Commutative algebra and algebraic geometry Exercises 1

- 1. A ring is a principal ideal domain if it is a domain in which every ideal is principal.
 - (a) Show that \mathbb{Z} and K[X] for a field K are both principal ideal domains. [Hint: use Euclid's Algorithm for \mathbb{Z} and the Division Algorithm for K[X].]
 - (b) Compute all prime ideals for \mathbb{Z} and for K[X].
 - (c) Let R be a principal ideal domain, and $I, J, K \triangleleft R$. Show that

$$(I+J) \cap K = I \cap K + J \cap K$$
 and $(I+J)(I \cap J) = IJ.$

- 2. Let *m* be a positive integer, with prime decomposition $m = p_1^{a_1} \cdots p_n^{a_n}$.
 - (a) Use the Chinese Remainder Theorem to show that

$$\mathbb{Z}/(m) \cong \prod_i \mathbb{Z}/(p_i^{a_i})$$

(b) Recall that an element x in a ring R is called a **unit** provided there exists $y \in R$ with xy = 1. The set of units R^{\times} forms a group under multiplication. Show that the group of units of $\mathbb{Z}/(m)$ decomposes as

$$(\mathbb{Z}/(m))^{\times} \cong \prod_{i} \left(\mathbb{Z}/(p_{i}^{a_{i}}) \right)^{\times}$$

(c) Show that the canonical ring homomorphism $\mathbb{Z}/(p^r) \to \mathbb{Z}/(p^{r-1})$ yields a surjective group homomorphism between the groups of units. Compute the kernel. Hence prove that if $\phi(m) := |(\mathbb{Z}/(m)^{\times})|$, then

$$\varphi(p^r) = p^r \left(1 - \frac{1}{p}\right) \text{ and } \varphi(m) = \prod_i \varphi(p_i^{a_i}) = m \prod_i \left(1 - \frac{1}{p_i}\right)$$

3. A ring homomorphism $f: R \to S$ is an **isomorphism** provided there exists a ring homomorphism $g: S \to R$ with $gf = id_R$ and $fg = id_S$.

Show that a ring homomorphism f is an isomorphism if and only if it is bijective.

- 4. (Second Isomorphism Theorem). Let R be a ring, S a subring, and $I \triangleleft R$ an ideal.
 - (a) Show that S + I is a subring of R, and $S \cap I$ is an ideal of S.
 - (b) Show that there is an isomorphism $(S+I)/I \cong S/(S \cap I)$.
- 5. (Third Isomorphism Theorem). Let R be a ring, $I \triangleleft R$ an ideal, and $\pi \colon R \to R/I$ the canonical ring homomorphism.
 - (a) Show that the map $\overline{J} \mapsto \pi^{-1}(\overline{J})$ determines a bijection between ideals of R/I and ideals of R containing I, with inverse $J \mapsto J/I$.
 - (b) If $J \triangleleft R$ contains I, show that there is a ring isomorphism $R/J \cong (R/I)/(J/I)$.
- 6. Prove Lemma 2.1 from the lectures.

Extra questions

- 7. A ring R is a **Euclidean domain** if it is a domain and there exists a (Euclidean) function $N: R \to \mathbb{N} \cup \{-\infty\}$ such that $N(r) \in \mathbb{N}$ for $r \neq 0$, $N(0) = -\infty$, and for all $x, y \in R$ there exist $q, r \in R$ with x = qy + r and N(r) < N(y).
 - (a) Show that every Euclidean domain is a principal ideal domain. Conversely, see Bergman's Notes, where it is shown that $\mathbb{Z}[\frac{1}{2}(1+\sqrt{-19})]$ is a principal ideal domain, but not a Euclidean domain.
 - (b) Let $w \in \mathbb{Q}[i]$ be a complex number and consider the subring $\mathbb{Z}[w]$. Show that there exists r > 0 such that $N(z) := r|z|^2$ takes integer values for all $z \in \mathbb{Z}[w]$.
 - (c) Show that $\mathbb{Z}[w]$ is a Euclidean domain (with respect to N) provided that, for each $z \in \mathbb{Q}[i]$, we can find $x, y \in \mathbb{Z}[w]$ with $y \neq 0$ and $N(z \frac{x}{y}) < 1$.
 - (d) Show that this holds for c = i, and also for $c = \frac{1}{2}(-1 + \sqrt{-3})$.
 - (e) What goes wrong for $c = \sqrt{-3}$?
- 8. Now read the appendix on unique factorisation domains.

We want to describe all prime ideals of K[X, Y]. In fact, we will show that every chain of prime ideals of maximal length has length two and is of the form

 $(0) \subset (f) \subset M$ with f irreducible and M maximal.

In particular, K[X, Y] has **Krull dimension** 2 (and is **catenary**).

- (a) A prime $P \triangleleft K[X, Y]$ has **height one** provided it is a minimal non-zero prime; that is, $P \neq 0$ and if $0 \neq Q \subset P$ is prime, then Q = P. Show that every height one prime ideal is of the form (f) for some irreducible polynomial $f \in K[X, Y]$.
- (b) Let f be irreducible. Show that (f) is not maximal. Hint. Take $g \in K[X]$ irreducible. Show that $K[X,Y]/(g) \cong (K[X]/(g))[Y]$ and that K[X]/(g) is a field. The map $K[X,Y] \to K[X,Y]/(g)$ sends a polynomial $h = h_0 + h_1Y + \dots + h_nY^n$ with $h_i \in K[X]$ to the polynomial $\bar{h} = \bar{h}_0 + \bar{h}_1Y + \dots + \bar{h}_nY^n$, where $\bar{h}_i \in K[X]/(g)$. Hence show that \bar{h} is a unit if and only if gdivides h_i for all $i \ge 1$, but not h_0 .

Now assume that $f \notin K[X]$ and that (f) is maximal. Consider $\overline{f} \in K[X,Y]/(g)$ as g runs through all irreducible elements of K[X].

- (c) Find some maximal ideals of $\mathbb{R}[X,Y]$ containing $f = X^2 + Y^2 1$, or $g = X^2 + Y^2 + 1$, or $h = Y^2 X^3$.
- (d) Now suppose that P ≠ 0 is not height one. Show that we can find non-associate irreducible polynomials f, g ∈ P.
 Suppose next that f, g ∉ K[Y]. By Gauss's Lemma, f, g remain irreducible in K(Y)[X]. Show that they are coprime. Deduce that there exist polynomials a, b ∈ K[X,Y] such that 0 ≠ af + bg ∈ K[Y].

Thus show that there exist irreducible $\alpha, \beta \in P$ with $\alpha \in K[X]$ and $\beta \in K[Y]$.

(e) Again let $P \neq 0$ be not height one. Taking $\alpha, \beta \in P$ as in the previous part, show that $K[X,Y]/(\alpha,\beta)$ is finite dimensional, and hence that K[X,Y]/P is finite dimensional. Deduce that P is maximal.

[Hint: for $0 \neq a \in K[X, Y]/P$ show that multiplication by a gives an automorphism of K[X, Y]/P, using that K[X, Y]/P is both a domain and finite dimensional over K.]