Commutative algebra and algebraic geometry Exercises 3

- 1. Prove Proposition 5.1.
- 2. Show that the following are equivalent for an R-module P.
 - (a) P is projective.
 - (b) Every epimorphism $g: M \twoheadrightarrow P$ has a section, so an *R*-linear $s: P \to M$ such that $gs = id_P$.
 - (c) There exists an R-module Q such that $P \oplus Q$ is free, so isomorphic to $R^{(I)}$ for some I.

Dually, show that the following are equivalent for an R-module I.

- (a) I is injective.
- (b) Every monomorphism $f: I \to M$ has a retract, so an *R*-linear $r: M \to I$ such that $rf = id_I$.

Hint: for (b) implies (a), let $f: L \to M$ be a monomorphism. Given $h: L \to I$, consider the cokernel of $\binom{f}{h}: L \to M \oplus I$.

Remark: The third condition does not have an obvious dual; instead we have **Baer's Criterion**, which states that it is equivalent to take M = R in (b). In other words, I is injective if and only if for all ideals $J \triangleleft R$, the map $\operatorname{Hom}_R(R, I) \to \operatorname{Hom}_R(J, I)$ is surjective.

- 3. Let (F, G) be an adjoint pair of functors. Show that the unit η : id \Rightarrow GF and counit ε : $FG \Rightarrow$ id are natural transformations. This proves Lemma 6.1.
- 4. Let k be a commutative ring, and M, N and X three k-modules. A map $f: M \times N \to X$ is said to be k-bilinear provided, for each $m \in M$, the map $N \to X$, $n \mapsto f(m, n)$, is k-linear, and similarly for each $n \in N$, the map $M \to X$, $m \mapsto f(m, n)$ is k-linear. We write $\text{Bil}_k(M \times N, X)$ for the set of all k-bilinear maps.
 - (a) Prove that $\operatorname{Bil}_k(M \times N, X)$ is a naturally a k-module.
 - (b) Prove that the map $\operatorname{Hom}_k(M, \operatorname{Hom}_k(N, X)) \to \operatorname{Bil}_k(M \times N, X), \ \theta \mapsto \overline{\theta}$ where $\overline{\theta}(m, n) := \theta(m)(n)$, is an isomorphism of k-modules.
 - (c) Prove that the map $\iota: M \times N \to M \otimes_k N$, $(m, n) \mapsto m \otimes n$, is k-bilinear.
 - (d) Prove that the pair $(M \otimes_k N, \iota)$ satisfies the following universal property. For each k-module X and k-bilinear map $f: M \times N \to X$, there exists a unique k-linear map $\bar{f}: M \otimes_k N \to X$ such that $f = \bar{f}\iota$.
- 5. Let $m, n \in \mathbb{Z}$, with greatest common divisor d. Show that the map

$$(\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z}) \to \mathbb{Z}/d\mathbb{Z}, \quad (a,b) \mapsto ab,$$

is (well-defined and) bilinear. Show that it induces an isomorphism

$$(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) \xrightarrow{\sim} \mathbb{Z}/d\mathbb{Z}.$$

Use this to give another proof that the following sequence is exact

 $\mathbb{Z} \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) \xrightarrow{m \otimes 1} \mathbb{Z} \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) \to (\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) \to 0.$

When is the left most map injective?

Extra questions

6. Use Baer's Criterion to prove that \mathbb{Q}/\mathbb{Z} is an injective \mathbb{Z} -module.

Now let R be a ring, which we may regard as a \mathbb{Z} -R-bimodule. Thus for all abelian groups X, there is a natural R-module structure on $\operatorname{Hom}_{\mathbb{Z}}(R, X)$, $rf: s \mapsto f(sr)$ for $f: R \to X$ and $r, s \in R$.

Prove that $\operatorname{Hom}_{\mathbb{Z}}(R, \mathbb{Q}/\mathbb{Z})$ is an injective *R*-module. Hint: tensor products.

- 7. One source of adjoint pairs of functors is to take G to be a **forgetful functor**, where we forget some of the structure of the original category; a left adjoint F, if it exists, is then a **free functor**. Note that these functors generally go between different types of categories, rather than between module categories over different rings.
 - (a) Show that there is a functor from R-modules to sets, sending a module M to its underlying set. Show further that this has a left adjoint, which sends a set I to the free module $R^{(I)}$.

As a special case we have the K-vector space $K^{(I)}$, such that linear maps $K^{(I)} \rightarrow V$ are determined by where they send a basis, and hence are in bijection with maps of sets $I \rightarrow V$.

(b) Show that there is a functor from the category of fields to the category of integral domains with injective ring homomorphisms, sending a field K to its underlying integral domain. Show further that this has a left adjoint, sending an integral domain to its quotient field.