.

Let v ∈ C be a square-root of q, and denote by Qv ⊂ C the subfield generated
by v±1. We define a new multiplication on Qv ⊗Z H(A) via

uM ∗ uN :=
∑

X

v〈M,N〉FX
MNuX = v〈M,N〉uMuN . (6.1)

It is quickly checked that this multiplication is again associative (since the Euler
form is bilinear), has the same unit u0 and respects the grading.

We consider the relations worked out in the previous section. For the n-
Kronecker quiver

1 2
(n, n)

the Euler form 〈−,−〉 corresponds to the matrix R =

(
1 −n
0 1

)
. We begin by

rewriting uir as the divided power 1
[r]+!u

r
i . The relations from the previous section

thus read
∑

r+s=n+1

(−1)sq(
s
2)

[
n + 1

s

]

+

ur
1u2u

s
1 = 0

∑

r+s=n+1

(−1)rq(
r
2)

[
n + 1

r

]

+

ur
2u1u

s
2 = 0.

(6.2)

Now,

u∗r
1 ∗ u2 ∗ u∗s

1 = v(r
2)+(s

2)ur
1 ∗ u2 ∗ us

1 = v(r
2)+(s

2)−rn+rsur
1u2u

s
1. (6.3)

We also have the following relations between the two types of quantum number

[m]+ = qm−1
q−1 and [m] = vm−v−m

v−v−1 :

[m]+ = vm−1[m],

[m]+! = v(m
2 )[m]!

and

[
m

a

]

+

= v(m
2 )−(a

2)−(m−a
2 )

[
m

a

]
= va(m−a)

[
m

a

]
. (6.4)
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Thus

q(
s
2)

[
n + 1

s

]

+

ur
1u2u

s
1

= v2(s
2) · v(n+1

s )−(s
2)−(r

2)
[
n + 1

s

]
· v−(r

2)−(s
2)+r(n−s)u∗r

1 ∗ u2 ∗ u∗s
1

= v(n+1
2 )

[
n + 1

s

]
u∗r

1 ∗ u2 ∗ u∗s
1 = v(n+1

2 )[n + 1]!u
(∗r)
1 ∗ u2 ∗ u

(∗s)
1 , (6.5)

where we have again used the divided powers

u
(∗r)
1 :=

1

[r]!
u∗r

1 . (6.6)

Therefore we obtain the following relations

∑

r+s=n+1

(−1)su
(∗r)
1 ∗ u2 ∗ u

(∗s)
1 = 0

∑

r+s=n+1

(−1)ru
(∗r)
2 ∗ u1 ∗ u

(∗s)
2 = 0.

(6.7)

Next we consider the cyclic quiver

1 2

In this case, the Euler form is given via the matrix R =

(
1 −1
−1 1

)
. We apply

the same sequence of calculations, so we have the original relation

qu13u2 − u12u2u1 + u1u2u12 − qu2u13 = 0,

Ã qu3
1u2 − [3]+u2

1u2u1 + [3]+u1u2u
2
1 − qu2u

3
1 = 0,

Ã v2u∗3
1 ∗ u2 − v2[3]u∗2

1 ∗ u2 ∗ u1 + v2[3]u1 ∗ u2 ∗ u∗2
1 − v2u2 ∗ u∗3

1 = 0.

We can now divide by v2[3]! and take divided powers to obtain the relations

∑

r+s=3

(−1)ru
(∗r)
1 ∗ u2 ∗ u

(∗s)
1 = 0

∑

r+s=3

(−1)su
(∗r)
2 ∗ u1 ∗ u

(∗s)
2 = 0.

(6.8)

Thus the relations for this twisted multiplication are independent of the orien-
tation.

The natural question is whether we still have a twisted bialgebra, and if so,
what is the twist required on the tensor product.

Define

∆∗(uX) :=
∑

M,N

v〈M,N〉P
X
MN

aX
uM ⊗ uN . (6.9)

This is again coassociative with the same counit and respects the grading.
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Consider ∆∗(uM ∗ uN ). We have, using Green’s Formula,

∆∗(um ∗ uN ) =
∑

E

v〈M,N〉 PE
MN

aMaN
∆∗(uE)

=
∑

X,Y,E

v〈M,N〉+〈X,Y 〉P
E
MNPE

XY

aMaNaE
uX ⊗ uY

=
∑

A,B,C,D
X,Y

v〈M,N〉+〈X,Y 〉−2〈A,D〉 P
M
ABPN

CDPX
ACPY

BD

aAaBaCaDaMaN
uX ⊗ uY .

Here we have used the identity q−〈A,D〉 = v−2〈A,D〉. Next substitute in for

∑

X

PX
AC

aAaC
uX = v−〈A,C〉uA ∗ uC and

∑

Y

PY
BD

aBaD
uY = v−〈B,D〉uB ∗ uD,

as well as for

〈M,N〉 + 〈X,Y 〉 = 〈A + B,C + D〉 + 〈A + C,B + D〉.

This yields

∆∗(uM ∗ uN ) =
∑

A,B,C,D

v〈A,B〉+〈C,D〉+(B,C) P
M
ABPN

CD

aMaN
(uA ∗ uC)⊗ (uB ∗ uD), (6.10)

where we have used the symmetric bilinear form

(B,C) := 〈B,C〉 + 〈C,B〉. (6.11)

On the other hand, we wish to compare this to the following, with respect to
some twisted multiplication on the tensor product:

∆∗(uM ) ∗ ∆∗(uN ) =
∑

A,B,C,D

v〈A,B〉+〈C,D〉P
M
ABPN

CD

aMaN
(uA ⊗ uB) ∗ (uC ⊗ uD). (6.12)

We see that we again have a twisted bialgebra, where we have to use the following
twisted multiplication on the tensor product

(uA ⊗ uB) ∗ (uC ⊗ uD) := v(B,C)(uA ∗ uC) ⊗ (uB ∗ uD). (6.13)

Since we now have a symmetric bilinear form, we can remove this twist on the
tensor product, and hence obtain a true bialgebra, by adjoining a copy of the group
algebra of the Grothendieck group K = K(A) of A:

Zv[K(A)] = Zv[{Kd : d ∈ K(A)}], where KdKe = Kd+e. (6.14)

This we do in the next section. We also write KM = Kdim M for a module M .

7. The extended, twisted Ringel-Hall algebra

We now remove the ∗ from the notation and define the extended, twisted Ringel-
Hall algebra H = H(A) as follows.

Definition 2.13. The (extended, twisted) Ringel-Hall algebra H(A) is a Qv-
algebra which contains the group algebra Zv[K(A)] and which is free as a right
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Zv[K(A)]-module, with basis uM indexed by the isomorphism classes of objects in
A. The multiplication and comultiplication are given via

uMuN :=
∑

X

v〈M,N〉 PX
MN

aMaN
uX , ∆(uX) :=

∑

M,N

v〈M,N〉P
X
MN

aX
uMKN ⊗ uN ,

KduM := v(d,M)uMKd, ∆(Kd) := Kd ⊗ Kd,

(7.1)

with unit 1 = u0 = K0 and counit ε(uMKd) = δM,0.

Theorem 2.14. The (extended, twisted) Ringel-Hall algebra H is a graded bial-
gebra.

Proof. We observe that

(uAKB ⊗ uB)(uCKD ⊗ uD) = (uAKBuCKD) ⊗ (uBuD)

= v(B,C)(uAuCKB+D) ⊗ (uBuD).

The theorem now follows from all our previous considerations. ¤

In fact, we had a choice in defining the comultiplication, since all we needed
was to obtain the twist v(B,C) in the tensor product as above. This we can do in
two ways:

(uAKB ⊗ uB)(uCKD ⊗ uD) = v(B,C)(uAuCKB+D) ⊗ (uBuD)

(uA ⊗ K−AuB)(uC ⊗ K−CuD = v(B,C)(uAuC ⊗ K−(A+C)uBuD.

Thus we could also have taken the comultiplication

∆′(uX) :=
∑

M,N

v〈M,N〉P
X
MN

aX
uM ⊗ K−MuN , ∆′(Kd) := Kd ⊗ Kd. (7.2)

The corresponding bialgebra will be denoted by H′. Both versions can be found in
the literature, and both are needed, since they give the positive and negative parts
of the corresponding quantum group.

8. Bialgebras and Hopf Algebras

We now review some general theory about bialgebras and Hopf algebras, before
applying this to the Ringel-Hall algebra. Our main reference is Kassel.

Let H = (H,µ, η,∆, ε) be a bialgebra over k, where µ and η denote the mul-
tiplication and unit, and ∆ and ε denote the comultiplication and conunit. Let
τ : H ⊗ H → H ⊗ H be the usual flip, sending x ⊗ y to y ⊗ x.

Given H, we can define several other related bialgebras. These are

Hop := (H,µτ, η,∆, ε) the opposite bialgebra,

Hcop := (H,µ, η, τ∆, ε) the co-opposite bialgebra,

Hop-cop := (H,µτ, η, τ∆, ε) the opposite and co-opposite bialgebra.

(8.1)

When H =
⊕

n≥0 Hn is a graded bialgebra with finite dimensional graded

pieces Hn, we can form the (graded) dual H∗ :=
⊕

n≥0 H∗
n. This is again a bialge-

bra.
To see this, we first record a useful lemma.
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Lemma 2.15. Let U , U ′, V and V ′ be k-vector spaces. Then there is a natural
map

Hom(U,U ′)⊗Hom(V, V ′) → Hom(V ⊗U,U ′⊗V ′), (f⊗g) 7→
(
v⊗u 7→ f(u)⊗g(v)

)
.

This is an isomorphism provided one of the pairs (U,U ′), (V, V ′) or (U, V ) consists
of two finite dimensional vector spaces.

In particular we recover the natural maps

U∗ ⊗ V ′ → Hom(U, V ′), U ′ ⊗ V ∗ → Hom(V,U ′), U∗ ⊗ V ∗ → (V ⊗ U)∗. (8.2)

Now, for H as above, we have the natural maps

H∗ ⊗ H∗ → (H ⊗ H)∗
∆∗

−−→ H∗, k
ε∗
−→ H∗, H∗ η∗

−→ k. (8.3)

In particular, H∗ is an algebra. Since each Hi is finite dimensional, we have iso-
morphisms (Hi ⊗ Hj)

∗ ∼= H∗
i ⊗ H∗

j . These yield

µn :
⊕

i+j=n

Hi ⊗ Hj → Hn and µ∗
n : H∗

n →
⊕

i+j=n

H∗
i ⊗ H∗

j . (8.4)

Thus ⊕

n

µ∗
n : H∗ → H∗ ⊗ H∗ (8.5)

defines a comultiplication on H∗, and H∗ is naturally a bialgebra.
An antipode for H is an endomorphism S such that

∑
S(x1)x2 = ηε(x) =

∑
x1S(x2), for all x, where ∆(x) =

∑
x1 ⊗ x2. (8.6)

In other words, S must satisfy the relations

µ(S ⊗ id)∆ = ηε = µ(id ⊗ S)∆. (8.7)

Now, for H a bialgebra, we can equip Endk(H) with a convolution product, defined
via

f ∗ g := µ(f ⊗ g)∆, so that (f ∗ g)(x) =
∑

f(x1)g(x2). (8.8)

Lemma 2.16. The convolution product gives Endk(H) the structure of an as-
sociative algebra, with unit ηε.

The antipode is therefore an inverse of the identity with respect to the convo-
lution product, provided this exists. As such, it is necessarily unique.

Lemma 2.17. (1) The map S is an antipode for H if and only if it is an
antipode for Hop-cop. In this case, S : H → Hop-cop is a morphism of
bialgebras.

(2) If H is a graded bialgebra, then S is an antipode for H if and only if S∗

is an antipode for H∗.
(3) If S is an antipode for H, then Hop has an antipode if and only if S is

invertible, in which case the antipode equals S−1.

Note that S : H → Hop-cop is a morphism of bialgebras if and only if the
following formulae hold:

µ(S ⊗ S) = Sµτ, Sη = η,

(S ⊗ S)∆ = τ∆S, εS = ε.
(8.9)
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In particular, we have that

S(xy) = S(y)S(x) and S(1) = 1. (8.10)

Proof. We prove only the third assertion. Suppose that S′ is an antipode for
Hop. Then

∑
S′(x2)x1 = ηε(x) for all x. Consider now S ∗ SS′. We have

(S ∗ SS′)(x) =
∑

S(x1)SS′(x2) = S
(∑

S′(x2)x1

)
= S

(
ηε(x)

)
= ηε(x).

In particular, SS′ is an inverse for S with respect to the convolution product, hence
SS′ = id.

Conversely, if S is invertible, then we can apply S to both
∑

x2S
−1(x1) and∑

S−1(x2)x1 to show that S−1 is an antipode for Hop. ¤

For bialgebras A and B over k, let (−,−) : A×B → k be a k-bilinear map. We
also have the induced map

(−,−) : (A ⊗ A) × (B ⊗ B) → k, (a ⊗ a′, b ⊗ b′) := (a, b)(a′, b′). (8.11)

The map (−,−) is called a bialgebra pairing if the following properties are satisfied:

(1) (aa′, b) = (a ⊗ a′,∆(b)) and (a, bb′) = (∆(a), b ⊗ b′);
(2) (a, 1) = ε(a) and (1, b) = ε(b).

If A and B are both Hopf algebras, then (−,−) is called a Hopf pairing provided
we have the additional property

(3) (S(a), b) = (a, S(b)).

There is a natural pairing H∗ ⊗ H → k given by evaluation.

Exercise 7. Prove the following isomorphism of bialgebras:

H′(Aop) ∼= H(A)op−cop.

9. The Antipode for the Ringel-Hall Algebra

Define an endomorphism S of H via S(Kd) := K−d and, for M 6= 0,

S(uMK−M ) :=
∑

r≥1

∑

X1,...,Xr
non-zero

(−1)rv2
P

i<j〈Xi,Xj〉 aX1
· · · aXr

aM
FM

X1···Xr

∑

N

FN
X1···Xr

uN .

(9.1)
Note that for r = 1 we obtain −uM . In general we set

S(uMKd) := K−(M+d)S(uMK−M ). (9.2)

Theorem 2.18 (Xiao). The map S is an antipode for H.

Proof. We wish to show that S ∗ id = ηε, the result for id∗S being dual. This
is clear for Kd, so consider uMK−M . We have

∆(uMK−M ) =
∑

A,B

v〈A,B〉 aAaB

aM
FM

ABuAK−A ⊗ uBK−M

= uMK−M ⊗ K−M + 1 ⊗ uMK−M

+
∑

A,B
non-zero

v〈A,B〉 aAaB

aM
FM

ABuAK−A ⊗ uBK−M .
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Applying µ(S ⊗ id) thus yields

(S ∗ id)(uMK−M ) = S(uMK−M )K−M + uMK−M

+
∑

A,B
non-zero

v〈A,B〉 aAaB

aM
FM

ABS(uAK−A)uBK−M .

Substituting in for S(uAK−A) shows that
(
(S ∗ id)(uMK−M )

)
KM equals

S(uMK−M ) + uM +
∑

r≥1

∑

X1,...,Xr,B
non-zero

v〈X1+···+Xr,B〉+2
P

i<j〈Xi,Xj〉 aX1
· · · aXr

aB

aM

×
∑

A

FA
X1···Xr

FM
AB

∑

L

FL
X1···Xr

uLuB .

We now observe that ∑

A

FA
X1···Xr

FM
AB = FM

X1···XrB

and that
∑

L

FL
X1···Xr

uLuB = v〈X1+···+Xr,B〉
∑

L,N

FL
X1···Xr

FN
LBuN

= v〈X1+···+Xr,B〉
∑

N

FN
X1···XrBuN .

Substituting back in, setting Xr+1 := B, and then replacing r by r − 1 we obtain

(S ∗ id)(uMK−M )KM

= S(uMK−M ) + uM

−
∑

r≥2

∑

X1,...,Xr
non−zero

v2
P

i<j〈Xi,Xj〉 aX1
· · · aXr

aM
FM

X1···Xr

∑

N

FN
X1···Xr

uN

= 0.

The general case for uMKd follows immediately. ¤

Corollary 2.19. The antipode is invertible, with inverse given by S′(Kd) :=
K−d and, for M 6= 0,

S′(K−MuM ) :=
∑

r≥1

∑

X1,...,Xr
non-zero

(−1)rv2
P

i<j〈Xi,Xj〉 aX1
· · · aXr

aM
FM

X1···Xr

∑

N

FN
Xr···X1

uN .

In general, we set

S′(KduM ) := S′(K−MuM )K−(M+d).

Proof. Essentially the same proof shows that S′ is an antipode for the oppo-
site bialgebra Hop. The result then follows from standard results for Hopf algebras
(as in the previous section). ¤

10. Green’s Hopf Pairing

In this section we define Green’s Hopf pairing, and hence show that the Ringel-
Hall algebra H is a self-dual Hopf algebra.
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Proposition 2.20. The symmetric bilinear form on H×H given via

{uMKd , uNKe} := δMN
v(d,e)

aM

is a Hopf pairing. Hence H is a self-dual Hopf algebra.

Proof. We need to check the three axioms of a Hopf pairing. Since uM and
uN are orthogonal for M 6∼= N , we have

{uMKd , uNKeuP Kf} = {uMKd , v〈N,P 〉+(P,e)FM
NP uMKe+f}

= v〈N,P 〉+(P,e)+(d,e+f)FM
NP /aM .

On the other hand,

{∆(uMKd) , uNKe ⊗ uP Kf}

= {v〈N,P 〉FM
NP

aN aP

aM
uNKP+d ⊗ uP Kd , uNKe ⊗ uP Kf}

= v〈N,P 〉+(P+d,e)+(d,f)FM
NP /aM .

Hence the multiplication and comultiplication are adjoint to one another.
Clearly

{uMKd, 1} = δM0 = ε(uMKd).

Finally, consider the antipode. We have

{S(uMKd) , uNKe} = {S(KM+d)S(uMK−M ) , uNKe}

= v−(M+d,N+e)
∑

r≥1

∑

X1,...,Xr
non-zero

(−1)rv2
P

i<j〈Xi,Xj〉FM
X1···Xr

FN
X1···Xr

aX1
· · · aXr

aMaN
.

Since this is symmetric in (M,d) and (N, e), we see that

{S(uMKd) , uNKe} = {uMKd , S(uNKe)}

as required. ¤

11. Primitive Generators for Ringel-Hall Algebras

We finish this chapter with a result of Sevenhant and Van den Bergh showing
that the Ringel-Hall algebra is generated by primitive elements.

Define H+ to be the subalgebra generated by the uM . Then Green’s Hopf
pairing restricts to

{uM , uN} := δMN/aM .

Since aM is a positive integer, we see that the form on H+ is positive definite.
Now, for each α, H+

α is finite dimensional and contains the subspace
∑

β+γ=α; β,γ 6=0

H+
β H+

γ .

Hence we can find an orthogonal basis for the orthogonal complement
( ∑

β+γ=α;β,γ 6=0

H+
β H+

γ

)⊥

.

Let {θi}i∈I be the union of all of these bases for all α > 0.
We note that if α = ei for some i ∈ Q0, then H+

α = QvuSi
and so without loss

of generality we may assume that θi = uSi
. In this way we identify Q0 ⊂ I.
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Lemma 2.21. For each i ∈ I we have

∆(θi) = θi ⊗ 1 + Ki ⊗ θi,

where Ki := Kdim θi
.

Proof. Extend {θi} to a homogeneous orthogonal basis {fr} for H+. We may
assume that f0 = 1. Set ξr := {fr, fr} ∈ Q+

v , a positive real number.
Write ∆(θi) =

∑
r,s crsfrKdim fs

⊗ fs. Then

{θi, frfs} = {∆(θi), fr ⊗ fs} = ξrξscrs.

On the other hand, if both fr and fs are different from 1, then this is zero by
definition of θi (it is orthogonal to all proper products). Hence crs = 0. Also,

{θi, fr} = ξrcr0 = ξrc0r

so that cr0 = c0r = 0 if fr 6= θi, whereas cr0 = c0r = 1 if fr = θi. ¤

We can define a symmetric bilinear form on the lattice ZI via

(i, j) := (dim θi,dim θj). (11.1)

This clearly extends the bilinear form on ZQ0 ⊂ ZI.

Proposition 2.22. This bilinear form satisfies the following properties.

(1) (i, j) ≤ 0 for all i 6= j, and (i, j) = 0 implies θiθj = θjθi;
(2) (i, i) ∈ 2Z, and i 6∈ Q0 implies (i, i) ≤ 0;
(3) Set si := 1 for i 6∈ Q0. Then 1

si
(i, j) ∈ Z for all i, j ∈ I.

In particular, C = D−1B is a symmetrisable Borcherds matrix, where D = diag(si)
and B = ((i, j)).

Proof. Consider

∆(θiθj) = (θi ⊗ 1 + Ki ⊗ θi)(θj ⊗ 1 + Kj ⊗ θj)

= θiθj ⊗ 1 + θiKj ⊗ θj + v(i,j)θjKi ⊗ θi + Ki+j ⊗ θiθj .

Using the adjointness of the multiplication and comultiplication, it follows that

{θiθj , θiθj} = ξiξj and {θiθj , θjθi} = v(i,j)ξjξi,

where ξi = {θi, θi} as before. In particular, we have that

0 ≤ {θiθj − v(i,j)θjθi, θiθj − v(i,j)θjθi} = ξiξj(1 − q(i,j)),

where we have used that v2 = q together with the positive definiteness of the
bilinear form. Since q > 1, we see that (i, j) ≤ 0. Moreover, if (i, j) = 0, then
θiθj = θjθi. This proves the first part.

Next, for all α ∈ ZQ0 we have (α, α) = 2〈α, α〉 ∈ 2Z, hence (i, i) ∈ 2Z for
all i ∈ I. If i 6∈ Q0, then for all j ∈ Q0 we have (dim θi, ej) = (i, j) ≤ 0. Since
dim θi ∈ ZQ0 is a linear combination of the ej with non-negative coefficients, it
follows that (dim θi,dim θi) = (i, i) ≤ 0, proving the second part.

Finally, if i ∈ Q0, then 1
si

(ei, ej) ∈ Z for all j ∈ Q0 by the results in Section

5. It follows that 1
si

(i, j) = 1
si

(ei,dim θj) ∈ Z, since it is a linear combination of
integers. ¤

Corollary 2.23. The Ringel-Hall algebra H is generated by the θi. This in-
duces a ZI-grading, where deg θi = i, which is a refinement of the original ZQ0-
grading.
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We call I the set of simple roots. This splits into two sets, called the real and
imaginary simple roots, where i is real if (i, i) > 0 and imaginary otherwise. Note
that i is real if and only if i ∈ Q0 and there are no vertex loops at i.
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1. Borcherds Lie Algebras

In this section we present some of the main results from the theory of sym-
metrisable Borcherds Lie algebras. It is not intended to be a complete guide, and
(at the moment) we only briefly mention the category O. The main references are
the books by Kac and Carter.

1.1. Symmetrisable Borcherds Matrices. A symmetrisable Borcherds ma-
trix is given by integer matrices C = D−1B indexed by some countable set I such
that D = diag(si) is diagonal with si ≥ 1, B is symmetric with bij ≤ 0 for i 6= j,
and cii ∈ 2Z with cii ≤ 2. We write

Ire := {i : cii = 2} and I im := {i : cii ≤ 0}. (1.1)

We saw in Section 5 how to attach a valued graph to a finite symmetrisable
Borcherds matrix, and that each such arises via the Euler form of an hereditary
algebra over a finite field and valued graphs. A symmetrisable generalised Cartan
matrix is a finite symmetrisable Borcherds matrix such that I = Ire.

A realisation of C is given by a Q-vector space h of countable dimension
equipped with a non-degenerate symmetric bilinear form {−,−} together with a
linearly independent set Π∨ = {Hi : i ∈ I} such that {Hi,Hj} = bij/sisj . Such
a realisation always exists. Moreover, by enlarging h, we may further assume that
there exists an element Hρ such that {Hρ,Hi} = cii/2 for all i ∈ I.

We use {−,−} to identify h with a subspace h∗
0 of its dual h∗, which then has

a non-degenerate symmetric bilinear form (−,−) by transport of structure. We set
ei := si{Hi,−} and ρ := {Hρ,−}, and call Π = {ei : i ∈ I} the set of simple roots.
In summary,

{Hi,Hj} = bij/sisj

ej(Hi) = bij/si = cij

(ei, ej) = bij

and
ρ(Hi) = {Hρ,Hi} = cii/2

ei(Hρ) = (ei, ρ) = bii/2.
(1.2)

We identify the lattice inside h∗ generated by the ei with ZI and call it the root
lattice.

We recall that there exists a pair of bases {Hb : b ∈ B} and {Hb : b ∈ B} of h

such that {Hb,H
c} = δb,c. For any such pair of bases, we have

∑

b∈B

λ(Hb)λ(Hb) = (λ, λ) for all λ ∈ h∗
0. (1.3)

For α =
∑

i αiei ∈ ZI we define its support as

supp(α) := {i ∈ I : αi 6= 0} ⊂ I. (1.4)

Also, given a subset J ⊂ I, we call J disconnected if there exists a non-trivial
decomposition J = J1 ∪ J2 into disjoint subsets such that (ej1 , ej2) = 0 for all
jr ∈ Jr. We remark that, using the correspondence between finite symmetrisable
Borcherds matrices and valued graphs, a subset J ⊂ I is connected in the above
sense if and only if it is the set of vertices of a connected subgraph.

For each i ∈ Ire we define the simple reflection ri on h∗ via

ri(α) := α −
1

si
(α, ei)ei. (1.5)
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The Weyl group W is the group of automorphisms generated by the simple reflec-
tions. It is clear that the Weyl group preserves both h∗

0 and its bilinear form, and
that it restricts to an automorphism of the root lattice ZI.

1.2. Borcherds Lie Algebras. Let h be a realisation of C.

Definition 3.1. We define g̃ to be the Lie algebra generated by h and elements
Ei and Fi for i ∈ I such that h is an abelian Lie subalgebra and

[Ei, Fj ] = δijHi, [H,Ej ] = ej(H)Ej , [H,Fj ] = −ej(H)Fj (1.6)

for all H,H ′ ∈ h, i, j ∈ I.

Proposition 3.2. There is a triangular decomposition g̃ = g̃−⊕h⊕ g̃+, where
g̃+ (respectively g̃−) is the free Lie algebra generated by the Ei (respectively the Fi).
Moreover, g̃ is a ZI-graded Lie algebra, where

deg Ei = ei = −deg Fi and deg H = 0.

Since the form is non-degenerate, we see that

g̃α := {x ∈ g̃ : [H,x] = α(H)x for all H ∈ h}. (1.7)

We remark that all ideals r of g̃ are graded. We write r± := r∩g̃± and r0 := r∩h.
We now endow g̃ with a symmetric bilinear form {−,−}, which is invariant in

the sense that
{x, [y, z]} = {[x, y], z}, (1.8)

and which extends the bilinear form on h.

Theorem 3.3. There is a unique invariant symmetric bilinear form on g̃ ex-
tending the symmetric bilinear form on h̃. In particular, this satisfies

{g̃α, g̃β} = 0 unless α + β = 0 and {Ei, Fi} = 1/si.

Proof. Let g̃(r) be the subspace of g̃ spanned by all Lie monomials of length
at most r. These clearly induce a filtration of g̃.

We start by using the invariance to construct some necessary relations. For
x ∈ g̃α, y ∈ g̃β and H ∈ h we have

β(H){x, y} = {x, [H, y]} = {[x,H], y} = −α(H){x, y}.

It follows that {g̃α, g̃β} = 0 unless α + β = 0.
We introduce the notation

[Ei1 · · ·Eir
] := [Ei1 , [· · · , [Eir−1

, Eir
]]]. (1.9)

Then, for two Lie monomials [Ei1 · · ·Eir
] and [Fj1 · · ·Fjr

], we have

{[Ei1 · · ·Eir
],[Fj1 · · ·Fjr

]} = −{[Ei2 · · ·Eir
], [Ei1Fj1 · · ·Fjr

]}

= −

r∑

s=1

δi1js
{[Ei2 · · ·Eir

], [Fj1 · · ·Hjs
· · ·Fjr

]}

=

r∑

s=1

δi1js
(cjsjs+1

+ · · · + cjsjr
){[Ei2 · · ·Eir

], [Fj1 · · · F̂js
· · ·Fjr

]}.

Thus the definition of the bracket product on Lie monomials of length r is com-
pletely determined by the definition of those of length r − 1. Finally, if ei(H) 6= 0,
then

ei(H){Ei, Fi} = {Ei, [Fi,H]} = {[Ei, Fi],H} = {Hi,H} = ei(H)/si.



56 3. RELATION TO QUANTUM GROUPS AND KAC’S THEOREM

Thus {Ei, Fi} = 1/si and so there is at most one extension of the bilinear form to
the whole of g̃.

We can use the above relations to define a form on pairs of Lie monomials.
That this defines a bilinear form on g̃ follows from the invariance on smaller Lie
monomials together with the Jacobi identity. We deduce that the form is invariant
on g̃. The details can be found in either [Kac] or [Carter]. ¤

We denote the radical of this form by

rad := {x ∈ g̃ : {x, g̃} = 0}.

Then rad is a graded Lie ideal intersecting h trivially.

Lemma 3.4. The ideal rad is the unique maximal (graded) ideal intersecting h

trivially.

Proof. Let r be any ideal intersecting h trivially and suppose that rβ ⊂ rad
for all 0 ≤ β < α. Consider x ∈ rα. Then for all i ∈ I such that αi > 0,
[x, Fi] ∈ rα−ei

⊂ rad. Thus {x, [Fi, y]} = {[x, Fi], y} = 0, and since g̃−α is spanned
by the elements [Fi, y] with y ∈ g̃ei−α, we see that x ∈ rad. ¤

Definition 3.5. The Borcherds Lie algebra associated to the realisation h of
C is the quotient g := g̃/rad. The bilinear form clearly descends to an invariant
symmetric bilinear form on g, and this form induces a non-degenerate pairing

{−,−} : gα × g−α → Q

for all α ∈ ZQ0.

It follows immediately that g is again ZI-graded with g0 = h. Moreover, since
rad intersects h trivially, we see that rad+ is again an ideal and g+ = g̃+/rad+.

Proposition 3.6. For i 6= j ∈ I we have

{(ad Ei)
n(Ej), (ad Fi)

n(Fj)} = (−1)n n!

sj

n−1∏

r=0

(cij + rcii/2).

In particular, the following Serre elements all lie in the radical:

(ad Ei)
1−cij (Ej) and (ad Fi)

1−cij (Fj) if i ∈ Ire and j 6= i

[Ei, Ej ] and [Fi, Fj ] if cij = 0.
(1.10)

Proof. We begin by observing that

(ad Ei)(ad Fi)
n(Fj) =

∑

r+s=n−1

(ad Fi)
r(ad Hi)(ad Fi)

s(Fj)

= −
∑

r+s=n−1

(cij + scii)(ad Fi)
n−1(Fj)

= −n(cij + (n − 1)cii/2)(ad Fi)
n−1(Fj).

The first statement now follows by induction on n, using the invariance of the
bilinear form. In particular, the Serre relations correspond to elements in the
radical of the bilinear form, since g̃nei+ej

is one dimensional. The last statment is
now clear. ¤
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Definition 3.7. Let J ⊆ rad be the ideal of g̃ generated by the Serre elements
defined above in Equation (1.10). We define the Lie algebra g := g̃/J . Then g is
again ZI-graded with g0 = h and the invariant bilinear form on g̃ descends to g.

We note some immediate consequences of the definitions. There is an epimor-
phism of graded Lie algebras g → g which respects the bilinear forms. Moreover,
ad Ei and adFi for i ∈ Ire act locally nilpotently on both g and g.

The main result that we require is that g = g, or equivalently that J = rad.
This we show in Theorem 3.11.

The roots of g are defined to be

Φ := {α ∈ ZI : α 6= 0, gα 6= 0}. (1.11)

This has a completely combinatorial description, which we now give.
The fundamental region is defined as

K := {α > 0 : (α, ei) ≤ 0 for all i ∈ I, supp(α) connected} \ {nei : i ∈ I im, n ≥ 2}.
(1.12)

Note that if α > 0 and i ∈ I im, then we necessarily have that (α, ei) ≤ 0. In
particular, ei ∈ K for all i ∈ I im. Conversely, we know that gnei

= 0 for all i ∈ I
and all n ≥ 2, hence nei 6∈ Φ for all n ≥ 2.

Theorem 3.8. The set of roots decomposes into real and imaginary roots Φ =
Φre ∪ Φim, where

Φre :=
⋃

i∈Ire

Wei and Φim = ±
⋃

α∈K

Wα.

Proof. We know that adEi and adFi for i ∈ Ire act locally nilpotently on g.
It follows that the expression

ti := exp(adEi) exp(−ad Fi) exp(adEi) (1.13)

is a well-defined automorphism of g for all i ∈ Ire. It is easy to check that

ti(H) = H −
1

si
ei(H)Hi for all H ∈ h. (1.14)

This action is dual to the reflection ri on h∗. In particular, we have an induced
isomorphism ti : gα

∼
−→ gri(α), and so the set of roots Φ is W -invariant.

Clearly all simple roots are contained in Φ, and every positive root is of the
form w(α) for some α ∈ Π∪K. It remains to show that all roots in the fundamental
region K are contained in Φ. We refer the reader to [Kac] or [Carter].

In fact, with some extra work, one can show that the automorphisms ti describe
an action of the braid group on g (reference?). ¤

We define the root multiplicites as

mult(α, g) := dim gα. (1.15)

It follows that

mult(α, g) = mult(ri(α), g) for all i ∈ Ire and α ∈ ZI. (1.16)
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1.3. Category O. We now describe the category O, a certain subcategory of
(left) g-modules satisfying certain nice properties.

Let M be a g-module. For λ ∈ h∗ the space

Mλ := {m ∈ M : H · m = λ(H)m for all H ∈ h}

is called the λ-weight space of M .
A module is called h-diagonalisable if it is the direct sum of its weight spaces.

If M is h-diagonalisable, then we define its support to be

supp(M) := {λ ∈ h∗ : Mλ 6= 0}.

Some important h-diagonalisable modules are the lowest weight Verma mod-
ules. Given λ ∈ h∗

0 let Qλ be the one-dimensional U(h ⊕ g−)-module with basis
vector 1λ such that

H · 1λ := λ(H)1λ and Fi · 1λ := 0. (1.17)

The Verma module M(λ) is defined to be the induced module

M(λ) := U(g) ⊗U(h⊕g−) Qλ. (1.18)

As a vector space, we see that

M(λ)µ
∼= U(g+)µ−λ, (1.19)

and so
supp(M(λ)) = λ + N0I. (1.20)

We are now in a position to define the category O. Its objects are the h-
diagonalisable modules M with finite dimensional weight spaces and whose support
is contained in the supports of finitely many lowest weight Verma modules. That
is, there exists λ1, . . . , λn ∈ h∗

0 such that

supp(M) ⊆ supp
(⊕

i

M(λi)
)

=
⋃

i

(
λi + N0I

)
.

It follows immediately that each Fi acts locally nilpotently on each M ∈ O.
Given M ∈ O, a non-zero vector v ∈ Mλ in some weight space is called a

heighest weight vector if v 6= 0 but g− · v = 0. It follows that there is a morphism
M(λ) → M sending 1λ to v. More generally, v is called a primitive vector if it is a
heighest weight vector in some factor module of M .

Lemma 3.9. Each module M ∈ O is generated (even as a U(g+)-module) by
its primitive vectors.

Given a module M ∈ O, we define its formal character as

ch(M) :=
∑

λ

(dim Mλ)eλ. (1.21)

Defining eλeµ := eλ+µ, we see that the character can be veiwed as an element in a
certain completion of the group ring of h∗ (as an additive group). It follows easily
from the Poincaré-Birkhoff-Witt Theorem that

ch(M(λ)) = eλch(U(g)+) = eλ
∏

α∈Φ+

(1 − eα)−mult(α,g). (1.22)

The Casimir operator Ω is of central importance in studying the category O.
It is defined as follows. Take a homogeneous basis {Ea : a ∈ A} of g+ and take the
dual basis {Fa : a ∈ A} with respect to the non-degenerate form {−,−}. Next take
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a pair of bases {Hb : b ∈ B} and {Hb : b ∈ B} of h which are dual with respect to
{−,−}. Recall also the element Hρ ∈ h such that {Hρ,Hi} = cii/2 for all i ∈ I.
Then the Casimir operator is given by

Ω :=
∑

b

HbHb − 2Hρ + 2
∑

a

EaFa. (1.23)

Given M ∈ O and v ∈ Mλ, we have Fa·v = 0 for almost all a ∈ A, and
∑

b HbHb·v =
(λ, λ)v. Thus Ω is well-defined on each M ∈ O.

Lemma 3.10. The operator Ω is independent of the choices of bases and com-
mutes with the action of U(g).

Using these facts we see that Ω acts on the Verma module M(λ) for λ ∈ h∗
0 as

scalar multiplication by (λ, λ − 2ρ) = (λ − ρ, λ − ρ) − (ρ, ρ). For,

Ω · 1λ =
∑

b

Hb · Hb · 1λ − 2Hρ · 1λ

=
( ∑

b

λ(Hb)λ(Hb) − 2λ(Hρ)
)
1λ

=
(
(λ, λ) − 2(λ, ρ)

)
1λ.

We note that Verma modules can also be defined for both g̃ and g. In fact, as
before, write Qλ for the one dimensional U(h ⊕ g̃−)-module with basis vector 1λ

such that H · 1λ = λ(H)1λ and Fi · 1λ = 0, and define

M̃(λ) := U(g̃) ⊗U(h⊕g̃−) Qλ.

Then

M(λ) = U(g) ⊗U(g̃) M̃(λ)

M(λ) = U(g) ⊗U(g̃) M̃(λ)

are the Verma modules for g and g.
On the other hand, the definition of the Casimir operator required the non-

degeneracy of the form {−,−}, and for that reason cannot a priori be lifted to g

or g̃.

1.4. A presentation for Borcherds Lie algebras. We can now sketch the
proof of the following theorem, which shows that g = g.

Theorem 3.11. The radical is generated as an ideal of g̃ by the Serre elements

(ad Ei)
1−cij (Ej) and (ad Fi)

1−cij (Fj) for i ∈ Ire and j 6= i,

[Ei, Ej ] and [Fi, Fj ] whenever cij = 0.

Proof. Recall that J is the ideal of g̃ generated by the above elements. We
have already shown that J ⊂ rad and since everything respects the grading we can
write rad/J =

⊕
α∈ZI radα/Jα.

We have already noted that rad+ is an ideal of g̃, and using the isomorphism

M̃(0) ∼= U(g̃+) as graded vector spaces, we obtain an embedding rad+ → M̃(0).
This is naturally an embedding of g̃-modules.

Next, since U(g̃+) is a free algebra, the natural g̃-homomorphism
⊕

i∈I

M̃(ei) → M̃(0), (xi · 1ei
)i 7→

∑

i

xiEi · 10
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is an embedding. Since this is of codimension one,
⊕

i M̃(ei) must be the unique

maximal submodule of M̃(0). We thus obtain the map

rad+ →
⊕

i∈I

M̃(ei) ⊂ M̃(0)

and hence a map

rad+ →
⊕

i∈I

M̃(ei) →
⊕

i∈I

M(ei).

The kernel of the map M̃(ei) → M(ei) is precisely the kernel of the map U(g̃+) →
U(g+), which equals rad+U(g̃+). Thus the kernel of the map rad+ →

⊕
i M(ei)

equals

rad+ ∩ rad+U(g̃+) = [rad+, rad+] =: c.

The commutator c is a small submodule of rad+, since if r is a submodule such
that r+c = rad+, then c/(c∩r) = rad+/r and so rad+/r equals its own commutator.
This, however, is impossible by considering minimal weights.

In particular, we deduce that rad+ is generated by those weight spaces cor-
responding to the weights of the primitive vectors of rad+/c. Since the Casimir
operator acts as zero on each M(ei), we see that each primitive vector of rad+/c

has weight λ satisfying (λ, λ) = 2(ρ, λ). It follows that the quotient rad+/J is
generated by its weight spaces of weight λ satisfying (λ, λ) = 2(ρ, λ).

Now suppose that (rad+/J)α 6= 0 with α minimal. We know that the Serre
relations hold in g̃/J , so ad (Ei) and adFi for i ∈ Ire act locally nilpotently. We
can thus define the automorphism ti for i ∈ Ire as in the proof of Theorem 3.8. In
particular, since

dim(rad/J)α = dim gα − dim(g̃/J)α,

we see that the Weyl group acts on the set {α : (rad/J)α 6= 0}. By the minimality
of α, we see that ri(α) ≥ α for all i ∈ Ire, and hence (α, ei) ≤ 0 for all i ∈ I. In
particular, (α, α) ≤ 0.

Putting this together, if α =
∑

i αiei ≥ 0 is minimal such that rad+
α /J+

α 6= 0,
then (α, ei) ≤ 0 for all i, and (α, α) = 2(ρ, α), or equivalently,

∑
i(α− ei, ei)αi = 0.

Now, if i ∈ Ire, then (ei, ei) = bii > 0, so that (α − ei, ei) < 0. On the other
hand, if i ∈ supp(α) ∩ I im, then

(α − ei, ei) = (αi − 1)bii +
∑

j 6=i

αj(ej , ei) ≤ 0.

We deduce that αi = 0 for all i ∈ Ire, that (ei, ej) = 0 if i, j ∈ supp(α), and that
(ei, ei) = 0 if αi ≥ 2. For such a weight α we note that g̃α = 0, since [Ei, Ej ] = 0

for all i, j ∈ supp(α). Hence J+
α = rad+

α = 0, a contradiction. ¤

It now follows that the universal enveloping algebra U(g) is the quotient of
U(g̃) by the ideal generated by the Serre elements

∑

r+s=1−cij

(−1)rE
(r)
i EjE

(s)
i = 0 and

∑

r+s=1−cij

(−1)rF
(r)
i FjF

(s)
i for i 6= j,

EiEj = EjEi and FiFj = FjFi whenever cij = 0,

(1.24)
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where we have used the divided powers E
(r)
i = 1

r!E
r
i . Moreover, g+ = g̃/rad+ has

a presentation via the generators Ei for i ∈ Q0 and the relations

(ad Ei)
1−cij (Ej) = 0 for i 6= j,

[Ei, Ej ] = 0 whenever cij = 0.

Thus U(g+) has a presentation via the generators Ei for i ∈ Q0 and the relations
∑

r+s=1−cij

(−1)rE
(r)
i EjE

(s)
i = 0 for i 6= j,

EiEj = EjEi whenever cij = 0.


