Commutative algebra and algebraic geometry Exercises 2

1. The Jacobson radical of a ring R is defined to be the intersection of all maximal ideals,

$$J(R) := \bigcap_{\text{max ideals}} I.$$

In particular, J(R) is a radical ideal.

Show that $x \in J(R)$ if and only if 1 + rx is invertible for all $r \in R$.

- 2. Let R be a ring, $a \in R$, and set $\Sigma := \{1, a, a^2, a^3, \ldots\}$. Note that Σ is a multiplicatively closed subset. Prove that the localisation $R_a := R_{\Sigma}$ is isomorphic to R[X]/(aX 1), a quotient of the polynomial ring.
- 3. Let $\Sigma \subset R$ be multiplicatively closed. Show that the following defines an equivalence relation on $R \times \Sigma$

 $(r,a) \sim (s,b)$ provided there exists $c \in \Sigma$ with (sa - rb)c = 0.

Show further that the sum and product on the set of equivalence classes R_{Σ} is welldefined, thus proving Lemma 3.2.

4. Make sure you know the statements and proofs of the three isomorphism theorems for modules.

Prove that if $U \leq M$ are *R*-modules, and $I \triangleleft R$ an ideal, then I(M/U) = (IM+U)/U.

5. Let $N \leq M$ be *R*-modules, and suppose that M/N is finitely generated. Show that, if $I \subset J(R)$ and N + IM = M, then N = M.

Now let R be a local ring, with unique maximal ideal \mathfrak{m} and residue field $R/\mathfrak{m} = K$. One usually writes this as (R, \mathfrak{m}, K) . Let M be a finitely generated R-module.

Show that $M/\mathfrak{m}M$ is naturally a K-vector space. Show further that x_1, \ldots, x_n generate M if and only if their images $\bar{x}_1, \ldots, \bar{x}_n$ span $M/\mathfrak{m}M$ as a K-vector space.

Can you find a counter-example when M is not finitely generated? Hint. Consider the local ring $\mathbb{Z}_{(p)}$.

Extra questions

- 6. The power series ring $K[\![X]\!]$ is the set of formal sums $\sum_{n\geq 0} a_n X^n$ with $a_n \in K$. (We say that this is a formal sum to emphasise that the coefficients a_n can be arbitrary.) The addition is done pointwise, and the multiplication is induced by $X^m X^n = X^{m+n}$.
 - (a) Show that a power series $f = \sum_{n} a_n X^n$ is a unit if and only if $a_0 \neq 0$. Hence show every proper ideal of K[X] is of the form (X^r) . In particular, K[X] is a principal ideal domain, has a unique maximal ideal (X), and precisely two prime ideals, (X) and (0). As such, it is a **discrete valuation ring**.
 - (b) For $f = \sum_n f_n X^n$ in $K[\![X]\!]$ non-zero define $N(f) := 2^{-r}$ where r is minimal such that $f_r \neq 0$, and set N(0) := 0. Show that d(f,g) := N(f-g) defines a **metric** on $K[\![X]\!]$. In other words, $d(f,g) \ge 0$ with equality if and only if f = g, and the triangle inequality holds: $d(f,g) \le d(f,h) + d(g,h)$ for all h.

Show further that if we endow $K[\![X]\!] \times K[\![X]\!]$ with the product topology, then addition and multiplication are continuous as maps $K[\![X]\!] \times K[\![X]\!] \to K[\![X]\!]$. Hence $K[\![X]\!]$ is a **topological ring**.

Finally, show that K[X] is complete with respect to this topology; that is, every Cauchy sequence converges.

(c) Show that the natural map $K[X] \to K[\![X]\!]$ extends to an injective ring homomorphism $K[X]_{(X)} \to K[\![X]\!]$, where $K[X]_{(X)}$ is the localisation of K[X] at the maximal ideal (X).

Show that K[X] is the completion of both of the subrings K[X] and $K[X]_{(X)}$.

(d) Show that the map $K[X]_{(X)} \to K[\![X]\!]$ is not surjective, so in particular $K[X]_{(X)}$ is not complete.

Hint: Show that $p \in K[X]$ is in the image of $K[X]_{(X)}$ if and only if there exists a monic polynomial g with pg a polynomial. Obtain a recurrence relation for the coefficients p_n for n sufficiently large. Now find some element p not satisfying any such condition.

- 7. Let M_i be a family of *R*-modules.
 - (a) Show that the *i*-th projection $\pi_i \colon \prod_j M_j \to M_i$ is an *R*-module homomorphism. Show further that these induce an isomorphism (of *R*-modules)

$$\operatorname{Hom}_R(X, \prod_i M_i) \cong \prod_i \operatorname{Hom}_R(X, M_i), \quad f \mapsto (\pi_i f),$$

for all *R*-modules X. This proves that $\prod_i M_i$ is a categorical product.

(b) Show that the *i*-th embedding $\iota_i \colon M_i \to \coprod_j M_j$ is an *R*-module homomorphism. Show further that these induce an isomorphism (of *R*-modules)

 $\operatorname{Hom}_{R}(\coprod_{i} M_{i}, X) \cong \prod_{i} \operatorname{Hom}_{R}(M_{i}, X), \quad f \mapsto (f\iota_{i}).$

(c) Prove that for a set I and R-modules M and N, there is a (natural) isomorphism

$$\operatorname{Hom}_R(M^{(I)}, N) \cong \operatorname{Hom}_R(M, N^I).$$

In fact, the assignments $F: M \mapsto M^{(I)}$ and $G: N \mapsto N^{I}$ extend to an adjoint pair of functors (F, G).

8. Prove that the direct product of rings $R := \prod_i R_i$ is a categorical product; that is, there are natural ring homomorphisms $\pi_i \colon R \to R_i$ such that $\operatorname{Hom}(S, R) \to \prod_i \operatorname{Hom}(S, R_i)$, $f \mapsto (\pi_i f)$, is a bijection for all rings S.

Show that ring homomorphisms $\mathbb{Z} \times \mathbb{Z} \to R$ are in bijection with **idempotent** elements $x \in R$ (so satisfying $x^2 = x$), via $f \mapsto f(1, 0)$.

Show that in the category of rings the coproduct of \mathbb{Z} with itself exists, and equals \mathbb{Z} .